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Considerable research has focused on dimensional sentiment analysis, which seeks to
predict a real-valued sentiment score in multiple dimensions for a given sentiment ex-
pression. Although state-of-the-art methods can obtain decent results with high-quality
and large-scale corpora data, performance declines significantly under conditions of data
scarcity. To address this data scarcity problem, this study proposes a domain-distilled
method to learn domain-invariant features instead of the domain-specific features commonly
used by traditional methods because learning domain-specific features under data scarcity
condition may restrict coverage of the domain feature space. The proposed distillation pro-
cess is accomplished using a domain discriminator to distinguish the feature’s domain. In
addition, the domain discriminator is trained by maximizing the prediction loss because this
makes it difficult for the discriminator to distinguish among domains, thus improving its
ability to learn domain-invariant features. To evaluate the proposed method, we implement
the domain-distilled method in Bidirectional Encoder Representations from Transformers
(BERT) due to its promising results in many natural language processing (NLP) tasks. Ex-
periments on the EmoBank, a three dimensional sentiment corpus, show that the proposed
domain-distilled BERT outperforms the original BERT and other deep learning models in
terms of dimensional sentiment score prediction.

Keywords: scarce resource, domain distillation, sentiment analysis, deep neural network,
natural language processing

1. INTRODUCTION

In sentiment analysis, affect states can be generally represented using the categorical
and dimensional approaches [1,2]. The categorical approach represents affect states using
several discrete classes such as positive and negative (binary) or Ekman’s [3] six basic
emotions (anger, happiness, fear, sadness, disgust, and surprise). Different classification
methods can then be used to identify the affective classes. For the dimensional approach,
it represents affect states using a continuous numerical value for multiple dimensions such
as valence-arousal (VA) space [4], as shown in Fig. 1. The valence dimension reflects the
degree of positive and negative sentiment, and the arousal dimension reflects the degree of
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calm and excitement. Any sentiment expressions can then be represented as a point in the
VA coordinate plane, and their VA ratings can be recognized using different regression
methods. Compared to the categorical approach, the dimensional approach can provide
more fine-grained (real-valued) sentiment analysis, and thus has received considerable
attention in recent years [5–20].

Several dimensional sentiment corpora have been proposed in recent years. For ex-
ample, CVAT [21] is a two-dimensional corpus of 2,969 sentences annotated with VA
ratings, consisting of six domains including book review, laptop review, hotel review, car
forum, politics forum and news articles. EmoBank [22] is a three-dimensional corpus of
10,062 sentences annotated with valence-arousal-dominance (VAD) ratings, consisting of
six domains including fiction, blogs, essays, letters, travel and news articles. Traditional
methods trained on such multi-domain corpora typically use a strategy to learn domain-
specific features to cover as many domains as possible. Given a rich data resource, as
shown in Fig. 2 (a), such a strategy may work well and achieve good prediction perfor-
mance because the training samples (red point) could cover the domains more completely.
However, under conditions of data scarcity, as shown in Fig. 2 (b), this strategy becomes
more challenging because sample insufficiency may lead to a smaller coverage of the
domain feature space (twill part), causing a further drop in performance.

To tackle the data scarcity problem, this study proposes a domain-distilled method
to learn domain-invariant features instead of domain-specific features. As shown in
Fig. 3 (a), traditional methods that use a strategy to learn domain-specific features may
produce inaccurate prediction results for the test samples (blue star) outside the learned
feature space (twill part). Conversely, as shown in Fig. 3 (b), the proposed method distills
domain-invariant features from different domains such that both the training (red point)
and test samples (blue star) can be transformed into the learned domain-invariant feature
space, thus improving prediction performance. The distillation process is accomplished
using a domain discriminator to distinguish the feature’s domain. In addition, the do-
main discriminator is trained by maximizing (instead of minimizing) the prediction loss
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because this makes it difficult for the discriminator to distinguish between domains and
thus improving its ability to learn the domain-invariant features, whereas minimizing the
prediction loss tends to yield learning of domain-specific features.

