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In this paper, we propose a scheme to identify the maximal fault-free substar-ring.
This is the first attempt to derive a reconfiguration scheme with high processor  utilization
in the faulty n-star graph.  The maximal fault-free substar-ring is connected by a ring of
fault-free virtual substars and the maximal length of the ring is n(n - 1)(n - 2).  Our pro-

posed scheme can tolerate n - 3 faults such that the processor utilization is 
n n

n n

2

2
2 3− +
− .

This is a near optimal result since the maximal fault-free substar-ring is constructed using
all of the possible fault-free (n - 2)-substars.  Moreover, our algorithm can still work when
the number of faults exceeds n - 3.  The  simulation results also show that the processor

utilization is more than 50% if the number of faults is less than n n2 1
2

− −  in the n-star graph.

Keywords: fault tolerance, interconnection network, parallel processing, reconfiguration,
star graph

1. INTRODUCTION

Recently, one new interconnection network that has attracted lots of attention is the
star graph [5].  The star graph [5], being a member of the  class of Cayley graphs, has been
shown to possess appealing features, including low degree of the node, small diameter,
partitionability, symmetry, and high degree of fault tolerance.  Especially when the size of
the star graph system increases, fault tolerance  is an important issue for such a large system
to continue operation after failure of one or more processors/links.  In this paper, we study
how algorithms that are originally designed for the fault-free star graph can be implemented
on star graphs containing faults with high processor utilization.  To measure the efficiency
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of the fault-tolerant approach, we use processor utilization ratio or PUR, which is the total
number of fault-free processors used by our reconfiguration scheme divided by the total
number of processors of an n-star graph.

 Much research recently has been directed toward studying the aspects of fault-toler-
ant computing on the hypercube and star graph [9, 11, 12, 19, 22-25].  The hierarchy of both
the hypercube and star graph allow assignment of their special subgraphs, subcubes and
substars, which have the same topological features as the original graph.  Most of the fault-
tolerant strategies address the issue of reconfiguration once the faulty processors/links are
identified.  One effective approach used in the reconfiguration strategies in hypercubes is to
identify the largest fault-free subcube and use the subcube to emulate the entire hypercube
[11].  An n-star graph can be recursively decomposed into n(n - 1)-substars.  The largest
fault-free substar can be easily identified and used to emulate the entire star graph.  It is
unreasonable to use the largest fault-free substar approach as a reconfiguration scheme
since its PUR becomes at most 1/n even when an n-star graph contains only one fault.  A
different but related research topic is how to allocate tasks in the complete star graph [15].
Note that this approach can better accommodate multiple jobs on substars of different sizes.
Therefore, the purpose of this paper is to provide a novel fault-tolerant reconfiguration
scheme in a n-star graph so that higher PUR and lower diameter can be obtained.

The major contribution of this paper is that we propose an efficient reconfiguration

scheme, which can tolerate f £ n - 3 faults in n-star graph, such that PUR is n n
n n

2

2
2 3− +
−  and

the diameter is O(n3).  Furthermore, our scheme with reasonable PUR can still work when
number of faults exceeds n - 3.  Based on our simulation results, our algorithm keeps more

than 50% PUR if the number of faults is less than n n2 1
2

− −  in an n-star graph.  In addition,

a novel communication pattern with constant time cost will be presented in this paper for
the sake of easily performing algorithm on the maximal fault-free substar-ring.  In this
paper, we only consider node faults, and in an edge fault, it is assumed that one of the nodes
incident upon it is faulty.  We also assume that faulty nodes can neither perform calcula-
tions nor route data.

The rest of this paper is organized as follows.  The primary properties of the maximal
fault-free substar-ring are introduced in section 2.  A systematic technique for identifying
the maximal fault-free substar-ring  is addressed in section 3.  The performance of our
approach is analyzed in section 4.  Finally, conclusions are drawn in section 5.

