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Enumerating Furthest Pairs in Ultrametric Spaces
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We prove the following results on enumerating or counting furthest pairs given an ultra-
metric space with n elements:

* There is a deterministic O(F + nlogn)-time algorithm for enumerating all furthest
pairs, where F' denotes the total number of furthest pairs.

+ There is a Monte Carlo O(n/€?)-time algorithm that estimates the number of furthest
pairs to within a multiplicative factor in (1 —¢, 1+ ¢€), where € > 0. Furthermore, the
time complexity of O(n/€?) cannot be improved to o(n- f(g)) for any f(-).

Keywords: ultrametric space, furthest pairs, combinatorial enumeration, counting, Monte
Carlo algorithm

1. INTRODUCTION

An ultrametric space is a nonempty set M endowed with d: M x M — [0,0) such
that

* d(x,y) = 0iff x = y (identity of indiscernibles),
* d(x,y) = d(y,x) (symmetry), and
* d(x,z) <max{d(x,y),d(y,z)} (strong triangle inequality)

for all x, y, z € M. It is fundamental in mathematical analysis.

Consider the problem of enumerating/counting point pairs with the longest distance
(called the diameter) in an n-point ultrametric space. The problem can be solved trivially
in O(n?). We show the following:

* There is a deterministic O(F + nlogn)-time algorithm for enumerating all furthest
pairs, where F denotes the total number of furthest pairs. (A pair (a,b) € M? is
furthest if d(a, b) is the diameter.)

* There is a Monte Carlo O(n/€?)-time algorithm that estimates the number of fur-
thest pairs to within a multiplicative factor in (1 — €,1+ €), where € > 0. Further-
more, the time complexity of O(n/€?) cannot be improved to o(n - f(¢)) for any
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Input: Nonempty S C [1]
1: Pick p € § arbitrarily;

2: forall s € S do

3:  Query for d(p,s);

4:  ifd(p,s) = Athen

s: Print (p,s);

6: end if

7: end for

8: T« {s€S\{p}|d(p,s) =Ak

9: Print all pairs in T x (S\ (T U{p}));

10: if T # @ then

11:  Enum.-furthest(T);

12: end if

Fig. 1. Algorithm Enum.-furthest for enumerating all (s,s') € 2 satisfying d(s,s’) = A, where A
is obtained by Furthest-Pair during preprocessing (done only once).

Clearly, no o(F)-time algorithms can enumerate all F furthest pairs. So our first
algorithm is optimal up to an additive O(nlogn). Our second algorithm takes o(n?) time;
hence it only reads an o(1) proportion of distances.

The problem of finding all furthest pairs on the Euclidean plane can be solved in
O(nlogn) time [1]]. Another problem is to compute, for each vertex p; of a simple poly-
gon P, a vertex p, of P with the maximum geodesic distance to p;, where the geodesic
distance between p; and p, is the minimum distance needed to go from p; to p, along
the boundary of P. This problem has an O(nlogn)-time O(n)-space algorithm [2]. In
recent years, there are a lot researches on o(n?)-time algorithms for metric-space prob-
lems, especially in big data. Usually, we just get approximate answers. There is a lot
of algorithmic research along these lines. This includes research on approximate furthest
pairs in metric spaces [3] and an O(1/£°())-time (1 + &)-approximation algorithm for
the 1-median problem in ultrametric spaces [4]. In [S]], a heuristic is designed to find the
furthest neighbor of a given point. All known algorithms for finding a furthest pair among
n points in R? require Q(n>~/€@)) time [6].

2. ENUMERATING ALL FURTHEST PAIRS

Let ([n],d) be an ultrametric space with diameter A = max, |, d(x,y) and € > 0,
where [n] = {1,2,...,n}. It is well-known that there exists a deterministic O(n)-time
algorithm, hereafter called Furthest-Pair, for finding (a,b) € [n]? satisfying d(a,b) = A.
Assume all pairs in [1]? to be unordered. For example, [2] x ([1] \ [2]) contains 2(n —2)
(rather than 4(n — 2)) pairs. Define

F=[{(uv) € [n? | d(u,v) = A}] (D
to be the number of furthest pairs.

