JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 16, 65-80 (2000)

Short Paper

DOI:10.1688/JISE.2000.16.1.4

A Cost-Effective Forward Recovery Checkpointing
Scheme in Multiprocessor Systenis

KuocHeEN WANG AND CHIEN-CHUN WaNG*
Department of Computer and Information Science
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.
E-mail: kwang@cis.nctu.edu.tw
*Central Telecommunications Administration Station
Directorate General of Telecommunications
Taichung, Taiwan 408, R.O.C.

This paper proposes a novel and cost-effective forward recovery checkpointing scheme
for multiprocessor systems with duplex modular redundancy. In our scheme, one process-
ing module is selected to retry the questionable checkpoint, and the other processing mod-
ule executes toward the next checkpoint if a mismatched comparison between the two pro-
cessing modules occurs at any checkpoint. Those schemes using a spare module to retry
need much time to initiate the module, and the extra cost is high. Although the traditional
rollback scheme retries the questionable checkpoint without any spare module, it has longer
average completion time than our scheme for a job under any fault distribution. In our
scheme, besides transient faults, permanent faults can be located as well. Experimental
results based on our mathematical models demonstrate that, under burst errors, the average
completion time of our scheme is reduced by 50% compared with that of the traditional
rollback and is comparable with that of the scheme using a spare module to retry. In addition,
our scheme has the least total execution time (the most cost-effectiveness) among the three
schemes under any fault distribution.

Keywords:forward recovery, multiprocessor system, cost-effective, checkpointing scheme,
transient fault, permanent fault

1. INTRODUCTION

A multiprocessor system with duplex modular redundancy (DMR) may employ two
processing modules (PMs) to execute the same job concurrently. To reduce the number of
restarts and to roll back to the last checkpointing state instead, the execution of a job is
divided inton useful computation intervals, and each interval is followed by checkpointing
[1-6]. The overhead for a checkpointing scheme is the time needed to handle these
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checkpointing states [7]. Some fault tolerant schemes are basadtomaskingwhich

uses more redundant PMs to reduce the average completion time, such as in a triple module
redundancy (TMR) system [8, 9] or voting [10]. Fault masking used by TMR is not suit-
able for a DMR system because it requires three PMs. Therfafdteetryis used instead

of fault masking. At each checkpoint, the states of two PMs are compared [7, 11, 12], and
a retry is performed to locate a faulty checkpoint if the comparison mismatches. Two major
types of retry areetry on a spare PMndretry on an original PM The former can reduce

the average completion time of a job, but the system cost is high because a spare module is
required, and more time to initiate it before a retry can begin. In transaction systems, this is
a serious problem because system availability is important [13]. To reduce the system cost,
the latter may be preferred. However, it has problems relatethyosalidationandlonger

average completion timeTo avoid an invalid retry on a faulty PM, the state of a PM needs

to be made consistent with the last checkpoint at the beginning of the retry. In this paper,
we propose a novel forward recovery checkpointing scheme (FCS) to provide a trade-off
between the average completion time of a job and the number of PMs required. Two exist-
ing checkpointing schemes will be reviewed and compared: (1) the roll-forward
checkpointing scheme (RFCS) and (2) the traditional rollback scheme (RB) [2, 7, 14].
RFCS needs a spare module to retry when a fault is detected, and RB uses both PMs simul-
taneously to retry the questionable checkpoint. FCS is different from the schemes in [7,
11] in terms of forward recovery without using a spare module and is unlike the traditional
rollback scheme in terms of retry on a single PM, not on two PMs.

In digital computer systems, the occurrence probability of transient faults is larger
than that of permanent faults [1, 15, 16]. Therefore, our analysis focuses on transient faults.
We assume that there is no identical checkpointing state on two PMs when they have tran-
sient faults at the same checkpoint interval [7]. Nevertheless, our scheme can handle per-
manent faults, such as fail-stop faults and crash faults, as well.

The remainder of this paper is organized as follows. A DMR architecture is pre-
sented in section 2.1. Some notations are introduced in section 2.2. The basic concept of
FCS is given in section 2.3. RB and RFCS schemes are reviewed in section 2.4. Section 3
illustrates in detail the FCS scheme in each fault case. Mathematical models and experi-
mental results obtained using FCS, RB, and RFCS are presented in section 4. Section 5
depicts implementation issues. Some concluding remarks are given in section 6.