To evaluate the proposed method, we implement the domain-distilled method using
the Bidirectional Encoder Representations from Transformers (BERT) [23] as the base
classifier due to its promising results in many natural language processing (NLP) tasks.
The dataset used for evaluation is EmoBank [22], and the goal is to predict the VAD
ratings for each sentence. Experimental results show that the proposed domain-distilled
BERT outperforms the original BERT and other deep learning models under conditions of
data scarcity. For more detailed analysis, we also use a t-Distributed Stochastic Neighbor
Embedding (t-SNE) dimensional reduction technique to visualize the difference of the
learned feature space before and after domain distillation.

Our contributions are summarized as follows:

1. We propose a domain-distilled method to learn domain invariant features to im-
prove dimensional sentiment analysis under conditions of data scarcity.

2. We implement the domain-distilled method in BERT to make BERT more adaptable
to data scarce conditions.

3. The proposed domain-distilled BERT outperforms the original BERT and other
deep learning models on the EmoBank with three dimensions.

The rest of this paper is organized as follows. Section 2 briefly reviews the literature
on dimensional sentiment analysis and pre-trained language models. Section 3 presents
the proposed domain-distilled BERT. Section 4 summarizes the comparative results of
different methods for VAD prediction. Conclusions are finally drawn in Section 5.
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2. RELATED WORK

This section presents a review of the literature in dimensional sentiment analysis
[5–8, 10–20, 24], and pre-trained language models [23, 25–32] .

2.1 Dimensional Sentiment Analysis

Recent studies on dimensional sentiment analysis can be categorized as regression-
based [5, 6, 13–16] and neural-network-based models [7, 8, 10–12, 17–20, 33].

Regression-based methods have been intensively studied for dimension score pre-
diction. Wei et al. [5] proposed a cross-lingual approach that trained a linear regres-
sion model using the dimension scores of a set of English seed words (source) and their
translated Chinese seed words (target). This was extended by Wang et al. [8] using a
locally weighted linear regression model. Malandrakis et al. [10] built a linear regression
model using n-grams with sentiment scores as features. Both Paltoglou and Thelwall [9]
and Amir et al. [6] used support vector regression (SVR). Wang et al. [7] developed a
community-based weighted graph model that performed the regression task on a graph
using a social networking method to predict word dimension scores.

Recently, deep neural network models with word embeddings [34–37] or sentiment
embeddings [38–41] have been widely applied to dimensional score prediction. Du and
Zhang [12] used a boosted neural network trained on character-enhanced word embed-
dings to predict word dimension scores. Vilares et al. [13] used a CNN trained on Twitter
word embeddings to determine the sentiment of tweets from highly negative to highly
positive using a five-point scale. Wu et al. [14] introduced a densely connected deep
LSTM model to concatenate features at different levels to predict the dimension scores
of both words and phrases. Goel et al. [15] presented an ensemble of different neural
networks to determine the intensity level for different emotion categories such as anger,
fear, joy and sadness. Zhu et al. [20] presented an adversarial attention network to predict
the dimension scores of short texts. Yu et al. [16] proposed a pipelined neural network
model to sequentially learn word intensity and modifier weights for phrase-level senti-
ment intensity prediction. Wang et al. [19] developed a regional CNN-LSTM model that
integrates both local (regional) information within sentences and long-distance dependen-
cies across sentences to predict the dimension scores of long texts. They also proposed a
capsule tree-LSTM model by introducing a dynamic routing algorithm to improve the per-
formance of tree-LSTM models [42]. Huang et al. [17] incorporated a context-dependent
sentiment lexicon into a 3-channel CNN to predict the strength of both words and texts.
Xie et al. [24] presented a multi-dimensional relation model to incorporate relations be-
tween dimensions into deep neural networks for dimension score prediction.

All of the above methods were developed with training data sets several times larger
than the testing data sets. None of them focuses on sentiment score prediction under data
scarcity conditions.

