
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1133-1147 (2022)

DOI: 10.6688/JISE.202211_38(6).0003

1133

A Microservices Orchestration Library based

on PHP and RESTful API

WEN-TIN LEE1,+, MENG-HSIEN WU1, ZHUN-WEI LIU1 AND SHIN-JIE LEE2

1Department of Software Engineering and Management

National Kaohsiung Normal University

Kaohsiung, 501 Taiwan
2Department of Computer Science and Engineering

National Cheng Kung University

Tainan, 701 Taiwan

E-mail: {wtlee+; 610877102; 611077104}@mail.nknu.edu.tw; jielee@mail.ncku.edu.tw

Microservices architecture has gradually become the primary consideration for the

development of large software systems with scalability and flexibility. The orchestration

and choreography patterns are provided to facilitate communications among microservices.

Meanwhile, PHP is the programming language with the highest usage rate of the global

web application servers. Nevertheless, there’s still a lack of related PHP development re-

sources in the field of microservices.

This work explores how to apply the service orchestration pattern to orchestrate the

communications among microservice endpoints using PHP programming language. A set

of service orchestration libraries, called Anser, are proposed based on PHP and RESTful

API architecture. Developers can easily adopt the orchestration design pattern by using

Anser to develop web applications based on microservices. Through performance evalua-

tion, we show that Anser could facilitate the stability of microservices applications with

lower error rates.

Keywords: microservices, microservices architecture, service orchestration, PHP, REST-

ful API, design pattern

1. INTRODUCTION

Microservices is an architecture style for developing an application with a collection

of loosely coupled services that implement business capabilities. Adopting microservices

architecture can bring several advantages: deliver and deploy complex applications con-

tinuously, better fault tolerance, easier to adopt new techniques, and easier to scale inde-

pendently [1]. Applications developed based on microservices architecture are easier to

maintain, deploy and scale than traditional monolithic applications. Each team responsible

for developing services can be independent of other teams, and developers only need to

focus on the functional code of each service. This allows large-scale applications to be

developed in parallel, thereby significantly increasing the speed of software delivery.

Microservices architecture also brings challenges for the integration among plenty

of small services as well as the selection of communication patterns. At present, most mi-

croservices communicate with each other via RESTful API based on lightweight protocols

such as HTTP [2]. However, multiple small services mean more API needed to be managed.

Some microservices that use API Gateway may need to obtain information provided by

Received December 2, 2021; revised January 19, 2022; accepted February 16, 2022.
Communicated by Shin-Jie Lee.
* This research was sponsored by Ministry of Science and Technology in Taiwan under grants No. MOST 110-

2221-E-017-001-.

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1134

different service endpoints in one request. According to different system requirements,

some features might need to complete complicated operations in one request which will

involve communication between multiple service endpoints.

The orchestration and choreography patterns are provided to deal with the communi-

cation process among microservices [1]. Currently, Java is the mainstream programming

language for microservices, sharing massive libraries and resources maintained by the

open-source community. Compared with Java, PHP is the most used programming lan-

guage for web applications in the world. Nevertheless, PHP and its open-source commu-

nity rarely provide implementations and libraries of microservice-related design patterns.

This work designs and implements a set of libraries called Anser that can perform

HTTP requests and process responses based on PHP and RESTful API architecture. Anser

was named after the scientific name of wild-goose through the concept of formation, sup-

port, and organization in the geese theory to represent the process of constructing and or-

chestrating a large number of microservices in a distributed system. Developers can use

the Anser orchestrator library to realize the orchestration design pattern quickly and build

robust microservice systems using PHP to handle various application exceptions that may

occur in HTTP communication by performing retry and recovery strategies.

The remainder of this paper is organized as follows: Session 2 presents background

knowledge and related work. Session 3 describes the analysis and the design architecture

of Anser libraries. Session 4 introduces the service and orchestration implementation meth-

ods. Session 5 conducts performance evaluations and explains the results. Finally, Session

6 concludes this study with future works.

2. RELATED WORK

Microservices are a software architecture inspired by service-oriented architecture,

which has gained popularity in recent years [3]. Microservice architecture brings isolation

into services, so the design patterns of microservices are different from the traditional ones.