2. PRELIMINARIES
2.1 DMR Architecture for FCS

A DMR architecture for FCS is shown in Fig. 1. It consists of two AMaiidP,),
two reliable storages (RSs), and one reliable checkpoint processor (RCP). These compo-
nents are connected by an interconnection network (e.g., a bus) in a multiprocessor system.
To recover transient faults, no spare module is needed. BBathdP, concurrently ex-
ecute each replica of a job. At each checkpoint, both checkpointing stBtesnalP, are
sent to the RCP to be compared for fault detection. The fault history of each PM is recorded
in the RCP. To improve the reliability of RCP, it may be configured as a TMR structure
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[17]. Each PM has an RS used to save checkpointing states during fault recovery. The
contents of an RS can be accessed by other processors (PMs and RCP). For brevity, we use
checkpoint instead of checkpointing state in the following discussion.

P Processor| ()
1

Cache E

RS: Reliable Storage

Processor () Reliable
P @ Checkpoint
’ Cache Processor

Fig. 1. DMR architecture for FCS.

2.2 Notations

We use six box notations for FCS, as shown in Fig. 2: (a) The time required for
checkpointing is denoted by, which also includes the time needed for comparing the
checkpoints oP; andP,. (b) The time required for synchronization is denotet},byhere
the faster PM waits for the slower PM. (c) The time required to compare the retried check-
point ¢;; with two previously saved checkpoings and ¢, is denoted,.. (d) The time
required to make the state of a faulty PM consistent with the state of the other PM is de-
notedt,, (e) The time required to make the states of both PMs consistent with a previous
checkpoint is denoted (f) A fault is represented by a black dot. A box shaded with the
same pattern represents the same operation that takes the same amount of time.

Il =& g

[ ]
a) () () () () (f)

(a

(a) Duplex checkpointing — ¢,

(b) Idle ¢,

(c) Comparing the retried checkpoint with
two saved checkpoints — t..

(d) Restoring checkpoint .,

(e) Rollback - ¢,

(f) A fault

Fig. 2. Box notations for FCS.

2.3 Basic Concept

This section introduces the basic concept of fault detection, location, and recovery in
FCS. Fault detection is achieved through comparison of a pair of checkpoints [7, 11, 12].
In Fig. 3, one PM is selected to retry the questionable checkpoint, and the other PM ex-
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Fig. 3. FCS for a DMR system.

ecutes toward the next checkpoint continuously. Assume that the last chegkpasnt
completed at timé&,. The current checkpoint is denotgdand its following interval is
denoteds.,. In thejy, interval (;), both checkpoints d?; andP, are denoted;; andg,,
respectively. Suppose that there is a mismatch betg@eand ¢,, that one PM has a
transient fault, and that the other PM is fault-free during intéyvalssumeP; has a fault

in intervall;. At the beginning of the retry}, P; is selected to retry the questionable
checkpointg;, andP, executes the next checkpoift; forward. At the end of the retry
interval ¢,), the checkpoint produced By is denotedj;s, the other checkpoint completed
by P, is denoted .1y, ¢3 is compared with the two previously saved checkpaintnd

@2, and¢y.13is retained on the corresponding RS. The result of this comparison indicates
that ¢ is identical tog,, and different fromp,;. The correct checkpoigy for intervall; can

be derived from eithaf, or ¢. ¢, is then retained on the RS, and the previous checkpoint
@1 is replaced to reduce the size of the RS. Thus, the fa{tisnrecovered successfully.
ThenP,; andP, execute at the next interval continuously. At time;, the checkpoingy.

1 of P; and the checkpoing.;), of P, have been completed. If another fault happens in
intervall;,,, either orP; or P,, the comparison betwe@g.,); andg@..), will show them not

to be identical. The;..ysis compared witlg.q), andgy...immediately. Note thag.;; has
completed at timé,. The faulty¢;.., can be correctly located without the need for an
additional retry interval.

2.4 RB and RFCS Schemes

For comparison with the other two schemes, the RFCS and RB schemes are illus-
trated in Fig. 4 and Fig. 5, respectively [7, 11]. Note that the retry for RFCS is performed on
a spare module. As to RB, both PMs are rolled back to the previous checkpoint upon
failure at the same time.

