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Privacy protection of sensitive information has become an urgent problem to be solved 

in social networks. Differential privacy is used in many privacy protection methods because it 
can provide strong protection. Most of existing differential privacy scheme mainly implements 
the privacy protection on nodes or edges in the network by perturbing the data query results. 
The privacy protection requirements of multiple types of information cannot be satisfied in 
these schemes. In order to solve these issues, a differential privacy security mechanism with 
average path length (APL) query is proposed in this paper, which realize the privacy protection 
of both edge weights and network vertices. The reasons for choosing this attribute as the query 
function are analyzed. The global sensitivity of APL query under the need of node privacy 
protection and edge-weighted privacy protection is proved. Based on previous studies, the 
concept of edge-weighted neighborhood graph in differential privacy is proposed. The rela-
tionship between data availability and privacy control parameters in differential privacy is an-
alyzed through experiments.     

 
Keywords: social network, differential privacy, network topology, privacy protection, global 
sensitivity 
 
 

1. INTRODUCTION 
 

With the rapid development of social networks, more and more individuals will have 
very complex interactions. The process of interaction between individuals in society is a 
typical social network model, which plays an important role in production and life. The 
research on privacy protection algorithms of social networks has become an indispensable 
topic when discussing social networks. In differential privacy, since the network topology 
information contains more private information, publishing the network topology related 
query results has also become a trend. The query for network topology information is di-
vided into degree distribution, shortest path distribution and other overall distribution qu-
ery, which leads to the release of the query function is very sensitive to the network scale. 

Differential privacy was first proposed by Dwork [1, 2] and given strict definition and 
proof. Currently, most of differential privacy schemes only focus on the single data privacy 
of nodes or edges, these methods cannot meet the requirements of privacy protection in the 
network. 

X. Xiao et al. [3] proposed a framework that applies wavelet transforms on the data 
before adding noise to it, the instantiations for both ordinal and nominal data are presented. 
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The core of their solution is a framework that applies wavelet transforms on the data before 
adding noise to it. This method provides a theoretical analysis on their privacy and utility 
guarantees. [4] proposed distributed algorithms for in-network tracking and range queries 
for aggregated data. This scheme stores the target detection information locally in the net-
work and answers a query by examining the circumference of the given range. But the cost 
of updating data about mobile targets is proportional to the target displacement, and this 
may bring more cost. [5] proposed a method which published the degree distribution and 
cut the query and the shortest path information to maintain the privacy of the node. In this 
paper, it is shows that the amount of noise is significantly reduced from O(n) to O(log(n)). 
Pinot et al. [6] proposed a differential privacy scheme based on the release of minimum 
spanning tree clustering, which realized the privacy protection of the weights. They present 
the first differentially private clustering method for arbitrary-shaped node clusters in a 
graph, and their algorithm is theoretically motivated. However, the sensitivity of these 
query functions is too large, and the privacy protection of the node is more concerned in 
these query functions.  

Karwa et al., [7, 8] proposed a perturbation based on network structure query, which 
can protect the edges information in the network well. Hay et al. [9] proposed a differential 
privacy algorithm based on edge privacy protection, which released the perturbation result 
of the moderate distribution through constraint reasoning technology. The techniques can 
be used for estimating the degree sequence of a graph very precisely, and for computing a 
histogram that can support arbitrary range queries accurately. Chen et al. [10] used the 
exponential mechanism to add the constructed noise adjacency matrix, they released the 
perturbed network structure information such as degree distribution, cutting query and 
shortest path to realize edge weight protection. This is the first work providing a practical 
solution for publishing real-life network data via differential privacy. Sealfon et al. [11] 
proposed a policy based on data distribution. This method only cares about edge privacy 
protection and has a high query cost. Brunette et al. [12] proposed a differential privacy 
based on Laplace mechanism, which distributes edge weight noise based on the noise 
threshold of edge subsets, and preserves the spectral information of the input pattern while 
guaranteeing ε differential privacy. Their mechanisms guarantee -differential privacy for 
a reasonable level of privacy , while preserving the spectral information of the input graph. 
Li et al. [13] treat edge weight sequences as unallocated histograms and add noise based 
on histograms to achieve edge-weighted differential privacy. This approach effectively 
improved the accuracy and utility of the released data. Lan Lihui et al. [14] proposed dif-
ferential privacy based on WSQuery model. This scheme adds noise to the mapping vector 
of query results to realize the privacy protection of edge and edge weights. Wang Hong 
[14] proposed the DP-OPTICS algorithm by preprocessing the data and combining the 
existing algorithms, which improved the data utility. All of these methods have good effi-
ciency, but they only care about edge privacy protection, besides the balance of data avail-
ability and security cannot be maintained. 