2. PRELIMINARIES

An n-dimensional star graph, also referred to as n-star or Sn, is an undirected graph
consisting of n! nodes (or vertices) and (n - 1)n!/2 edges.  Each node is uniquely assigned
a label x1x2 ...xn, which is the concatenation of a permutation of n distinct symbols {x1, x2, ...,
xn}.  Without loss of generality, let these n symbols be {1, 2, ..., n}.  Given any node label
x1... xi ... xn, let the permutation function gi, 2 £ i £ n, be such that gi(x1 ... xi ... xn) = xi ... x1...
xn(i.e., swap x1 and xi and keep the rest of the symbols unchanged).  In Sn, for any node x,
there is an edge joining x and node gi(x), and this edge is said the dimension i.  Each node in
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Sn is connected to n - 1 adjacent nodes by n - 1 edges.  Let F denote a set of faulty nodes in
a faulty Sn.  An Sn with set F is denoted as Sn

F .  For instance, a star graph S5 with set F =
{52341, 43152}, or S5

52341 43152{ , } , is shown in Fig. 1.

Fig. 1. A star graph S5 with set F = {52341, 43152}.

Each Sn contains n disjoint Sn-1’s.  Let G = {1, 2, ..., n, *}, where * denotes a don't care
symbol.  Every substar of Sn can be uniquely labeled by a string of symbols in G such that
the only repeated symbol is *.  Formally, a k-dimensional substar, Sk or k-substar, is denoted
as a string G = x1x2 ...xn, and  number of * symbols in string G is k, where x1 = * and xi Œ G,
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2 £ i £ n.  The substar represented by G is a subgraph of Sn containing all the vertices
obtained from G by replacing each * with the digits {1, 2, ..., n}.  These vertices are con-
nected by the original links in Sn.  For instance, the **3*1 is a 3-dimensional substar and
contains the set of nodes {54321, 45321, 52341, 25341, 42351, 24351}.  Throughtout this
paper, a k-substar is said to be faulty if there exists at least one faulty node in the k-substar,
where 1 £ k £ n.  Otherwise, the k-substar is said as fault-free.  For example, in Fig. 1,  the
substars ***41 and ***52 are faulty substars.

Definition 1: j-split and D-split
Let G = x1x2 ... xj ... xn be a k-substar with xj = * .  The j-split on G, 1 £ j £ n, partitions

G along the j-dimension into k number of (k - 1)-substars, each obtained from G by replac-
ing xj with a legal non-*  symbol.  Let D = {d1, d2, ..., dm, 1}, m £ k, be a set of dimensions
such that xdi

 = * , i = 1..m.  Then, the D-split on G is used to first apply a d1-split on G, whose
result is then applied to a d2-split, whose result is then applied to a d3-split, etc., until there
is k(k - 1) ...(k - m + 1) number of (k - m)-substars.  The final result of the D-split on G is
obtained by applying a 1-split on each of the (k - m)-substars. o

In the above definition, if j = 1, then the partitioning result does not remain substars,
which is defined as a virtual substar in the following.  An Sn can be decomposed into n(n -
1) ...(k + 1) copies of k-substar after applying D'-split on Sn, where D' = {d1, d2, ..., di, ..., dn-k},
for all di π 1, 1 £ i £ n - k, and k £ n.  Given a k-substar Sk, 1-split on Sk is used to decompose
Sk into k virtual substars represented as Xi, 1 £ i £ k.  The virtual substar Xi = x1x2 ...xn is a
subgraph of Sk containing all the vertices obtained from Sk, where x1 is a non-*  symbol and
the number of * symbols of Xi is k - 1.  These vertices are connected as follows.  Assume
that ′ < ′ < ′ < ′ ∈−d d d dk1 2 3 1,...,  {1, 2, ..., n} - {d1, d2, ..., dn-k}, where x x xd d dk′ ′ ′= =

−1 2 1
L  = * .

For any node x in Xi, there is a virtual edge joining x and gd ′1 (gd j′ (gd ′1 (x))), 2 £ j £ k - 1, and
this virtual edge is called the virtual dimension j.  Each node in Xi is connected to k - 2
virtual adjacent nodes by k - 2 virtual edges.  For a fixed virtual dimension j, 1 £ j £ k, each
disjoint node of Xi, in parallel, performs the same permutation functions gd ′1 , gd j′ , and gd ′1
simultaneously.  Under the assumption of the bidirectional link, all paths from nodes of Xi,
1 £ i £ k, to one of its virtual adjacent nodes are edge-disjoint.  Moreover, each node of Xi,
1 £ i £ k, sending data to one of its virtual adjacent nodes needs 3 time steps.