1: Initiate a spare module

2: Perform comparison with
the two saved checkpoints

P, I I+

P,

Time

Fig. 4. Roll forward checkpointing scheme (RFCS).
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Fig. 5. Rollback scheme (RB).

3. FORWARD RECOVERY CHECKPOINTING SCHEME
3.1 Transient Faults

Now we will begin to describe our FCS under transient faults in detail. If there is a
mismatched comparison at an interval, the second interval is needed to obtain a retried
checkpoint and a forward checkpoint on two PMs, respectively. A forward checkpoint is
valid if its previous checkpointing state is fault-free. Here the correctness of the forward
checkpoint has not yet been determined. An additional interval is required to make sure
whether the forward checkpoint is correct. In the following analysis, the states of at most
three consecutive intervals are considered. That is, the scheme has three possible situations
— (1) no retry interval, (2) one retry interval and the forward checkpoint is invalid, and (3)
one retry interval and the forward checkpoint is valid. Depending on how faults occur,
there are six possible fault cases. In the following, we will discuss these fault cases denoted
(A) through (F).

(A) No failure Both P, andP, are fault-free in intervdl (see Fig. 6). At the end of
the current intervall, ¢;; and¢,, are found to be identical. The correct checkpgjns
derived from eithety; or ¢,. Theng is saved in each RS, and the previous checkgpint
1 is replaced. At timé, the current intervdl has completed, arfey andP, are ready to
execute at the next interval,. The time required for this caseds T =t, +t, wheret, is
the time required for useful computation in a checkpoint interval. The average completion
times in this case are all the same for the three schemes.

ty=T
P

o)1
L %2 .
YL,O fg-f—fu tl Time

P,

Fig. 6. Case (A}— No failure.

(B) Recovering a failure, followed by a state restoratibmthis case, the current
intervall; has a fault, the retry checkpoigy is fault-free, and the forward checkpoiit,,
s will be invalid. Suppose tha; is fault-free, and thag, has a fault (see Fig. 7). A retry
interval is inserted between intervglandl;,;. Suppose thd®, is selected to retry due to a
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Fig. 7. Case (B}— Recovering a failure, followed by a state restoration.

faulty module selection miss. The forward checkpajnts is invalid because it is infected
by the fault ing,,. We will discuss the situation of a selection hit in cases (D) through (F).
At time t;, ¢, and¢, are found to be different. A retry interval is initiated. First, bipth
andd, are saved in the respective RS. Then, the st&gi®imade consistent with the state
of the previous checkpoigt,. The time required for this retrytis= t; — t;. At timets, P,
is ready to retry. Concurrentll?; continues to execute toward the forward checkpoint. At
time tg, this forward checkpoint is completed first. TH&nwaits untilP, completes the
retry. The idle time i§, =t,—t;. Attimet,, P, completes the retry, aggis compared with
the two saved checkpoings andg,. At timet,, it is found thatp,; is identical tog,; and
different fromg,. The time required for this comparison.ist, — t,. At the same time, the
forward checkpoint..y; is determined to be invalid due to a fault in its previous interval.
The state oP, is incorrect and must be made consistent with the correct stat®frofime
time required for this state restoratiortjs=ts — t,. At timets, P, andP, are ready to
execute at the next intervgl;. FCS can recover a transient failure that appeals in
without the need for a spare module, but RFCS, which needs a spare module to retry, will
fail if no spare module is available. The time required for this cage B+ T; + t, where
Ti=t+t, +t

(C) Rollback due to retry interval failuréhe retry interval may not succeed if at
least two faults occur. There are three possible scenarios as listed in Table 1. In this case,
at least two faults happen in interdabnd in the retry interval. The number of faulty
checkpoints is at least two amogg ¢,,, andg,s. RCP can not find the correct checkpoint
¢. Both PMs are rolled back to the previous checkpgint For the sake of illustration,
consider scenari@; illustrated in Fig. 8. Here two faults happen in intetyshnd retry
intervalljs, respectively. Firsty; andg, are found to be different at tinbe A retry interval
is initiated. The retry is the same as that in case (B) except that the comparison mismatches
at timet,. RCP can not find two identical checkpoints becapsandg; are incorrect.
Then the states & andP, are made consistent with the previous checkgpint The time
required for this rollback is = t; — t,. After the rollback is completed at timeP; andP,
are in a state identical to their respective statg &to checkpoint is completed in this case.
The time required for this casetiss T + T, +t,.