2.2 Pre-trained Language Models

Leveraging its ability to extract knowledge from unlabeled data, Google launched
BERT [23], and pre-trained language models have since achieved promising results in
multiple NLP tasks. These models are pre-trained on large-scale corpora to obtain general
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Fig. 4. Overview of the proposed domain-distilled BERT for dimensional sentiment analysis.

language representations and then fine-tuned in specific downstream tasks, such as text
generation, question answering and sentiment analysis. Pre-trained language models can
be divided into two categories according to their pretraining methods: auto-regression lan-
guage models [25,27,43,44] and auto-encoder language models [23,26]. Auto-regression
language models try to capture language features from the beginning of a sentence to its
end. However, autoencoder language models try to capture bi-directional features us-
ing masked pre-trained methods, which is very similar to a cloze test. Given a sentence
x = w1, . . . ,wi, with i words, autoregression language models try to learn one direction
feature by predicting wi with w1, . . . ,wi−1. Autoencoder language models try to predict an
original sequence x with a masked sequence w1, . . . , t,wi, where t represents the masked
token [MASK]. Both autoencoder and autoregression language models require fine-tuning
to adapt to downstream tasks. First, the ML layer is adapted on the top of pre-trained lan-
guage models. Then, the pre-trained model and the ML layer are fine-tuned together with
a low learning rate to avoiding degradation. The authors in [45] show that pre-trained
methods help models achieve more robust results.

From the perspective of neural network structures, differences between pre-trained
language models become more subtle. All pre-trained models use the attention mech-
anism, and some models even share identical neural network structures. For example,
BERT [23] and ELECTRA [26] share an identical network architecture, but they use
different pre-trained methods. ELECTRA uses generated words to replace masked to-
kens, avoiding inconsistent inputs in the pre-training and fine-tuning stages. Pre-trained
language models use large amounts of unlabeled data to improve downstream task perfor-
mance, but require labeled data in the fine-tuning stage.

3. DOMAIN-DISTILLED BERT

The proposed method consists of three parts: BERT, domain distillation and sen-
timent score prediction. Fig. 4 shows the overall architecture. Given a sentence, the
BERT is first fine-tuned to extract domain-specific features by minimizing the sentiment
loss. The domain distillation is then implemented as an add-on module (as shown in the
dashed rectangle) into BERT to extract domain-invariant features by maximizing the do-
main loss. Finally, the extracted domain-invariant features are used to predict the VAD
scores of each sentence. The details of BERT and the domain distillation process are
described as follows.
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3.1 BERT

BERT uses Transformer’s [46, 47] encoder as its neural network structure. Given a
sentence S, words are separated into word pieces [48]. For example, ‘training’ is separated
into ‘train’ and ‘##ing’. Then, a classification token ([cls]) is manually added at the be-
ginning of the sentence, and punctuation is replaced with a sentence separation token
([sep]). Finally, one-hot encoding, word pieces and special tokens are embedded into
token embedding:

T = Tokenize(S), (1)

where S denotes an input sentence and T denotes the tokenized sentence. In segment
embedding, words in different sentences are encoded into different values. The encoding
process aims to represent information related to the sentence’s order. For position embed-
ding, instead of using the position function to represent word order information, BERT
uses learnable position embedding to represent the position information, thus allowing
attention networks to capture position information. BERT gathers word, sentence order
and position order information by multiplying position embedding with the sum of the
token embedding and segment embedding:

X = Epos(onehot(T )+Eseg), (2)

where Epos represents the learned position embedding, Eseg represents the segment em-
bedding, X ∈ RN×H , H represents the dimensionality of word embedding, N represents
the max length of the input sentence, and onehot represents the one hot encoding.