Consider any pair of virtual substars Xi and Xj obtained  from 1-split on Sk, where i π
j.  Each node rx2x3 ...xn of Xi has a direct link to node sy2y3 ... yn of Xj along the dimension u
such that xu = s and yu = r, where r and s are non-*  symbols.  That is, if we say the relation
of the direct link is represented by lines connecting virtual substar, then, each virtual substar
Xi of Sk is fully connected with every other Xj of Sk.

For instance, given an S6, a 5-split on G is done to partition G into six 5-substars:
*****1, *****2, *****3, *****4, *****5, and *****6.  Consider that substar ****56 is
one of substars after applying D'-split on G, where D' = {5, 6}.  The 1-split on **** 56 is
done to decompose ****56 into virtual substars, 1***56, 2***56, 3***56, and 4***56, as
shown in Fig. 2.  Therefore, ′ = ′ =d d1 22 3, ,  and ′ =d3 4.  Fig. 2 indicates that virtual edges
joining x and g2(g3(g2(x))) along virtual dimension 2, where x in virtual substars, 1*** 56,
2*** 56, 3*** 56, and 4***56.  After performing the permutation function, the number of
nodes with different colors is always equal to 6, so all paths from x to g2(g3(g2(x))) are edge-
disjoint.  Node 123456 of virtual substar 1*** 56 has direct links to 213456, 321456, and
423156 of virtual substars 2***56, 3***56, and 4***56, respectively.  The other nodes of
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1***56 also have links to nodes in 2***56, 3***56, and 4***56. Therefore, virtual substar
1***56 is fully connected to 2***56, 3***56, and 4***56.  Similarly, virtual substars
2***56, 3***56, and 4***56 are fully connected to each other.

Definition 2: Adjacent substars
Given any two k-substars, G = x1x2...xi...xn and H = y1y2...yi...yn are said to be adjacent

if and only if the labels of G and H differ in exactly one dimension, where 1 £ i £ n.        c
For instance, the 3-substar G = ***31 is adjacent to H = ***41 but not adjacent to H'

= ***13.  In the following, we will describe the adjacent relation when the j-split operation
is applied.  For two given adjacent k-substars, G = x1x2 ... xj ... xn and H = y1y2 ... yj ... yn such
that xj = yj = * .  If we apply, the j-split on G and H, we will obtain k substars (dimension k -
1) from each of G and H.  One can easily see that all the k substars in G are adjacent to each
other, and so are those in H.  If the adjacent relations are represented by of the lines connect-
ing substars, each (k - 1)-substars of G(or in H) are fully connected to each of the other
substars of G(or in H).  Furthermore, among these substars, k - 1 substars in G are adjacent
to k - 1 substars in H in a one-to-one manner.  For example, if we apply 5-split on G = S5 as
shown in Fig. 1, ****1 is fully connected to ****2, ****3, ****4, and ****5.  If G =
****3, H = ****4 and we apply 4-split on ****3 and ****4, we can see that each substar of
***13, ***23, ***43, and ***53 is fully connected to the others.  Similarly, substars ***14,
***24, ***34, and ***54 are also fully connected.  Moreover, 3 pairs of substars (***13,
****14), (***23, ****24),  and (***53, ***54) are adjacent.  Given a sequence of k-substars
[G0, G1, ..., Gt-1], a (k, t)-ring  will be defined below before we construct our reconfiguration
scheme.

Fig. 2. The virtual edges joining x and g2(g3(g2(x))) along virtual dimension 2, where x in virtual
substars 1***56, 2***56, 3***56, and 4***56.
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Definition 3: (k, t)-ring
A sequence of k-substars [G0, G1, ..., Gt-1] is denoted as an (k, t)-ring  if substars Gi is

adjacent to its neighboring  G(i-1) mod t and G(i+1) mod t for any i = 0..t - 1.                            c

Before defining our final reconfiguration, we give the following lemma.

Lemma 1: Given a (k, t)-ring  = [G0, G1, ..., Gt-1], a feasible (k - 1, kt)-ring  can be con-
structed from the (k, t)-ring .