Jamshidi [4] pointed out that microservices can have better scalability and autonomy com-

pared with monolithic applications. The relationship between services of monolithic appli-

cations is inseparable. When any service error occurs, it may cause delay and unavailability

of the application. Moreover, microservices can provide high-performance services without

losing communication reliability. More and more cloud-native architectures and container-

ization technologies based on microservices are available, making the deployment, expan-

sion and management of microservices easier, flexible, fast, and effective [5]. Debagy and

Martinek [6] mentioned that in some parallel testing scenarios, microservices surpassed

monolithic architecture in performance and throughput. Richardson wrote that developers

must deal with the additional complexity of creating a distributed system:

• inter-process communication and failure handling.

• requests span multiple services.

• writing test cases for interactions among services.

For the problems mentioned above, different design patterns and libraries have been

developed. Next, we will discuss the structure and benefits of these patterns and libraries.

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1135

2.1 Service Orchestration and Service Choreography

In the microservices architecture, system functionalities are divided into individual

small services. These services maintain their data and communicate through API invoca-

tions. Implementing complex business logic may be a process of operating different services

in a specific coupling sequence, which requires the realization of orchestration and chore-

ography design patterns. Gunawan et al. [7] implemented a service orchestration software

framework based on Node.js. Fig. 1 describes the service orchestration pattern. All service

execution sequences and exceptions are handled by the orchestrator.

Fig. 1. Service orchestration.

Fig. 2. Service choreography.

 Fig. 2 depicts the service choreography pattern. The service will notify the next ser-

vice to perform work after completing its own task. Usually, we will implement the message

queue according to the rules of RabbitMQ or Kafka [1, 8]. Some researchers pointed out

that implementing service choreography patterns makes it harder for the developers to main-

tain since it will scatter the business logic into the services [8, 9]. For simple business logic,

choreography is more appropriate; For complex scenarios, although the performance of ser-

vice orchestration is worse than the choreography, its characteristics make it a better choice

for executing complex logic.

2.2 HTTP Protocol and RESTful API

HTTP is a common communication protocol, and the communication between the client

and the server is usually implemented in the form of an HTTP API. The client will post a

connection request, and the server will generate results in the form of HTML, JSON, or

XML.

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1136

 The representational State Transfer referred to as REST [7], has established an API

design model for modern web applications. REST is an API design model that strictly

conforms to the HTTP protocol, it focuses on describing resources by URL, and fully

utilizes the standard of HTTP Request to take the method as a verb. If the HTTP API is

implemented by the design concept of REST, it can be called a RESTful API. Currently,

most microservices services use RESTful API to communicate with each other [1].

2.3 Service Orchestration Libraries

As shown in Table 1, we list libraries similar to Anser, which are PHP-based Vrata

[10], Java-based SEATA [11], and Zuul [12]. Vrata is a PHP library that lacks functional

support for retry strategies, filters, and error handling. SEATA is a Java library based on

Spring Boot. Vrata and Zata use a markup language for service orchestration which means

that developers cannot write more logic to express complex business processes. At the

functional level, Anser provides the same functions as Zuul which is a mature Java

microservice development library. Zuul expects developers to solve API composition and ser-

vice orchestration problems by themselves, so they can only seek support from other libraries,

or write from scratch, which will increase the complexity of programming.

Anser is developed in native PHP. Unlike other framework-based libraries, Anser can be

imported into any framework, giving developers greater flexibility. For service requests, sup-

porting error handling will give developers greater flexibility during development, log different

HTTP errors, and return the correct error message. The retry strategy can greatly improve the

success rate of communication with the microservice by requesting again after a period of time

when the microservice is busy and the service is rejected. Filters give independent settings to

specific connections before the actual request or perform some independent preprocessing after

the request is successful, which is also an indispensable function in the microservice library. In

terms of programming complexity, Anser provides many out-of-the-box functions in service

orchestration. Using Anser, developers can avoid complex orchestration logic and state man-

agement, and can simply complete asynchronous service requests through a few lines of code.

Table 1. Comparison of microservice libraries.

 Anser Vrata SEATA Zuul

Language PHP Java

Framework Native PHP Lumen Spring Boot

Error Handling Yes None Yes Yes

Retry Strategy Yes None Yes Yes

Filter Yes None Yes Yes

Service

Orchestration
Programming Markup Markup Programming

Programming

Complexity
Simple None None Complex

3. ANSER MICROSERVICE ARCHITECTURE DESIGN

This work designs and implements a set of libraries based on PHP for the developers

to implement the API composition pattern or service orchestration pattern conveniently.