Table 1. Three possible fault scenarios in case (C).

Scenario Status in interval Status in the retry interval
P P2 U P13
C, fault-free faulty faulty don't-care
G, faulty fault-free faulty don't-care
C; faulty faulty don’t-care don’t-care
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Fig. 8. Case,) — Rollback due to retry interval failure.

(D) Retry successful and no more failure in the next inteiwathis case and the
following two cases, (E) and (F), the retry mechanism succeeds to recover a failure in the
current interval;. The forward checkpoing.,); is also valid due to a selection hit. No
more failures happen in the next interiyalin this case. As shown in Fig. 9, there is a fault
in P,, andP; is selected to retry. At tintg, ¢; and¢,, are found to be different. A retry
interval is inserted between the current intefvahd the next interval,;. Up to timet,, the
case is similar to case (B). The forward checkpgjnis is first saved in the corresponding
RS. BothP; andP,continue to execute at the next interyal After one interval of time,
both checkpointsg.1y and ¢..1), are found to be identical at time The forward
checkpointgg.1); will not be used in this case. At timg bothP; andP, are ready to
execute the following interval.,. Thus, a single failure iR; is recovered successfully.
The time required for this casetis= 2T + T,.

tp =21+ 1T
Pl @ 1 Emama) T
(o M1 9 B dgn
Py | ==
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to ty t3 te ty 12 ts Time

Fig. 9. Case (D)}— Retry successful and no more failure in the next interval.

(E) Retry successful and forward recovery of a failure in the next intdrvéhis
case, there are two faults in intervhlandl;.,, respectively. The forward checkpoift.
3 Will be valid due to a selection hit. The infection of the fault is only one interval, but it is
two intervals in RFCS. There are two possible fault scenarios as listed in Table 2. To
illustrate, scenarig; is shown in Fig. 10. Since this case has been described in section 2.
3, we will only make some observations. Up to tigehis case is similar to case (D)
except that a fault occurs if.... Note that both failures ify; and ..y, are recovered
successfully. In this case, FCS needs only one retry interval to recover two failures, but RB
needs at least two rollback intervals. The time required for this dased® + T; + te. + tg,

Table 2. Two possible fault scenarios in case (E).

Scenario Status in intervll | Status in the retry interval  Status in interial
o & B3 P+1)3 P+1)1 D12
E; faulty fault-free fault-free fault-freq fault-free  faulty
E, faulty fault-free fault-free fault-free faulty | fault-free
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Fig. 10. CaseH;) — Retry successful and forward recovery of a single failure in the next interval.

(F) Retry successful and rollback in the next interfdere are three possible fault
scenarios in this case (see Table 3). To illustrate, consider scepasigttown in Fig. 11,
whereg,;, ¢5.13 andg;..y, are faulty. At timd;,, a fault is detected, and a retry interval is
inserted between intervgland intervalj,;. Up to timet;, this case is similar to case (E)
except that two faults occur @i.,j3and¢@..y., respectively. RCP can not find the correct
checkpointg., in the next interval,;. So both PMs are rolled back to the previous check-
point¢. This rollback is similar to that of case (C). The time required for the rollback is
=t;—t;. Attimets, the states dP, andP, are the same as those at tigeln this case, a
failure inl;is recovered successfully. But the other two failureg.if, and¢j..)s can not
be recovered. The time required for this cage#s2T + T, +t +1,.

tp=2T+T) +te+t,

Rollback
Pl @ =
b1 = b3 B g
Py e .
T % T %Gesy ) Guse R
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Fig. 11. CaseKR;) — Retry successful and rollback in the next interval.

Table 3. Three possible fault scenarios in case (F).