Proof: Let j be an integer such that the j-th symbol of all Gi, 0 £ i £ t - 1, in the (k, t)-ring
is * , each Gi is applied the j-split to obtain k(k - 1)-substars.  All the (k - 1)-substars are
fully connected by the adjacent relation, and there are k - 1 connections between Gi and Gi-1

(and Gi+1).  We can easily derive a feasible (k - 1, kt)-ring  by visiting all (k - 1)-substars of
Gi and one of the k - 1 connections between Gi and Gi-1 (and Gi+1).     c

The 1-split operation is performed on each Gi of a (k, t)-ring  = [G0, G1, ..., Gi, ..., Gt-1]
to obtain a sequence of virtual substars [X0, X1, ..., Xi, ..., Xh-1].  As mentioned earlier, each
Xi is a virtual substar.  Based on Lemma 1, our final reconfiguration scheme, namely the
fault-free substar-ring Rs(k - 1, h), is defined as follows.

Definition 4: Fault-free substar-ring Rs(k - 1, h)
Let Rs(k - 1, h) =  [X0, X1, ..., Xi, ..., Xh-1] denote a feasible fault-free substar-ring,

where  [X0, X1, ..., Xi, ..., Xh-1] is a sequence of disjoint fault-free virtual substars of dimen-
sion k - 1.  Rs(k - 1, h) is constructed by each node in Xi connected to a node in X(i-1) mod h and
X(i+1) mod h with at most dilation 3, for all 0 £ i £ h - 1.  Therefore, Rs(k - 1, h) is

X0 ´ X1 ́  X2 ´ ... Xh-2 ́  Xh-1 ́  X0. c

If the connection Xh-1 ´ X0 does not exist, then a fault-free substar-chain, denoted by
Cs(k - 1, h), is constructed.  Obviously, a fault-free substar-ring Rs(k - 1, h) can be treated
as a fault-free substar-chain Cs(k - 1, h) with the same size of virtual substars.  The proces-
sor utilization of Rs(k - 1, h) and Cs(k - 1, h) is (k - 1)! ¥ h.  We can describe the diameter
of Rs(k - 1, h) and Cs(k - 1, h) as follows.  First, if each virtual substar is seen as a unit, then

there are h virtual substars X which form a ring, so h2   is the diameter of the ring of virtual

substars.  In each Xk-1 of Rs(k - 1, h), we can only use 3 steps to jump to the next virtual

substar since all of the edges of Gi are nonfaulty if Xk-1 is obtained by 1-split on Gi, so  3
2
h 

is needed.  When we arrive at the final virtual substar Xk-1, we still need at most  3 3
2

2× − ( )k

steps to arrive at any nodes in Xk-1 since  3
2

2( )k −  is the diameter of Sk-1.  Therefore, the

diameters of Rs(k - 1, h) and Cs(k - 1, h) are at most 92
2 3

2
( )k h−  +    and  9

2
2 3( )k h−  + ,

where h = n(n - 1) ... (k - 1).  In this paper, we will only focus on constructing a feasible
fault-free substar-ring Rs(n - 3, h) in a  faulty star graph.
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3. CENTRALIZED ALGORITHM FOR IDENTIFYING
MAXIMAL FAULT-FREE SUBSTAR-RING

In section 3.1, an efficient algorithm will be proposed to identify the Rs(n - 3, h) that
can tolerate at most n - 3  faults.  To show the  applicability of this scheme, we will explain
how to apply the ASCEND/DESCEND algorithms on Rs(n - 3, h).  To tolerate more than n
- 3 faults, a modified algorithm  is given in section 3.2.

3.1 Construction of Rs(n ----- 3, h) With n ----- 3 Faults

In the following, we will describe a  centralized  algorithm  to identify the maximal
fault-free substar-ring Rs(n - 3, h) (IMSR) in order to tolerate n - 3 faults in a faulty n-star
graph.  Furthmore, we also will explain how to apply the ASCEND/DESCEND algorithms
on Rs(n - 3, h).

The IMSR algorithm is divided into three steps.  First, we recognize all maximal
fault-free Sn-2 substars from an Sn

F .  Second, a (n - 2, t)-ring  is constructed from the Sn-2

substars, where n(n - 1) - (n - 3) £ t £ n(n - 1) - 1.  Third, the maximal fault-free substar-
ring Rs(n - 3, h), h £ (n - 2)t, is constructed  by applying  1-split on each Sn-2 substar of (n -
2, t)-ring .  The steps in the IMSR algorithm are described in detail in the following.