Lemma 1. In Algorithm Enum.-furthest (line 9, in Fig. , each (s,s') € T x
(S\ (T U{p})) satisfies d(s,s') = A.
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T (i.e., the set of points furthest from p
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Fig. 2. An illustration of p (the leftmost circle), T (the upper rectangle), S\ (T U{p}) (the lower
rectangle), a pair in B (the dashed rounded rectangle) and a pair in C (the double rounded rectangle).
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Proof. Take any s € T and s’ € S\ (T U{p}). By the strong triangle inequality, d(p,s) <
max{d(p,s’),d(s',s)}. By line 8, d(p,s) = Aand d(p,s') < A. Sod(s,s') = A. O

Lemma 2. In Algorithm Enum.-furthest (in Fig. , each (t,1') € (S\ (T U{p}))* satis-
fiesd(t,1') < A.

Proof. By the strong triangle inequality, d(¢,t') < max{d(p,1),d(p,t')}. Ast,t' €8\
(T U{p}), we have d(p,r), d(p,t') < A by line 8. O

Lemma 3. Algorithm Enum.-furthest (in Fig. |I) enumerates all (s,s') € S satisfying
d(s,s") = A (and nothing else).

Proof. The lemma is trivial when |S| < 1. Assume as induction hypothesis that the re-
cursive call in line 11 outputs all (s,s’) € T satisfying d(s,s') = A (and nothing else).
Clearly, lines 2—7 output all pairs in {p} x S with distance A. The set of pairs in S? but
not in {p} x § is exactly

(S\{p})*=T*UBUC, )
where

B=Tx(S\(TU{p})),
C=(S\(Tu{p})*.

See Fig. for an illustration The induction hypothesis says that all pairs in 7> with
distance A are printed by the recursive call in line 11. By Lemmal[l] all pairs in B have
distance A — These are exactly the outputs of line 9. By Lemma 2] each pair in C has a
distance less than A. Clearly, no pairs in C are printed. [

Enum.-furthest([n]) makes several levels of recursive calls We say that a recursive
call is bad if |T| < |S|/2 (where T is as in line 8) and good otherwise.

IRecall that pairs are unordered by default in this paper.
2Enum.-furthest([n]) denotes Enum.-furthest with the whole ground-set [r] as input.
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Lemma 4. There are at most 1gn bad recursive calls.

Proof. A bad recursive call at least halves the size of the argument to Enum.-furthest
(from S to T in line 11, where |T'| < |S|/2 by badness). O

Lemma S. In a good recursive call, lines 1-9 take time at most proportional to the number
of pairs printed.

Proof. Clearly, lines 2-7 and 9 print exactly |T'| and |T x (S\ (T U{p}))| pairs, respec-
tively. So the number of pairs printed is |7 |+|T x (S\ (T U{p}))|. Clearly, lines 1-9 take
time O(|S|+|T x (S\ (T U{p}))|). By goodness, |T'| > |S|/2. L.e., |S| <2|T]|. O

Lemma 6. In a bad recursive call, lines 1-9 take time O(|S|) plus a quantity at most
proportional to the number of pairs printed.

Proof. Clearly, lines 1-8 and 9 take time O(|S|) and O(|T x (S\ (T U{p}))|), respectively.
Line 9 alone prints |T x (S\ (T U{p}))| pairs. O

Recall that F is the number of furthest pairs. We now prove that Enum.-furthest([n])
enumerates furthest pairs in O(F +nlogn) time. Clearly, writing down all F furthest pairs
takes time Q(F). So our algorithm is optimal up to an additive O(nlogn).