Scenario Status in intervhl Status in the retry intervdl ~ Status in interial
O o ha Pgr1) Bg+1n Bg+1)2
F; faulty fault-free fault-free faulty fault-frep  faulty
F, faulty fault-free fault-free faulty faulty | fault-free
Fs3 faulty fault-free fault-free| don't-care faulty faulty

3.2 Permanent Faults

The scheme presented above can also detect and locate permanent faults in a PM.
Remember that if a PM encounters failures in several consecutive intervals during a period

of time, then the PM is assumed to have a permanent fault. We assumeattd®, will
not have permanent faults at the same time. Suphdsa#s a permanent fault, and tRat
is fault-free. As shown in Fig. 12, at tiea fault is detectedP; is first selected to retry.
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At time t,, the retry fails, ané; andP, are rolled back to the previous checkp@jntas in

case (C). Attime;, the execution still fails. Therefore, the retry is switchdg,toAt time

t4, this retry succeeds, afyd is identified as being faulty. The failure history is updated to
indicate thaP, is faulty. Then botfP, andP, continuously execute in the next interial

At time ts, the comparison between the two checkpoijits; and¢;.., mismatches. A

retry is performed agairP, is selected to retry again. At tiiethe correct checkpoi.,

is found, andP; is found to have a fault once again. The results of the subsequent execution
duringt, to ts are similar to those durirtgto t,, which are similar to case (B) except that two
consecutive faults occur . The results always indicate tHatis faulty. SinceP;
encounters several consecutive failures in a period of time, it is determined to have a per-
manent fault.

Rollback(C') Pass(B) Pass(B)
i bja P Bi+1)3 a1 D)3

< — . . SIS, -

G2 logrs 1 i 1 by 1 Ggane | dpas |
| | | |
Time ty to ts ty ts te

Fig. 12. Locating a module with a permanent fault: an example.

4. PERFORMANCE EVALUATION

In this section, we will evaluate the performance of FCS, RFCS, and RB quantitatively.
Two performance measures will be examirsdirage completion timendtotal execution
time The total execution time can be used as a measure of cost-effectiveness for each
scheme.

4.1 Poisson Distributed Faults

In section 3, we have described the six possible fault cases in detail. Now we will
evaluate the occurrence probability for each case. The analysis presented here focuses on
transient faults. Occurrence of transient faults in a module is first assumed to be a Poisson
process with a constant failure rat¢l3, 18]. Therefore, the failure probability of a mod-
ule is 1- e*"during time period’. Based on the probability and the time required for each
case (see Table 4, whersds the selection miss rate), we can derive the average completion
time and the total execution time for FCS. Now we will calculate the average completion
time for a job withk checkpoints. Ik =1, then FCS is identical to RB. When a fault is
detected, a DMR system will roll back instead of performing a retry. The occurrence prob-
ability for case (A)P,, is derived under the no failure conditid®,, is the probability of a
rollback withk = 1. ThusP,,, = 1- P, = 1-€?T. The average completion tigyg) fork
=1 is derived as follows [7]:

T_l =Rt + Ry, (T_l o) (1)
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Table 4. The likelihood of the six cases.

Case  Probability required time

(A) Pa=e 27T ta=T

(B) Pg=2meMT+T)(1 —e ™) =T+ T+t

(C)  Pc=2e(1-eM)(1-e) + (1 —e*T)? te=T+ T+t

(D) Pp=2(1 -m)e?*ET+T)(1 —e?) th=2T+T,

(E) PE: 4(1 _m)g”\,(T+TJ(1 _ng)Z tE: 2T+ T1+ t‘cc-" t(:p

F= —-mje” —€ +tet - E=2T+ T+ttt
(F) P 2(1 ) k(T+T1)(1 XT)Z(]_ AT 2€L(T+Tl)) 2T+ T

wheret,, =T + t,.
If k=2, then FCS remains the same as RB. Therefore,

T,=2T,. (2

Fork> 3, a retry procedure is initiated if a fault is detected. NoteRhatP; + Pc + Pp +
Pe + P = 1. The recursion for, is derived as follows:

= Py ) R o) R 10+ Ry o) ®
Pe(Typ +te) + B (T, +1e).

The DMR system is rolled back when a fault occurs in the last two intervals. The initial
conditions arer_1 andi. Starting with the above recursive equation (3), the closed form
of 7 is shown in equation (4):

HthA + thB + Qth + thD + thE + qFtF )((n - Z)QDEilD
o o O 1_(_qDE)n_2 o -1 n-1 O
= )+ T (o™ +(=Upe)™ ) U (4)

T 0
T_1(2 - (qA *+0g 0 ))(qDE_l + (_qDE)n_z)

"1+ 0pe @ 1+0pe

P
wheredx =1—p, forX=A,B,C, D, E, F,

Ooe = 0o t+ Qg

— T+t
Tl_e—T_trl and

T,=21,.