First, we apply D-split on Sn
F  to obtain n(n - 1) Sn-2 substars based on the best selec-

tion of set D.  Different values of set D will produce different sets of fault-free and faulty
substars.  If possible, all faulty nodes may be located in one Sn-2 under the best selection of
a set D.  Then, at most n2 - n - 1 fault-free Sn-2 substars can be used.  Finding the best set D
is done by recognizing the maximal number of Sn-2 substars.  Our best set D produces the
maximum number of fault-free Sn-2.  This can be easily justified since all faulty nodes are
possibly collected to the same substars by our selected set D, so the maximum number of
fault-free Sn-2 will be obtained.  This task is carried out as follows.  Given a set of faulty
nodes F, f = |F|, in an n-star, consider a node or substar x = x1x2 ... xn, xi Œ {*, 1, 2, ..., n} and
i = 1..n.  An extraction function is defined by ei(x1x2... xi... xn) = xi.  A predicate function [2]
is defined by

P x x
x( ) = =

={10  if TRUE
 if FALSE.

Let ti
d  be the occurrences of ed(yj) = i under a fixed value d, 1 £ i £ n and yj Œ F.   That is,

t P e y ii
d

j
f

d j= ∑ ==1 ( ( ) ), where “ed(yj) = i ” is a boolean expression.  Let md denote max ( )i
n

i
dt=1 .

The best set D is obtained by finding the dimensions k and k' such that mk and mk' are the
first and second largest values among md, where d = 1...n.  For example, assume a faulty star
S5 with F = {12435, 32451, 52134}; since e2(12435) = e2(32451) = e2(52134) = 2, we have
t2
2 3=  and t t t t1

2
3
2

4
2

5
2 0= = = = .  Therefore, m ti i2 1

5 2 3= ==max ( ) .  Similary, we can also
obtain m1 = 1, m3 = 2, m4 = 2, and m5 = 1.  Thus, set D is {2, 3} or {2, 4} since both m3 and
m4 are equal to 2.  If we choose D = {2, 3}, the minimal number of faulty substars is 2.  That
is, *24** and *21** are faulty substars, and *12**, *13**, *14**, *15**, *23**, *25**,
*31**, *32**, *34**, *35**, *41**, *42**, *43**, and *45** are fault-free substars.

The next step is to construct a (n - 2, t)-ring  from Sn
F  under set D = {k, k'}.  Intuitively,

k-split on the faulty Sn is performed to partition Sn
F  into n copies of Sn-1 substars so that we

can construct a (n - 1, n)-ring .  Each (n - 1)-substar of the (n - 1, n)-ring  is fault-free or not.
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We then apply k'-split on all the Sn-1 substars of the (n - 1, n)-ring  to obtain n(n - 1) Sn-2 substars.
In our scheme, we withdraw all the faulty substars from n(n - 1) Sn-2 substars.  Therefore, a
(n - 2, t)-ring  is constructed from all the non-faulty Sn-2 substars, where t £ n(n - 1) - f.

Lemma 2: Given a (n - 1, n)-ring , if f £ n - 3, it is possible to construct a (n - 2, t)-ring
from the (n - 1, n)-ring , where n2 - 2n + 3 £ t £ n2 - n - 1.

Proof: Given a set D = {k, k'}, we apply the D-split on the Sn
F .  A (n - 1, n)-ring  is first

obtained by applying the k-split on the Sn
F .  If the k'-th symbol of Gi, 0 £ i £ n - 1, in (n - 1,

n)-ring  is *, then to each Gi is applied the k'-split operation to obtain n - 1 Sn-2 substars.  As
mentioned earlier, all the Sn-2 substars are fully connected (by the adjacent relation), and
there are n - 2 connections  between Gi and Gi-1 and Gi+1.  Since n - 3 Sn-2 substars of Gi at
most are faulty, there exists at least one connection between Gi-1 and Gi+1.  For the similar
reason given in Lemma 1, it is trivial to derive a feasible (n - 2, t)-ring  by visiting all non-
faulty substars of Gi even when there are at most (n - 3) faulty substars in Gi, where n(n -
1) - (n - 3) £ t £ n(n - 1) - 1. c