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1137

Fig. 3 shows the legends used in the design model, Domain represents the scope of func-

tions, Component represents a single component or function, Developer is the developer

who uses Anser, Developer Component is the content component implemented by the de-

veloper, and External Component is the external component that uses Anser.

The Domain represents the function range, Component means a single component or

function, Developer stands for the developer using Anser, Developer Component is the

component implemented by developers, External Component describes the external com-

ponents using Anser.

Fig. 3. Legend.

Fig. 4. Component diagram of Anser library.

Fig. 4 depicts the component diagram of the Anser library which includes two major

development objectives ‘Service’ and ‘Orchestration’. Developers can use the Service

component to define and implement their services. Through the Orchestration component,

developers can orchestrate services with complex business logic.

3.1 Service Component Design

The Service component is used for implementing the microservice endpoint that may

be called during program development, and meets the following functions:

1. Developers can create a list of available services by themselves.

2. Abstracts API invocation behavior with RESTful API

3. Able to define the behavior of each service when the request succeeds and fails.

4. Store the meaning data that services need to use after the server responds [2].

5. The service request supports a parallel connection.

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1138

Fig. 5 shows the detailed design of the Service component. Service provides four

useable classes and one interface that needed to be implemented.

Fig. 5. Service component design.

• List Class: The only static class, developers can use this class to define usable service

content.

• Action Class: An action is the smallest unit of a Service. It is responsible for abstracting

the execution details of the HTTP connection, recording the execution result, allowing

developers to intervene in the execution process, and allowing additional implementation

of connection errors and processing logic when the execution is correct.

• Concurrent Action Class: If an HTTP connection needs to be a concurrent request, we
need to instantiate this class and pass the Action to the request list.

• Simple Service Class: This is a basic class that integrates the above functions. By inher-

iting this class, the internal interface class can be defined for the APIs provided by the

microservice endpoint.

• Filter Interface: Developers can define the logic to be processed before and after the Ac-

tion execution.

3.2 Orchestration Component Design

Developers can organize a process to call multiple services through the Orchestration

Component, and achieve the following functions:

• Developers can customize execution logic to support sequential execution and parallel

processing.

• Developers can use the data generated during the runtime of the orchestrator in each

process.

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1139

• Developers can define the output results after the execution of the orchestrator by them-

selves.

Fig. 6 shows the detailed design of the Orchestration component which provides two

classes.

Fig. 6. Orchestration component design.

• Orchestrator Class: An abstract class that provides the methods needed by the orchestra-

tor when executing across multiple services. After extending this class, abstract methods

must be implemented to define the execution details of the orchestrator.

• Step Class: This class does not need to be inherited or implemented. It will be instantiated

by the orchestrator and used to manage the execution of the complex orchestration pro-

cess.

The New Controller Class extends the Controller class which is based on native PHP.

We expect that developers will use this library in the PHP frameworks, hence the library

developed by this work is based on native PHP, which can be instantiated by any external

class and operate normally.

4. ANSER MICROSERVICE ARCHITECTURE IMPLEMENTATION

The Anser library brings developers many out-of-the-box classes and methods. Devel-

opers only need to write public methods and make detailed settings for the endpoint re-

sources of microservices. These settings include endpoint location, request method, re-

sponse parsing method, etc. Anser expects microservice developers to easily implement

service orchestration in a programming way, and further maintenance, debugging and test-

ing can be guaranteed more smoothly. We demonstrate how to use Anser to implement

service orchestration in the remainder of this section.

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1140

4.1 Service and Action Implementation

Fig. 7 shows the implementation of SimpleService. ProductsService extends the Sim-

pleService class to implement service content. In the ProductsService class, we map the

resources provided by the microservice endpoints, offer the resources before and after the

HTTP request, and set the number of retries, intervals, and timeout when the request fails.

The public methods represent the detailed configuration of the endpoint’s resources and

usually return Action objects.