The average completion tinre| f of a job can then be derived. Note thgtf is equal to

T, except that at least one Poisson distributed fhusicCurs during the execution of a job.

If there aren checkpoints, the probability that there will be no fault in each execution
interval isP,". The value off_|f can be derived as follows [7]:

7, -P,"nT

f=
Tnl 1_ PAn . (5)
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4.2 Burst Faults

The average completion tiqufb when a DMR system encounters burst fadis (
can be derived as follows. Note that there are no faults in case (A), single faults in cases (B)
and (D), multiple faults in cases (C), (E) and (F). Under burst faults, assume that cases (B)
and (D) will not happen, and that their occerrence probabilities are distributed to cases (C),
(E) and (F) based on their occurrence weights. Thus, we have

Pc' = Pc + We x (Pg + Pp),
Pe' = Pz + W x (Pg + Pp),
Pe' = P + We x (Pg + Pp),

we_ P
where .—W,I:C, E,orF.

Therefore,

Tnl fb = E
with P, retainedPs = Py = 0, andP¢, Pz andPr replaced byP:', P:' andP¢', respectively.
4.3 Analysis of RB and RFCS

We will derive the average completion time of RB and RFCS under Poisson distrib-
uted faults and burst faults. Singgf can be derived from_ by means of equation (5),
only r  for RB and RFCS are given here. Under burst faults, RB needs at least two inter-
vals to roll back. Thereforg, |f, of RB can be derived from_ by multiplying the time of
rollback interval by 2. In the case of RFCS under burst faults, situation B will not happen.
Therefore, the occurrence probability of situation B is distributed to situations C and D
based on their occurrence weights. Thus, we have

RB:
— [T+t n
W= nDe—z/\T -t ] @)
_ Ex(T+t) O
Tnlfb_nDe—T_trD (8)
RFCS:
|:(thA + thB + qctc + thD)((n - Z)QB_ID
O 1—(—q_ "2 a
—_ % = 1-(-G) R R
Tn_1+qB|:H_ 1+qB )+T1(qs +( qB) ) D
(T, = T1)(Gs " +(=05)"?) 9)
f = n-17" 1_qADn_1
Tolfy = 0ap" Ty +(Aata +dctc +Aoto (=5 —)- (20)

1-0dnp
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4.4 Performance Comparison Among FCS, RB and RFCS

To conduct performance comparisons among these three schemes, we will use a hypo-
thetical job callegob 1. Parameters for job 1 are listed in Table 5, whgie defined as the
total useful execution tima a job,t; is the time needed to initialize a job, dpds the time
needed to initiate a spare module to retry [7]. The other notations have been defined in
section 2. These parameters of checkpointing and fault recovery are very sensitive with the
system environment [13], including the network delay and synchronization problem.
However, they will not affect the performance comparisons.

Table 5. Parameters for job 1.
Tu tch tr ts tcc tz:p tpr
50 050 0.50 0.30 0.07 0.05 0.80

Comparison of the average completion time under Poisson distributed faufig;.
13,1, |f of each scheme is shown. Thaxis represents the failure rates front 19 10°,
and they-axis represents the average completion time with the optimal checkpoint number
[19]. We use three misates to illustrate our FCS scheme. FCS_1, FCS_0.5, and FCS_0
represent the cases wf= 1,m= 0.5, andn = 0, respectively. RFCS has the shortest
average completion time among the three schemes because it uses a spare module during a
fault retry. Note that neither FCS nor RB employ any spare modules, and FCS performs
better than RB. In addition, the miss rate has little impact on the average completion time
under low failure rates, unless the failure rate is high. This means that the performance of
our scheme is very stable.

o 65 —+—RB
£ . -8 FCS_1
IS i ——FCS_0.5
(4]
el ——FCS_0
g —*—RFCS
O 59 |
[J]
g
E) 57
©

55 1 1 1 1 1 1

1E-2 1E-3 1E-4 1E-5 1E-6 1E-7 1E-8

failure rate
Fig. 13.7 | f for job 1 with optimal checkpoint number.