In order to simplify the operation process of differential privacy and take it into ac-
count the nodes and edges privacy in the network, this paper proposes a differential privacy 
algorithm based on network average path length (APL) query. The contributions of this 
article are as follows: 
 
 Through analysis, the network APL is selected as the target of differential privacy. 
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 The APL under ER and BA networks is analyzed and combined with the previous studies, 
the concept of edge weighted neighbor graph is given. 

 The global sensitivity of satisfying the dual privacy protection requirements of node and 
edge weight is obtained. 

 The relationship between the availability of data and the privacy control parameters is 
analyzed through experiments. 

2. DIFFERENTIAL PRIVACY SCHEME FOR APL 

The topology-based differential privacy algorithm is proposed in this paper. The pur-
pose of this algorithm is to realize the dual privacy protection of node and edge weight by 
publishing the perturbed query result of network APL. This strategy is based on the same 
kind of differential privacy algorithm to achieve the purpose of node privacy protection 
and edge weight privacy protection. In real world the scale of actual networks is generally 
much larger than 100. In this paper, the smaller network has not been considered, i.e., the 
minimum network size is set to 100. 

2.1 Differential Privacy Sensitivity Analysis for Node Protection 

In a network, APL refers to the average of the shortest path lengths between all nodes 
in the network. When querying the APL, the interference of the query result is used to blur 
whether a node exists, thereby implementing privacy protection of the node. 

(A) APL analysis  
According to the corresponding literature, the expressions of APL in different types 

of unweighted networks are obtained. 

(a) APL of ER networks 
The distance L(i, j) between two nodes i and j in the unweighted network is defined 

as the number of edges connecting the two nodes. The APL is shown in Eq. (1). 
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According to [15-17], the unweighted ER network APL can be obtained as Eq. (2): 
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Where N is the network size, and k is the average node degree of the network. 

(b) APL of BA networks 
The APL of the BA network is obtained according to [18, 21] and shown in Eq. (3). 
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It can be known from Eq. (2) that the BA network APL has a proportional relationship 
with the log value of the network node. The proportional relationship is shown by Eq. (4). 

log
=

log logSF

N
L C

N
   (4) 

Where C is a constant, i.e., the positive relationship is determined by a constant. 
This chapter adopts the Laplace Mechanism differential privacy scheme. The confir-

mation of global sensitivity is the basis for the implementation of the differential privacy 
scheme. 

(B) Sensitivity Confirmation  
The APL expressions for both networks are given in section (A), which is the basis 

for analyzing the sensitivity in differential privacy. The sensitivity of the two representa-
tive model networks under the scheme to APL is analyzed separately. 
 
Definition 1: (Global sensitivity [19]) For any query function, the global sensitivity of 
the function is: 

1 2
1 2 1
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Theorem 1: In the unweighted ER network with the node size of N(N ≥ 100) and the exist-
ence probability of p, when the node-based privacy protection, the global sensitivity of the 
differential privacy for the network APL query is Clog(100/99), where C is a constant. 
 
Proof: It can be known from Eqs. (1) and (2) that the sensitivity in the differential privacy 
policy of this paper can be obtained according to the following process: 
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In the ER network, the average degree is related to the node size and the edge existence 
probability, so the two are approximately equal, Eq. (6) can be expressed as Eq. (7): 
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Where C is a constant. 
It can be seen from the above analysis that ||f(D1)  f(D2)||1 decreases with the node 

size N. In this paper, the smaller network has not been considered, i.e., the minimum net-
work size is set to 100, i.e., N ≥ 100. Therefore, for the unweighted ER network, the global 
sensitivity of the query to the APL can be expressed as shown in Eq. (8): 
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The global sensitivity f of the query function in the ER network is Eq. (9): 

100
log .