Therefore, a (n - 2, t)-ring , is constructed, where n2 - 2n + 3 £ t £ n2 - n - 1.  There
are n(n - 1) Sn-2 substars, and n - 3 of them are faulty at most.  In this case, the (n - 2, t)-ring

uses n(n - 1) - (n - 3) Sn-2 substars if f £ n - 3; therefore, the PUR isn n
n n

2

2
2 3− +
− , and the

diameter is 
9
2

4
3 1 3

2
( )

( )( )
n

n n n−  + − −



 .  The reason is similar to that mentioned in sec-

tion 2.  For example, if set D = {4, 5}, then ****1 ´ ****2 ´ ****4 ´ ****3 ´ *****5
´ ****1 is a (4, 5)-ring  as indicated in Fig. 3.  Note that substars ***41 and ***52 are
faulty.  Therefore, a (3, 18)-ring  results as shown in Fig. 3.

Fig. 3. A maximal fault-free substar-ring Rs(2,54).
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Given a (n - 2, t)-ring  = [G0, G1, ..., Gt-1], all the (n - 2)! nodes of Gi exchange their
contents with the corresponding nodes of adjacent substars G(i-1) mod t or G(i+1) mod t.  Using the
GROUP-COPY procedure [20], this task is carried out in 3 time steps if there are no faults.
But if faults exist, the GROUP-COPY procedure won’t work, so the task costs O(n - 2)
time using only (n - 3)! direct links.  A scheme to reduce the communication cost is  pro-
posed here.  Our scheme is to apply 1-split on each Sn-2 substar Gi of a (n - 2, t)-ring  to
obtain virtual substars Xj, where 0 £ j £ (n - 2)t.  Each Xj is worked as a processing unit.
These Xj can finally construct a ring with 3-dilation links as shown in Theorem 1.

Theorem 1: Given a (n - 2, t)-ring  = [G0, G1, ..., Gl, ..., Gt-1], it is possible to  construct a Rs

(n - 3, h) = [X0, X1, ..., Xj, ..., Xh-1] such that each pair of neighboring Xj and Xj+1 is connected
at most 3-dilation links, where h = (n - 2)t.

Proof: First, if Xj and Xj+1 are located in the same Gl of the (n - 2, t)-ring , 1 £ l £ t, then Xj

is directly linked to Xj+1.  Second, if Xj and Xj+1 are, respectively, located in the neighboring
Gl and Gl+1 of the (n - 2, t)-ring , then there exists a pair of X' (in Gl) and X'' (in Gl+1) such
that X' is direct linked to X''.  The 3-dilation links are Xj ´ X' ́  X'' ´ Xj+1.  Furthermore,
if X'' = Xj+1, then there are only 2-dilation links between Xj and Xj+1.  As a result, each pair of
neighboring Xj and Xj+1 of Rs(n - 3, h) is connected by most 3-dilation links. c

Recall the above example; Fig. 3 shows a feasible Rs(2, 54) = [5**21, 4**21, 3**21,
2**51, 4**51, 3**51, ..., 1**35, 4**35, 2**35, 3**25, 4**25, 1**25].  Note that virtual
substars 3**12 and 2**14 are, respectively, located in ***12 and ***14, and that the edges
between 3**12 and 2**14 are 3**12 ́  4**12 ´ 2**14.

The IMSR algorithm is outlined as follows.

Algorithm: Identifying maximal fault-free substar-ring  (IMSR)

Input:  An Sn with faulty node set F, where 1 £ f £ n - 3.
Output:  Substar sequence [X0, X1, ..., Xh - 1] is obtained, where (n - 2)(n2 - 2n + 3) £ h £ (n

- 2)(n2 - n - 1).
Step 1: Find the best set D = {k, k'}.  The  maximal number of fault-free substars is obtained

by partitioning Sn
F  into disjoint Sn - 2 substars along dimensions k and k'.