Comparison of the average completion time under burst fdolig. 14,7 |f, of
each scheme is shown. Thaxis represents the failure rates front 1® 107, and they-
axis represents the average completion time with 10 checkpoints. The results show that
FCS reduces by 50% the average completion time compared with RB and is comparable
with RFCS in this respect. Therefore, our scheme is very suitable for situations with burst
errors.
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Fig. 14.7,[1, for job 1.

Comparison of the total execution timg(dr cost-effectiveness): Without loss of
generality, we only consider Poisson distributed faults. In a DMR system without a spare
module for fault recovery, the total execution time is equal to twice the average completion
time THT FCS and RB are such cases because they use only two PMs. The execution
time of the spare module must be considered in RFCS. That is, it uses two modules when
no failures occur and three modules when a failure occurs. Four situations are considered
[7]. In situation (A), there is no failure, and the number of PMs is two. In situations (B)
through (D), RFCS uses a spare module to retry, and the number of PMs is three. The
execution time of RFCS for each situation is listed in Table 6. For RFCS, derivation of the
total execution time is similar to the derivationrof f except that the required time for
each situation is replaced by the corresponding execution time in Table 6. The total execu-
tion time for each of the three schemes (FCS, RB and RFCS) is equal tche
summarized as follows:

Table 6. The execution time for each situation in RFCS.

Situation Required execution time
(A) t,=2T
(B) té: 4T + Zw+ 2tcc+ 2tu+ zCp+ tpr
© te= AT + 2ty + too+ b+ 2, + 1y
D) 1= AT+ 2, + At + Aty + 2 + by

T,(FCS) = 2x T, | f(FCS),
T,(RB) = 2xT,[f(RB),
T,(RFCS) = 2x T, | T(RFCS), with{t}, ti, t., t} instead of {t,, t,, tc, to}.

In Fig.15, thex-axis represents the failure rates fron? 1®108, and they-axis repre-
sents the total execution time under Poisson distributed faults with the optimal checkpoint
number [19]. In sum, the total execution time of our FCS is the smallest while that of RFCS
is the largest among the three schemes under any fault distribution.
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Fig. 15.T, for job 1 with optimal checkpoint number.

5. DISCUSSION

Some implementation issues are considered here. All checkpointing schemes need
reliable storages to save some checkpoints during execution of a job. Reliable storages are
very important components of the proposed scheme. We assume that reliable storages are
very dependable. The papers in [7, 14, 15, 17, 20] all assumed that reliable storages are
available for fault recovery. The RFCS scheme requires that at most five checkpointing
states be stored in the reliable storages when a failure occurs while FCS requires that at
most three checkpointing states be stored for each case. In this respect, our scheme is
better. Each checkpointing scheme needs a reliable checkpoint processor for comparison
and synchronization. To avoid a single point of failure, the reliable checkpoint processor
can be implemented by using a masking redundancy or by a distributed self-checking
approach.

6. CONCLUSIONS

A very cost-effective forward recovery checkpointing scheme for multiprocessor sys-
tems with duplex modular redundancy has been described in this paper. We have compared
our scheme (FCS) with the other two representative schemes: RB and RFCS. FCS only
needs one retry interval to recover two transient faults at two consecutive checkpoints. RB
needs at least two rollback intervals in the same fault situation. RFCS performs state resto-
ration at the end of a retry, and execution on a faulty module is useless during the retry
interval. Therefore, our scheme may be able to avoid wasting time on a faulty module
during a retry interval. In addition, our scheme, without a spare module, has less system
cost than those schemes which have a spare module in terms of hardware expense and the
initialization time of the spare module. Mathematical models have been derived to evaluate
the average completion time and the cost-effectiveness (total execution time) of the three
schemes. Experimental results show that FCS can provide a better trade-off between aver-
age completion time and cost-effectiveness than the other two schemes under any fault
distribution. In addition, under burst errors, the average completion time of FCS is de-
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creased by 50% compared with that of RB and is comparable with that of RFCS. Furthermore,
a processing module with a permanent fault can be located in FCS, and the size of the
required reliable storage is smaller than that for RFCS.
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