99
f C     (9) 

In summary, in the unweighted ER network, the global sensitivity of the query function 
for node privacy protection is Clog(100/99). The global sensitivity of unweighted BA net-
work is analysis in follow discussion. 
 
Theorem 2: In an unweighted BA network with a node size of N(N ≥ 100), when node-
based privacy protection, the global privacy sensitivity of the differential privacy for net-
work APL queries is C(loglog100), where C is a constant. 
 
Proof: The sensitivity of the BA network APL can be determined by Eqs. (1) and (3): 
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For the sake of analysis, let log N = T, it can be reach that: 

1 2 1

log( 1) log
( ) ( =

log log( 1) log log

* log( 1) ( 1) * log

log * log( 1)

( 1) * log( 1) log( 1) log( 1)

log * log( 1)

1
( 1) * log log( 1)

.
log * log( 1)

N N
f D f D C

N N

T T T T
C

T T

T T T T
C

T T

T
T T

TC
T T


 



  




     





  




）

  (11) 

Since 

1
0,

T

T


 the above analysis can be expressed as Eq. (12):
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Since T = logN, ||f(D1)  f(D2)||1 decreases with the node size N, The smaller network is 
still not considered in the BA network, and the minimum network size is still set to 100, i.e., 
N ≥100. Therefore, Eq. (13) can be obtained. 
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From the definition of the sensitivity in Eq. (8), for the BA network, the sensitivity in 
the differential privacy proposed in this chapter can be expressed as Eq. (14): 

log log100

C
f  .   (14) 

In summary, in the unweighted BA network, the global sensitivity of the query func-
tion for node privacy protection is Clog(100/99).                           

Through the above analysis, the threshold responding to the global sensitivity of the 
differential privacy for the network APL query can be obtained. In an actual network, the 
network size is usually larger. The two models analyzed in this paper can represent a part 
of the actual network. When querying for network APL, the threshold of global sensitivity 
is small, the sensitivity of the analysis is the threshold in extreme cases [22].  

Therefore, when the global sensitivity of the query function APL is set to 1, the re-
quirement of node privacy protection in the unweighted network can be met.  
 
Theorem 3: In a weighted social network with a node size of N, the global privacy sensi-
tivity of the differential privacy for the network APL query is 1 when the node performs 
privacy protection. 
 
Proof: The privacy protection of the network is also suitable for the weighted network, it is 
also necessary to protect the individual network. Network APL relies on the shortest path 
length between nodes. In a weighted network, the length of the shortest path depends not 
only on the number of connections between network nodes, but also on the weights. As-
suming that the largest weight in a network is w, the relationship between the shortest path 
length L1 in the weighted network and the shortest path length L2 in the unweighted network 
can be expressed as L1 ≤ wL2. APL is the average of all shortest path lengths, so the APL of 
the weighted network will be affected by the weighting factor w compared to the APL of 
the unweighted network. From Eqs. (13) and (14), it can be known the global sensitivity of 
the unweighted network multiplied by the weighting factor w in the network is the global 
sensitivity of the corresponding weighted network.  

The global sensitivity of a weighted ER network is shown as Eq. (15). 

100
log

99
f Cw     (15) 

Eq. (16) represents the global sensitivity of a weighted BA network. 

log log100

Cw
f     (16) 

The weight of the network may be large, and the global sensitivity is small. The 
weight of the network is usually normalized to a certain range. In order to maintain the 
consistency of the node privacy protection and the superiority of APL, the weight of the 
network is normalized to the range of 0-1. When the privacy sensitivity of the node is set 
to 1 for node protection, the differential privacy requirement can still be satisfied. 
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2.2 Differential Privacy Sensitivity Analysis for Edge Weight Protection 

The global sensitivity of query functions for node privacy protection in differential 
privacy is studied in Section 2.1. However, the weights in social networks are also sensitive 
information. In the existing differential privacy scheme, the edge weight distribution is 
used as the query function, and noise is added to the distribution to protect weight infor-
mation. But only the overall characteristics of the weights are guaranteed, and privacy 
protection for specific edge weights is not involved. Therefore, a differential privacy 
scheme based on individual edge weight privacy protection is proposed. 