Then matrix X is passed through multiple attention blocks, each of which contains
a multi-head self-attention layer, a dense layer, and two normalization layers. The self-
attention layer with input matrix X is defined as

Att(X) = so f tmax(
XWQW T

K XT
√

d
)XWV , (3)

where WQ,WK ,WV ∈ RH×d respectively denote the trainable parameters for the query,
key, and value matrixes. Attention network constructs an attention map using query and
key matrixes to find attentions between words, and output the weighted value matrix
Att ∈ RN×d . Then, multiple self-attention layers are concatenated into one vector, and
reshaped through a trainable parameter W o:

MultiHead(X) =Concat(Att1, ...,Atth)W O, (4)

where W O ∈ Rhd×H represents the trainable parameter and h represents the number of
self-attention layers, MultiHead represents the multiple self-attention, also known as
multihead attention. Then, BERT builds a residual path to avoid gradient disappear-
ance [49], by adding the multi-head attention layer’s input and output together, achieving
a more stable gradient through batch normalization (BN):

Matt = BN(MultiHead(X))+X , (5)
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where BN represents the batch normalization layer, and Matt ∈ RN×H represents the ma-
trices of the normalized multi-head attention layer. Similar to the attentions layer, the
dense layer is designed with a residual path followed by a batch normalization layer:

Mdense=BN(Dense(Matt))+Matt , (6)

where Dense represents the dense layer, and Mdense ∈ RN×H represents the output matri-
ces. The input and output of both the attention and dense layers are the same size, making
it possible to stack layers to form attentions blocks, which can then be stacked into a large
network. Basic BERT stacks 12 attentions blocks, and large BERT stacks 24 blocks. We
simplify the final output vector of BERT as:

B = BERT (X). (7)

To fine-tune BERT to adapt to the dimensional sentiment analysis task, we use a
sentiment decoder on the top of attention blocks. The sentiment decoder for the VAD
dimensions is designed as a fully connected network with a linear activation function,
defined as

ŷdim = Rdim(B) = linear(W RB+bR), (8)

where dim represents the VAD dimensions, W R and bR represent the trainable parameter
and its bias, ŷdim represents the predicted VAD scores of an input sentence in the fine-tune
process, B represents the output of BERT, R represents the sentiment decoder. The mean
square error (MSE) is used as the loss function, defined as

LR = ∑
dim∈{v,a,d}

Lr(ŷdim,ydim), (9)

Lr(ŷdim,ydim) =
1

2m

m

∑
i=1

∥∥∥ŷ(i)dim − y(i)dim

∥∥∥2
, (10)

where ŷdim = {ŷ(1)dim, ..., ŷ
(m)
dim} and ydim = {y(1)dim, ...,y

(m)
dim} respectively denote the predicted

and actual VAD scores of training sentences. After fine-tuning, we obtain domain-specific
feature BθF extracted from BERT with parameters θF , and the output of the original
BERT in Eq. (7) can be rewritten as

BθF = BERT (X ;θF). (11)

3.2 Domain Distillation

The domain distillation process uses a domain discriminator to transform BERT’s
output from domain-specific features into domain-invariant features. The domain dis-
criminator is designed as a two-layer fully connected network, defined as

ŷc
domain = D(BθF ) = SoftMax(W D

θF +bD), (12)

where D represents the domain discriminator, W D and bD represent the trainable param-
eter and its bias, ŷc

domain represents the prediction probability, and So f tMax denotes the
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output layer’s activation function. Moreover, we minimize the loss function LD to train
the discriminator D:

LD(ŷdomain,ydomain) =−∑
c

ŷc
domain logyc

domain (13)

where ŷc
domain and yc

domain respectively represent the true and prediction probability of
domain label. In the discriminator training process, we obtain the parameter θD for the
discriminator D. After discriminator training, we freeze θD and adjust BERT to fool the
discriminator using the loss function defined as

L=LR−λLD, (14)

where λ controls the trade-off between the sentiment loss and domain loss, respectively
defined in Eqs. (9) and (12). After the domain distillation, the domain-invariant features
can be extracted from BERT with parameters θ̃F , and the output of the fine-tuned BERT
in Eq. (11) can be rewritten as

B
θ̃F

= BERT (X ; θ̃F). (15)

3.3 Sentiment Score Prediction

The domain-invariant features B
θ̃F

learned in the domain distillation process are
then used to predict the final VAD scores, defined as

ỹdim = Rdim(Bθ̃F
; θ̃R,dim), (16)

where ỹdim represents the final predicted VAD scores of an input sentence, R represents
the sentiment decoder defined in Eq. (8), and represents the parameter of the sentiment
decoder for the VAD dimensions.