Fig. 8 describes how the Action object is used. The action object will request a REST-

ful API using the HTTP protocol to retrieve a list of products. In this example, developers

can pass the product list to callback functions to handle the logic when the request succeeds

or fails.

Fig. 7. Simple service implementation.

Fig. 8. Using action object.

4.2 Concurrent Action and Orchestration Implementation

Fig. 11 describes that developers can pass multiple action objects into the Concurrent

Action object to achieve parallel requests for multiple endpoints. ConcurrentAction object

integrate and return the responses after the request is successful.

Anser provides an abstract class Orchestrator for developers to quickly implement

service orchestration pattern. Fig. 12 shows that developers can define execution processes

involving multiple microservices and with orders. In the example, you can find that each

Step is composed of several Actions. If more than one Step is defined, then these Steps

will be executed sequentially in the orchestrator. The Step can also retrieve other Step’s

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1141

execution results during execution. You only need to pass in the corresponding callback

function to obtain the required Step Action through the Orchestrator object.

Fig. 9. API composition pattern implementation.

Fig. 10. Service orchestration implementation.

5. PERFORMANCE EVALUATION

For performance evaluation, we designed three independent microservices with inde-

pendent databases. As shown in Table 2, all microservices are written in PHP and use

PostgreSQL as the database for data storage. The three microservices were deployed on

three independent hosts located in the same LAN using Docker. All microservices expose

a set of RESTful APIs, which serve the CRUD (add, read, edit, delete) requirements of

resources such as Order, Payment, and Product. The hardware used for the experiment is

a 2.3GHz, 8-core Intel Core i7 processor, and 16 GB 2667 MHz DDR4 memory.

We compared Anser with a PHP open-source Gateway ‘Vrata’ which is written based

on an open-source framework called Lumen. Vrata provides proxy, composition, and or-

chestration functions for multiple microservices. The orchestration details of services must

be defined in the JSON data format. In the performance tests, we designed three cases to

simulate the actual requirements of writing microservices and tested the performance un-

der these conditions. Table 3 shows the three test cases designed for the performance test-

ing of service orchestration.

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1142

Table 2. Service for testing.

Service Name Functions

Product Product description, price, inventory

Order Stored order number, commodity, amount

Payment Record payment amount and info

Table 3. Test cases.

Cases Execution Details

Order Overview

1. Use the parallel connection to obtain data from the Order and Payment micro-

services by passing in the Order ID.

2. Return the results after combining the responses of the two microservices.

Order Details

1. Get the Order and Payment data from the parallel connection after passing in the

ID.
2. Then request product details from the Product microservice with the ‘Products

ID’ returned in the previous step.

3. Combine the responses of all microservice and return them.

Create Order

1. Obtain prices of all products from product microservice after passing in the prod-

uct ID array, the required quantity, and the user ID.
2. Pass the user ID, product array, and purchased quantity to the order microservice

to create a new order and get the order number.

3. Pass in the order number and checkout amount to payment microservice after cal-
culating the checkout amount based on the product sales price and required quan-

tity in the first step,

4. After confirming the data is written, the created order number will be returned.

We will use the Anser library to implement the execution details defined in the test

cases. All experiments will simulate actual user connections through JMeter, and restart

all servers’ docker containers after every simulated connection is completed.

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1143

5.1 Order Overview Evaluation

According to the results shown in Tables 4 and 5, when the server is facing high loads,

Vrata provides faster execution speed but also has a higher error rate of 11.17%. Although

Anser performs slower in executing speed, it turns out that it can handle all connections

correctly.

Table 4. Order overview: 10000 times sampling test.

Thread 1000 Interval 1 sec

Loop 10
Sample

amount
10000

 Anser Library Vrata

Avg. (ms) 5427 3626

Error rate 0.0% 11.17%

Throughout (sec) 173.7 191.4

Table 5. Order overview: 5000 times sampling test.

Thread 500 Interval 1 sec

Loop 10
Sample

amount
5000

 Anser Library Vrata

Avg. (ms) 2674 2328

Error rate 0.0% 8.28%

Throughout (sec) 172.4 184.3

The request results of the microservices implemented using Anser will be processed

by PHP’s "json_decode()" method; while Vrata turns out to directly combine the micro-

services’ responses into the final output. Therefore, in the face of high-load requests, it will

take more time to process the decoding and transcoding of the responses while implement-

ing the Anser library.