Step 2: Identify a (n - 2, t)-ring  based on Lemma 2 among all the fault-free Sn - 2 substars,
where n2 - 2n + 3 £ t £ n2 - n - 1,

Step 3: Construct the maximal fault-free substar-ring Rs (n - 3, h) according to Theorem 1,
where (n - 2)(n2 - 2n + 3) £ h £ (n - 2)(n2 - n - 1)

The total time cost TIMSR of the IMSR algorithm is analyzed as follows.  In step 1, the
time cost O(nf) can be obtained by using a linear-time integer sort [1] to determine the value
of set D.  When f = n - 3, the time cost is O(n2).  Step 2 only costs O(n) time to construct the
(n - 2, t)-ring .  In step 3, a time cost of O(n3) is needed to split each Sn - 2 of (n - 2, t)-ring
to obtain Rs(n - 3, h), where h £ (n - 2)t.  Consequently, the total time cost of TIMSR can be
obtained using the following equation:

TIMSR = O(n2) + O(n) + O(n3) = O(n3).
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To demonstrate the application capability, we will show how to execute the sorting
operation on Rs(n - 3, h) = [X0, X1, ..., Xj, ..., Xh - 1].  First, an efficient sorting algorithm for
a star graph [17] can be performed on each virtual substar Xj of Rs(n - 3, h) such that the
unsorted elements on each Xj are sorted.  Second, if each virtual substar Xj of Rs(n - 3, h) is
worked as a processing unit, then the Odd-Even Transposition Sort algorithm [1] can be
performed on a ring of these processing units.  After performing the above operations, data
elements in all virtual substars will be sorted.  The detail algorithm can refer the similar
sorting operations on the maximal fault-free subcube-ring in faulty hypercubes [23]
Furthermore, using the similar matrix-multiplication operations on the maximal fault-free
subcube-ring [23], we can also perform the matrix-multiplication algorithm on Rs(n - 3, h).
Similarly, many scientific algorithms on star graphs [8, 20] can be tailored onto our  Rs(n -
3, h).

3.2 Construction Rs(n ----- 3, h') With More Than n ----- 3 Faults

In section 3.1, it was shown that a (n - 2, t)-ring  and its Rs(n - 3, h) can not be
constructed when f > n - 3.  In this subsection, we will describe how to construct Rs(n - 3,
h') when n - 3 < f < n2 - n.  It is known that an N-node ring can be one-to-one embedded
with dilation 3 in any connected N-node network [4].  Given a Sn

F and its best set D = {k, k'},
initially, we construct a tree, namely substar-tree T, among n Sn - 1’s, which are obtained by
performing k-split on Sn

F .  Each node of substar-tree T is an Sn - 1.  Then, all possible fault-
free virtual substars can be obtained by performing k'-split and 1-split operations on each
node of substar-tree T.  These fault-free virtual substars can still form a connected network.
Therefore, a ring of the virtual substars with 3-dilation links is obtained.  The ring is de-
noted as Rs(n - 3, h').  In the following, we will describe the modified IMSR’ algorithm
used to construct substar-tree T and to then obtain the final Rs(n - 3, h').

The detail algorithm of modified IMSR’ algorithm is described below.  We apply k-
split on Sn

F  to produce n Sn - 1’s and collect them into set Y, where D = {k, k'}.  The substar-
tree T is constructed based on set Y.  As we stated earlier, each node of substar-tree T is an  Sn

- 1 substar.  The total number of nodes of substar-tree T is at most n.  Before we describe
how to construct substar-tree T, we will define a function AD(G, G') to represent the adja-
cent relation of a  pair of Sn - 1’s G and G',  where G and G' belong to set Y.  k'-split is
performed on G and G' to decompose G and G' into 2(n - 1) Sn - 2’s, each of which is fault-
free or not.  Let function AD(G, G') denote the number of pairs of adjacent fault-free Sn - 2

substars x and y, where x and y are located in G and G', respectively.  If AD(G, G') > 0, then
there exists at least one pair of adjacent fault-free Sn - 2’s between G and G'.  Otherwise, no
fault-free Sn - 2’s are adjacent if AD(G, G') = 0.  For example, if set D = {4, 5}, then substars
***41, ****51, and ***52 are faulty substars as shown in Fig. 4, and there is no fault-free
adjacent substar S3’s between ****1 and ****2, so AD(****1, ****2) = 0.  Equation AD
(****1, ****3) = 1 holds because ***21 and ***23 are the only pair of fault-free adjacent
substars.  Similarly, equations AD(****1, ****4) = 2, AD(****1, ****5) = 2, and AD
(****3, ****2) = 2 can be obtained.