4. EXPERIMENTS

This section presents the comparative results of the proposed domain-distilled BERT
against original BERT and other deep learning models for dimensional sentiment analysis.
A series of t-SNE visualizations is also used to show the difference between the features
learned before and after domain distillation.

4.1 Experimental Settings

Dataset Experiments are conducted using the EmoBank [22] containing 10,062 sen-
tences with VAD scores. There are six domains in the EmoBank and their distribution is
presented in Table 1.

Training and Testing Partition To simulate rich and scarce data conditions, we re-
spectively use the standard k-fold and reverse k-fold cross-validation for evaluation. The
standard k-fold cross-validation uses k–1 folds for training and the remaining one fold
for testing, whereas the reverse k-fold cross-validation uses one fold for training and the
remaining k–1 folds for testing.
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Evaluation Metric Performance is evaluated using Pearson’s correlation coefficient (r)
and Spearman’s rank correlation coefficient (ρ). Pearson’s correlation coefficient is de-
fined as

r =
1

n−1

n

∑
i=1

(
Ŷi − ¯̂Y

σŶ
)(

Yi − Ȳ
σY

), (17)

where Ai is the actual value, Pi is the predicted value, n is the number of test samples, A
and P respectively denote the arithmetic mean of A and P, and σ is the standard deviation.
Spearman’s rank correlation coefficient is defined as

ρ =
∑i (Ŷi − ¯̂Y )(Yi − Ȳ )√

∑i (Ŷi − ¯̂Y )
2

∑i (Yi − Ȳ )2
. (18)

4.2 Implementation Details

The implementation details of different methods used for VAD prediction are de-
scribed as follows.

• CNN [13] provides a standard architecture which consists of both the convolution
and the pooling layers to map variable-length sentences or texts into fixed-size dis-
tributed representations to extract active local n-gram features.

• LSTM [11] sequentially represents a sentence or text with word order information
to determine long-distance dependencies that could help capture the sentiments of
long texts.

• 2-layer Bi-LSTM [50] The standard LSTM model can be enhanced by introducing
a bi-directional strategy and stacking multiple layers to form a hierarchical repre-
sentation.

• CNN-LSTM [19] The CNN and LSTM can be combined to form a hierarchical rep-
resentation by stacking an LSTM layer on top of CNN (CNN-LSTM). This model
can simultaneously leverage both local and long-distance features within the sen-
tences.

• BERT [23] We use Bert4Keras to implement BERT in our experiments. Bert4Keras
is a light re-implementation of the transformer models in Keras’ version. In our
experiment, we use the BERT-Base model for evaluation. For fine-tuning, we use
multilingual cased pre-trained models, pre-trained by Google. BERT was fine-
tuned in 4 epochs with batch sizes of 128, using the Adam [51] optimization scheme
with a learning rate of 2e-5.

• DT-BERT (domain-distilled BERT) In the fine-tuning process, the hyper-para-
meters of the learning rate, batch size and fine-tuning epochs are identical to those
of BERT. We train the discriminator for 50 epochs, and use a feature extractor to
fool the discriminator for 2 epochs with = 0.1. The trade-off coefficient λ between
sentiment loss and domain classification loss is set to 0.1.
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Fig. 5. Result of different methods for VAD prediction under rich and scarce data conditions.
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4.3 Comparative Result

Fig. 5 shows the performance of the different methods for VAD prediction under rich
and scarce data conditions. The x-axis represents the split ratio of training and testing data
from 1:9 (reverse 10-fold cross validation) to 9:1 (standard 10-fold cross validation). The
y-axis represents r and ρ . The results show that, as training data increases from scarce
data to rich data, the prediction performance of all methods also increased. In addition,
the transformer-based methods (BERT and DT-BERT) outperformed both hierarchical
(2-layer BiLSTM and CNN-LSTM) and single-layer (CNN and LSTM) neural network
models for all dimensions. The proposed DT-BERT outperformed BERT under scarce
data condition (1:9, 1:7, 1:5 and 1:3), demonstrating that learning domain-invariant fea-
tures can overcome the data scarce problem. Once the split ratio exceeded 1:1, BERT
achieved better performance because the increased volume of training data allows for
more domain-specific features to be learned.