5.2 Order Details Evaluation

According to the results in Tables 6 and 7, Anser’s execution speed will become clos-

er to Vrata for complex service compositions in a low-load environment. Until the sam-

pling rate reaches 2000, the execution result of the Anser library becomes better than Vrata.

In addition, Vrata still has a certain degree of error rate in a high load environment.

Such an error rate will lead to instability in service provision. The Anser library can pro-

vide more stable performance while performing complex service orchestration. It can pro-

vide accurate and error-free services in a high-load environment.

Table 6. Order detail: 5000 times sampling test.

Thread 500 Interval 1 sec

Loop 10
Sample

amount
5000

 Anser Library Vrata

Avg. (ms) 7323 6708

Error rate 0.0% 5.32%

Throughout (sec) 64.3 67.2

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1144

 Table 7. Order detail: 2000 times sampling test.

Thread 200 Interval 1 sec

Loop 10
Sample

amount
2000

 Anser Library Vrata

Avg. (ms) 2802 2855

Error rate 0.0% 5.32%

Throughout (sec) 65.9 65.0

5.3 Create Order Evaluation

Tables 8 and 9 show the performance of different microservices to get and write data

at the same time during service orchestration. When facing high load requests, although

the processing time of the Anser library is higher than that of Vrata, it has a stability of

zero error rate. On the contrary, regardless of high load or low load, Vrata cannot guarantee

the stable execution of the order creation task. For distributed systems, the stability of cre-

ations and modifications is more important than performance.

Fig. 11 shows the error rate of the Anser library and Vrata under different cases of the

loading test with 5000 samples. Anser can maintain zero error stability in all test cases.

After checking the server log, we found that in either case, Vrata will first encounter the

problem that the number of connections exceeds the upper limit of the server software and

the connection is rejected. Therefore, the rest of the errors are triggered by server execution

timeout, and at the same time, the microservices work normally. It can be concluded that

Vrata has flaws in task scheduling under high load and cannot effectively retry the failed

services to ensure the correct execution of requests.

The Anser library developed in this work can provide PHP developers with new choi-

ces when implementing the microservice architecture, and brings the following benefits:

• Compatible with different PHP software development frameworks.

• Provide more stable execution performance compared with similar solutions.

• Ensure that the services run normally under high concurrent requests with low error rates.

Table 8. Order creation: 10000 times sampling test.

Thread 1000 Interval 1 sec

Loop 10
Sample

amount
10000

 Anser Library Vrata

Avg. (ms) 8719 5612

Error rate 0.0% 18.27%

Throughout (sec) 108.7 117.9

Table 9. Order creation: 5000 times sampling test.

Thread 500 Interval 1 sec

Loop 10
Sample

amount
5000

 Anser Library Vrata

Avg. (ms) 4232 3831

Error rate 0.0% 6.90%

Throughout (sec) 109.7 115.1

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1145

Fig. 11. Bar graph of 5000 sampling error rate.

6. CONCLUSION

To solve the maintenance problems of large-scale applications on complex architec-

tures, it is imperative to adopt microservices for large-scale project development. This

work proposes a microservice solution based on the PHP programming language called

Anser (https://github.com/SDPM-lab/Anser-Action), which provides PHP developers with

new options for microservice implementation. Developers do not need to migrate to unfa-

miliar programming languages to implement microservices. In the past, using PHP to com-

municate with other endpoints through the HTTP protocol was a very tedious task. Using

the Anser library, developers can implement functions such as the integration of multiple

services and complex service orchestration on the premise of familiar language and high

performance.

This study proposes a service orchestration library available in PHP regarding micro-

service architectures implemented in different languages. In terms of performance evalua-

tion, PHP currently does not have a representative microservice solution, so this study only

compares Vrata with Anser. At the same time, PHP must rely on server software. The

choice of different server software and caching mechanisms will also make the library have

different performance. There should be more in-depth experimental planning for different

server software. There should be more in-depth experimental planning for different server

software. If the software architecture adopts the microservice architecture, it will face the

challenge of data consistency in the distributed database [1]. Such challenges must rely on

developers to solve the data consistency in the program. At present, there are also related

design patterns as well as libraries to support developers in maintaining data consistency

in microservices [7, 13, 14]. In the future, we will propose simple and easy-to-use solutions

to solve the challenges of data consistency under the service orchestration.