Theorem 7. Enum.-furthest([n]) rakes O(F + nlogn) time and enumerates all pairs
(s,8") € [n)? satisfying d(s,s') = A.

Proof. By Lemma [3] Enum.-furthest([n]) enumerates all F furthest pairs (and nothing

else). By Lemma 3] the time taken by the good recursive calls is at most proportional to
the total number of pairs printed, or F. By Lemma[6] bad recursive calls take a total of

0 (f |s,»|> +0(F) 3)
i=1

time, where k denotes the number of bad recursive calls and S; the argument to the ith bad
recursive call. By Lemmad] there are at most 1gn bad recursive calls, i.e., k <lgn. So
Yi11Si| = O(nlogn). m

3. RANDOMIZED COUNTING

Theorem 8 ([7]). (Chernoff’s Bounds). Let X =Y} | X;, where X; = 1 with probability p
and X; = 0 with probability 1 — p, and all X; are independent. Let 1 = E(X) = np. Then

Sforall0 <6 < 1.

Lemma?9. F > n.
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Proof. Let a, b € [n] be such that d(a,b) = A. By the strong triangle inequality, either
d(a,x) or d(b,x) (or both) equals A for each x € [n]. O

By convention, a Monte Carlo algorithm is allowed to err with probability 1/3 (or
any small constant).

Theorem 10. There exists a Monte Carlo O(n/€?)-time algorithm estimating F to within
a multiplicative factor in (1 —¢€,14¢€), forall € > 0.

Proof. Take m independent and uniformly random pairs, {(a;,b;) € [n]*}™,, for m to
be determined later. So a; and b; are uniformly random elements of an ultrametric
space ([n],d) for all 1 <i < m. In expectation, {(a;,b;)}/", contains mF /() furthest
pairs. By Chernoff’s bound, {(a;,b;)}"" , contains more than (1 + &)mF/ (’5 or fewer
than (1 — €)mF /(}) furthest pairs with probability exp(—Q(e?mF/(}))). By Lemma@,
exp(—Q(e*mF /(5))) < exp(—Q(e*m/n). Taking m = Cn/€? for a sufficiently large con-
stant C > 0 drives the error probability below 1/3. O

An immediate question is: Can the time complexity in Theorem [I0] be improved to
o(n- f(g)) for some f(-)? The answer is negative.

Theorem 11. There does not exist a Monte Carlo o(n)-time algorithm estimating F to
within a multiplicative factor in [1/C,C), for any constant C > 1.

Proof. Consider ultrametric spaces ([n],d) such that there exists a set S C [n] satisfying
(1) d(s,x) =A>1forall s € S and x € [n]\ {s}, and (2) d(x,y) = 1 for all distinct x,
y € [n]\ S. Let B > C'™ be any large constant. Then pick uj, uy, ..., ug independently
and uniformly at random from [r]. Consider the following cases:

Case 1: S ={uj,up,...,ug}. So about Bn distances are furthest.
Case 2: S = {u;}. So about n distances are furthest.

With o(n) queries, the probability of obtaining a non-1 distance is o(1) in both cases. So
with probability 1 — o(1), it will be information-theoretically impossible to distinguish
between the two cases. If F' can be approximated to within a multiplicative factor in
[1/C,C], then we should be able to distinguish between the two cases, a contradiction. [

4. CONCLUSION

Consider the problem of enumerating/counting point pairs with the longest dis-
tance (called the diameter) in an n-point ultrametric space. We give a deterministic
O(F + nlogn)-time algorithm for enumerating all furthest pairs, where F denotes the
total number of furthest pairs. Then we give a Monte Carlo O(n/€?)-time algorithm es-
timating F to within a multiplicative factor in (1 —€,1+ ¢€), for all € > 0. Finally, we
prove the non-existence of a Monte Carlo o(n)-time algorithm estimating F to within a
multiplicative factor in [1/C,C], for any constant C > 1.
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