For detailed analysis, we compare the results of BERT and DT-BERT for different
domains under the scarce data condition (reverse 10-fold cross validation), as shown in
Table 1. The results show that the DT-BERT outperformed BERT for all domains. For the
six domains, both methods achieved lowest performance in the travel domain, possibly
due to its having the smallest amount of data. For the three dimensions, the valence
dimension outperforms arousal, which in turn outperforms dominance, indicating that the

(a) BERT – Overall feature distribution. (b) DT-BERT – Overall feature distribution.

News Fiction Blogs Essays Letters Travel

(c) BERT – Feature distribution of different domains.

News Fiction Blogs Essays Letters Travel

(d) DT-BERT – Feature distribution of different domains.

Fig. 6. The t-SNE visualization of feature distribution learned by BERT and DT-BERT.

dominance dimension is relatively difficult to predict.
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Table 1. Results of BERT and DT-BERT for different domains under the scarce data
condition (reverse 10-fold cross validation).

Domain Num.
(%) Method Valence Arousal Dominance

r ρ r ρ r ρ

News 2,506
(25%)

BERT 0.430 0.421 0.335 0.284 0.136 0.144

DT-BERT 0.474 0.452 0.358 0.321 0.179 0.161

Fiction 2,753
(28%)

BERT 0.376 0.365 0.347 0.304 0.111 0.091

DT-BERT 0.432 0.384 0.372 0.340 0.146 0.129

Blogs 1,336
(13%)

BERT 0.314 0.310 0.223 0.160 0.091 0.072

DT-BERT 0.371 0.336 0.284 0.227 0.120 0.110

Essays 1,135
(11%)

BERT 0.285 0.296 0.319 0.256 0.143 0.135

DT-BERT 0.354 0.336 0.346 0.281 0.191 0.162

Letters 1,413
(14%)

BERT 0.316 0.301 0.165 0.142 0.096 0.081

DT-BERT 0.353 0.340 0.186 0.164 0.131 0.147

Travel 919
(9%)

BERT 0.244 0.232 0.091 0.080 0.034 0.005

DT-BERT 0.292 0.259 0.158 0.116 0.054 0.067

Total 10,062
(100%)

BERT 0.421 0.394 0.301 0.287 0.154 0.118

DT-BERT 0.471 0.431 0.341 0.319 0.181 0.164

4.4 Visualization of Feature Distribution

To compare the domain-specific features used in BERT and domain-invariant fea-
tures used in the proposed method, we used a series of t-SNE visualizations to show the
difference between the features learned before and after domain distillation, as shown in
Fig. 6. These visualizations were produced by analyzing the output vectors of BERT and
DT-BERT, and each color represents one of the six domains. Comparing Figs. 6 (a) and
(b) shows that the features of different domains learned by BERT tend to be distributed
in certain locations because the domain information was emphasized, whereas the feature
distribution of the DT-BERT is more diverse because the domain-invariant features con-
tain less domain information. Figs. 6 (c) and (d) also show similar results for different
domains.

5. CONCLUSIONS

This study proposes the domain-distilled BERT for dimensional sentiment analysis
under conditions of data scarcity. Compared to traditional methods that use domain-
specific features, the proposed domain-distilled method can learn domain-invariant fea-
tures to improve prediction performance. In addition, the proposed method implemented
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on BERT also makes BERT more adaptable to data scarce conditions.Experiments on the
EmoBank with VAD dimensions show that the domain-distilled BERT outperforms the
original BERT and other deep learning models. The t-SNE visualizations also show the
difference between the feature distribution learned before and after domain distillation.
Future work will focus on applying the proposed method to other possible dimensions
and downstream applications. Another direction is to investigate other methods to learn
domain-invariant features to improve prediction performance.
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