(A) Edge weight differential privacy concept  
The purpose of privacy protection is that even if an edge weight changes only by 1, the 

output of the query function cannot be distinguished by probability. A new neighbor graph 
concept is defined and privacy of edge weight is concerned in this section. 
 
Definition 2: (Edge weight neighbor graph) For any one of the graph G1, the edge weight 
neighbor graph G2 is a graph having a side weight difference of 1 from the graph G1. 

(B) APL analysis and sensitivity confirmation 
According to Eq. (4), APL is related to the shortest path length between all pairs of 

nodes in the network. The APL of the network is represented by L. Graphs G1 and G2 are 
defined as neighbor graphs and only one edge ei,j has different weights. The weights of the 
edge are expressed as w1 and w2 in the two graphs. 
 
Theorem 4: In a weight social network with a node size of N, when weight-based privacy 
protection is performed, the global sensitivity of differential privacy is 1 for network APL 
queries. 
 
Proof: It is assumed that the number of shortest path in the network is K, where a shortest 
path P between two nodes i and j passing through an edge e. Since the weight of the edge 
in the neighbor graph is only 1 different from the weight of the original graph (assuming 
the weight is increased by 1 compared with the original graph), if the shortest path is un-
changed in the neighbor graph, the length of the shortest path is increased 1. If the shortest 
path P changes, it does not pass the edge, it means that the shortest path length in the neigh-
bor graph is increased by 1 compared with the original shortest path length. So, when the 
weight of one side of the neighbor graph is increased by 1, the variation of the shortest path 
length is 1 regardless of whether the shortest path between the pair of nodes changes or not. 
When the weight of this edge is decreased by 1, the variation of the shortest path length 
between the pair of nodes is also 1. 

So, for a certain edge e in the original graph, when the weight w is increased by 1 or 
decreased by 1, the length of a shortest path passing through the edge must be increased by 
1 or decreased by 1. In the worst case, the length of the K shortest paths in the neighbor 
graph changes, the total amount of path length of the K shortest paths change is K. The K 
shortest paths are represented by P1, P2, …, PK, the corresponding paths in the correspond-
ing neighbor graphs are represented by P1, P2, …, PK. The lengths of the original graph and 
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the neighbor graph are expressed as l1, l2, …, lK and l1, l2, …, lK, the above analysis can be 
expressed as: 

1, , 1.
i i

K K
i i i i

K K

l l
l l l l K

K K


      

 
   (17) 

According to Eq. (1), the APL threshold of the neighbor graph is written as follows: 

||f(D1)  f(D2)||   (18) 

In other words, under the edge weight differential privacy goal, the sensitivity is 1 
when the Laplace mechanism is implemented in the APL query. It can be written as: 

f = 1.   (19) 

Therefore, the global sensitivity of the query function analyzed in this paper is 1 for 
edge weight privacy protection. The threshold of shortest path variation is obtained in the 
worst case, this threshold always meets the actual demand in practical applications. 

 

Algorithm 1: Differential Privacy Algorithm for Topology Query  
Input: Original Graph G, Query function f, Privacy Control Parameter   
Output: F(G)  

 

1: Get f according to input G  
2: Set  = 0 and b = f/   
3: Get noise N ~ Y(, b)   
4:  f(G)  Average Path Length(G) 
5:  f(G)  f(G) + N  
6:  return F(G) 

 

2.3 Description of Algorithm 

In this section, the global sensitivity of the privacy protection scheme proposed in this 
paper is analyzed when the node or edge weight privacy protection is concerned. 

According to the analysis of the global sensitivity, it is known that setting the global 
sensitivity to 1 for the node and edge weight privacy protection fully satisfies the require-
ments of differential privacy. The appropriate query function f can be obtained through the 
above analysis in subsection A and B. The implementation process of APL algorithm is 
shown in Algorithm 1. 

Firstly, according to the input network and the proof of the algorithm part of this paper, 
the threshold Δf of differential privacy can be derived by original graph G.  