REFERENCES

1. C. Richardson, Microservices Patterns: With examples in Java, Manning Publications,

NY, 2018.

WEN-TIN LEE, MENG-HSIEN WU, ZHUN-WEI LIU, SHIN-JIE LEE

1146

2. K. Malyuga, O. Perl, A. Slapoguzov, and I. Perl, “Fault tolerant central saga orches-

trator in RESTful architecture,” in Proceedings of IEEE 26th Conference of Open In-

novations Association, 2020, pp. 278-283.

3. N. Dragoni et al., “Microservices: Yesterday, today, and tomorrow,” in Present and

Ulterior Software Engineering, M. Mazzara and B. Meyer, eds., Springer International

Publishing, Cham, 2017, pp. 195-216.

4. P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Microservices: The

journey so far and challenges ahead,” IEEE Software, Vol. 35, 2018, pp. 24-35.

5. A. Warke, M. Mohamed, R. Engel, H. Ludwig, W. Sawdon, and L. Liu, “Storage ser-

vice orchestration with container elasticity,” in Proceedings of IEEE 4th International

Conference on Collaboration and Internet Computing, 2018, pp. 283-292.

6. O. Al-Debagy and P. Martinek, “A comparative review of microservices and mono-

lithic architectures,” in Proceedings of IEEE 18th International Symposium on Com-

putational Intelligence and Informatics, 2018, pp. 000149-000154.

7. G. F. Gunawan, J. F. Palandi, and Subari, “Redesigning CHIML: Orchestration lan-

guage for chimera-framework” in Proceedings of the 3rd International Conference on

Informatics and Computing, 2018, pp. 1-7.

8. C. K. Rudrabhatla, “Comparison of event choreography and orchestration techniques

in microservice architecture,” International Journal of Advanced Computer Science

and Applications, Vol. 9, 2018, pp. 18-22.

9. R. T. Fielding and R. N. Taylor, “Principled design of the modern Web architecture,”

ACM Transactions on Internet Technology, Vol. 2, 2002, pp. 115-150.

10. PoweredLocal, “Vrata,” https://github.com/PoweredLocal/vrata, 2022.

11. Alibaba, “SEATA,” https://seata.io/en-us/, 2022.

12. Netflix, “Netflix Zuul,” https://github.com/Netflix/zuul, 2022.

13. H. Garcia-Molina and K. Salem, “Sagas,” in Proceedings of ACM SIGMOD Interna-

tional Conference on Management of Data, 1987, pp. 249-259.

14. X. Limόn, A. Guerra-Hernández, A. J. Sánchez-García, and J. C. P. Arriaga, “Saga-

MAS: A software framework for distributed transactions in the microservice architec-

ture,” in Proceedings of the 6th International Conference in Software Engineering

Research and Innovation, 2018, pp. 50-58.

Wen-Tin Lee (李文廷) received his Ph.D. degree in Com-

puter Science and Information Engineering from National Central

University, Taiwan, in 2008. Lee is currently an Associate Profes-

sor in the Department of Software Engineering and Management at

National Kaohsiung Normal University. His research interests in-

clude software engineering, service-oriented computing, and deep

learning.

MICROSERVICES ORCHESTRATION LIBRARY BASED ON PHP AND RESTFUL API

1147

Meng-Hsien Wu (吳孟賢) received his master degree in the

Department of Software Engineering and Management at National

Kaohsiung Normal University, Taiwan, in 2021. His research inter-

ests include software engineering, microservice architecture, web

programming, and service computing.

Zhun-Wei Liu (劉峻維) is currently a master student in the

Department of Software Engineering and Management at National

Kaohsiung Normal University, Taiwan. His research interests in-

clude software engineering, microservice architecture, DevOps, web

programming, and container technology.

Shin-Jie Lee (李信杰) is an Associate Professor in Computer

and Network Center at National Cheng Kung University in Taiwan

and holds joint appointments from the Department of Computer Sci-

ence and Information Engineering at NCKU. His current research

interests include software engineering and service-oriented compu-

ting. He received his Ph.D. degree in Computer Science and Infor-

mation Engineering from National Central University in Taiwan in

2007.