Secondly, the perturbed Laplace noise can be obtained by default privacy control pa-
rameter . The perturbed graph G is obtained by adding the Laplace noise calculated in 
the previous step to the average path of the original graph. G is the new network obtained 
by executing the differential sensitivity algorithm on G. 
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3. EXPERIMENT AND RESULT ANALYSIS 

3.1 Experimental Environment and Data 

The data used in this paper comes from the model network and the real data set. The 
real data sets are user trust weighted directed network from Stanford Large Network Da-
taset Collection. In these networks, the weight range is 10 (completely untrusted) to 10 
(full trust). If there is no transaction between the two users, the trust relationship value 
between the two users is set to 0. The specific information of the two networks is shown 
in Table 1. 

 
Table 1. Network basic statistics.  

Data Sets Nodes Edges Weight range
soc-sign-bitcoin-otc 3,783 24,186 [10, 10]

soc-sign-bitcoin-alpha 5,881 35,592 [10, 10]
p2p-Gnutella05 8846 31839 [10, 10]
p2p-Gnutella04 10876 39994 [10, 10]

p2p1 6301 20777 [10, 10]
 

An APL query is proposed in this paper to deal with the privacy protection problems 
of user presence privacy and trust between users on two bitcoin trading platforms. The 
evaluation of data availability needs to compare the original query results with the query 
results after the perturbation. In this paper, the query result APL is a single value, so the 
result of a query is prone to contingency. In order to avoid this phenomenon and make the 
measurement universal, the network is queried multiple times. In the two contrast vectors, 
one consists of the APL of the original network, the other consists of the perturbed APL. 
The data availability is compared by measuring the similarity between the vectors formed 
by the raw data and the vectors formed by the perturbed data. The higher similarity, the 
more common information available. The Euclidean distance [19] and the cosine distance 
are selected.  

3.2 Analysis of Disturbance 

The privacy control parameter  in the differential privacy can measure the ability of 
the random algorithm F to resist attacks. When  is small, according to the definition of 
differential privacy [1], the probability of judging from the original data set or from the 
neighbor data set is smaller, the protection is relatively greater [18]. Because the Laplace 
mechanism is adopted, the noise added in the perturbation of the query result obeys the 
Laplacian distribution. Scale parameter b is related to global sensitivity and . b is inversely 
proportional to . When global sensitivity is determined, the smaller  is, the larger b is. 
The added noise is greater, ability to withstand attacks and availability of data is reduced. 
The impact of  values on data availability is explored in experiment.  

A differential privacy policy is implemented on two actual networks to observe the 
difference between the APL after using algorithm and the original network APL. Under 
each  value, 20 correlation experiments are performed on the two networks.  

As can be seen from Figs. 1 and 2, the perturbations caused by different privacy pa- 
rameter values  are quite different. The  in the experiment are 0.1, 0.4, 0.7 and 1. As 
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Fig. 1. Comparison of the soc-sign-bitcoin-otc 
data set before and after privacy protection.

Fig. 2. Comparison of the soc-sign-bitcoin-alpha 
data set before and after protection. 

 

can be seen from Fig. 2, as the  increases, the corresponding disturbance length curve is 
closer to the original length. When  = 0.1, the difference between the disturbance curve 
and the original curve is the largest. When  = 1, the disturbance curve is closest to the 
original curve. This experiment generally shows the impact of the privacy parameter  on 
the perturbation.  

3.3 Analysis of Differential Privacy Result for APL Query 

In the above section, two evaluation indicators are selected to evaluate the effect of 
differential privacy. The valid data in this experiment is a 1 × 20 vector. Each vector is the 
average of 50 experimental results. Each result of 50 experimental is from the distance 
(Euclidean distance and Cosine distance) between the two 1 × 20 vectors X and Y.  

(A) Euclidean distance  
The Euclidean distances of the ER and BA network under different privacy control 

parameters  are shown in Fig. 3. The network scale is 2000. The scale parameter of the 
Laplacian distribution is b = f/. It can be seen from Fig. 3 that when the sensitivity f is 
determined, as  gradually increases, b gradually becomes smaller.  

 

Fig. 3. Euclidean distance under different priva- 
cy parameters in the model network.

Fig. 4. Euclidean distance under different priva- 
cy parameters in the actual network. 
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The specific Euclidean distance is shown in Table 2 when  = 0.1, 0.3, 0.5, 0.7, 0.9. 
When b is large, the overall shape of the probability distribution function of Laplace ex-
hibits a low and wide state, and the opposite is right. The positional parameter is set to 0, 
as the decrease of b, the probability of occurrence of noise near 0 increases in the generated 
noise. It means that the difference between the perturbed query result and the original result 
is getting smaller. Therefore, for the two vectors, the Euclidean distance is getting smaller 
and smaller, and the practicality of the data is getting larger and larger. As shown in Fig. 
4, this conclusion also applies to two actual networks. It can be seen from Figs. 3 and 4 
that the Euclidean distance curves in the two model networks are very close. On one hand, 
the processing of the weight makes the average shortest path length relatively close. Due 
to the Laplace mechanism in this paper, the two groups of noise generated under the same 
privacy control parameters are also close. For the above two reasons, the Euclidean dis-
tance curves between the two result vectors before and after the perturbation in this exper-
iment are relatively close. The accuracy of the data is retained to 4 digits after the decimal 
point for accurate analysis. 

 
Table 2. The Euclidean distance of three data sets when  = 0.1, 0.3, 0.5, 0.7, 0.9. 
Data Sets  = 0.1  = 0.3  = 0.5  = 0.7  = 0.9 

p2pGnutella04 43.66 14.41 8.58 5.92 4.61 
p2pGnutella05 44.33 14.89 8.81 6.14 4.46 

P2p1 42.82 15.40 9.07 6.41 4.76 
 
In summary, the Euclidean distance decreases as the privacy parameter increases, in-

dicating that the data availability in this strategy decreases as the privacy parameter in-
creases. Therefore, in actual demand, if the data still retains large availability after imple-
menting differential privacy, the privacy parameters should not be too large.  

(B) Cosine distance  
The cosine distance between the original query result vector in the ER and BA net-

work and the result vector after implementing the differential privacy are shown in Fig. 5. 
The cosine distance between the results of the query before and after the implementation 
of differential privacy in the two actual networks are shown in Fig. 6. 

Fig. 5. Cosine distance under different privacy 
parameters in the model network. 

Fig. 6. Cosine distance under different privacy 
parameters in the actual network. 
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As can be seen from Figs. 5 and 6, the cosine distance increases as the privacy pa-
rameter  increases. The specific cosine distance is shown in Table 3 when  = 0.1, 0.3, 0.5, 
0.7, 0.9. The probability of noise appearing near 0 increases with the increase of . The 
difference between the vector composed of the query results after differential privacy and 
the original data is smaller. It indicates that the availability of data at this time is more 
reserved. Therefore, it is known that after the differential privacy is implemented, the data 
availability increases as the privacy parameter  increases. By analyzing the Euclidean 
distance and the cosine distance under different privacy parameters, the privacy parameter 
 should not be controlled too small. The smaller the , the harder it is to distinguish the 
two data sets. When  is large, although the data availability can be retained, there is no 
significant meaning for distinguishing the query result from the original data set or the 
neighbor data set. Therefore, when selecting the parameter , the data availability and data 
security should be considered according to actual needs. If the requirement of data security 
is high, relatively small  is selected. If the requirement of data availability is high, rela-
tively large  is selected.  
 

Table 3. The cos distance of three data sets when  = 0.1, 0.3, 0.5, 0.7, 0.9. 
Data Sets  = 0.1  = 0.3  = 0.5  = 0.7  = 0.9 

p2pGnutella04 0.1783 0.5222 0.7291 0.8403 0.8935 
p2pGnutella05 0.1342 0.3293 0.5239 0.6598 0.7581 

P2p1 0.0768 0.2725 0.4153 0.5918 0.7350 

4. CONCLUSION 

The result of the query function in the differential privacy algorithm is sensitive to 
the scale of the network. This causes the differential privacy execution complexity to vary 
linearly with network scale changes. In response to this phenomenon, a differential privacy 
algorithm for querying the average path length (APL) of the network to achieve dual pri-
vacy protection of nodes and edge weights in the network is proposed in this paper. Ac-
cording to a typical model network, the global sensitivity of node and edge weight are 
analyzed and proven. The relationship between data availability and privacy control pa-
rameters after the implementation of the algorithm is analyzed experimentally. The algo-
rithm can realize two kinds of privacy protection requirements only through the single-
value query of the network APL, and the value itself is not sensitive to the network scale. 
It can save a large amount of storage space in practical applications. 
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