Continually, substar-tree T can be constructed as follows.  First, the root of tree T is
a substar selected from set Y randomly.  Using the Breadth-First-Searching method, we can
expand the branches of substar-tree T as follows.  Branches of tree T represent the possible
connecting substars.  Each node u of substar-tree T probes each remaining substar v from
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set Y.   If the condition AD(u, v) > 0 exists, then node u is connected to substar v, and we
can eliminate v from set Y.  By repeatedly performing the above probing operations until
set Y is empty or no further connecting substar can be found, substar-tree T is constructed.
Since there exists at least one branch of each node of  substar-tree T, substar-tree T is a
connected network.  The 1-split oppration is performed on each Sn - 2 substar of substar-tree
T to obtain all possible virtual substars.  Each virtual substar is treated as a processing unit,
and these virtual substars still form a connected network.  Therefore, a maximal fault-free
substar-ring Rs(n - 3, h') with 3-dilation links can be obtained [4], where h' £ n(n - 1)(n - 2)
- 1.  Recalling the above example, let the root of substar-tree T be ****1, the branches of
root be ****3, ****4, and ****5, and the branch of ****3 be ****2.  The substar-tree T is
shown in Fig. 4.  After applying 1-split on all the S3’s of  substar-tree T, an Rs(2, 17 *  3) =
Rs(2, 51) with 3-dilation links is obtained.

Finally, we will analyze the total time cost TIMSR' of the modified IMSR algorithm.  In
step 1 of identifying all Sn - 2, a time cost of O(nf) is needed if we use a linear-time integer
sort [1].  When f = n2 - n - 1, the time cost is O(n3).  During construction of substar-tree T,
the AD operation is performed O(n2) times, and each time, O(n) time is needed.  It takes O
(n3) time to construct substar-tree T.  A time cost of O(n3) is needed to split n(n - 1)  Sn - 2’s
into n(n - 1)(n - 2) virtual substars.  Consequently, the total time complexity of TIMSR' can
be measured by the following equation:

TIMSR' = O(n3) + O(n3) + O(n3) = O(n3).

Fig. 4. Constructing a substar-tree T.
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4. PERFORMANCE ANALYSIS

 In this  section, we will analyze the distributed percentage of the processor utiliza-
tion of the maximal fault-free substar-ring under two cases in which the number of faulty

processors is assumed.  First, if f is not larger than n - 3, then the PUR is at least  n n
n n

2

2
2 3− +
− .

Second, we will find the PUR of our reconfiguration scheme even when n - 3 < f £ n2 - n - 1.
The percentage of the processor utilization of Rs(n - 3, h) is analyzed as follows.  In

our simulation, the addresses of faulty processors are randomly generated in each of 10000
simulations for fixed n and f.  To illustrate the fault tolerance capability, we will consider
the worst case of simulating the PUR.  An Sn is partitioned into n(n - 1) Sn - 2 by step 1 of the
IMSR algorithm.  Here, we denote the number of faulty Sn - 2 by r.  The factor of the value
of r presents the degree of occurring faults.  The larger the value of r is, the more faults there
will be.  The factor of the value of r is used to analyze  the PUR.  If the percentage of the
processor utilization of Rs(n - 3, h) is larger than 50%, then the slowdown factor of compu-
tation has a better chance of reducing to less than 2.  In the case of f £ n - 3, the PUR is at

least n n
n n

2

2
2 3− +
−  and is always larger than 50%.  All possible maximal fault-free substar-

rings Rs(n - 3, h) and the percentage distribution of processor utilization in a faulty S5,
where 1 £ r £ 52 - 5 - 1 (=19) and 3 £ h £ 57, are shown in Table 1.  For instance, when n
= 5 and r = 1, 2, and 3, 100% of the cases of S5 can be identified as Rs(2, 57) with 95%
processor utilization, 100% of the cases can be identified as Rs(2, 54) with 90% processor
utilization, and 100% of the cases can be identified as Rs(2, 51) with 85% processor utilization,
respectively.  When n = 5 and r = 4, 99.57% of the cases of S5 can be identified as Rs(2, 48)
with 80% processor utilization, and 0.43% of the cases can be identified into Rs(2, 45) with
75% processor utilization.  This indicates that the smaller the value of r is, the maximal
fault-free substar-ring with high PUR generally be determined.  As shown in Table 1, all
more than 73% cases to exploit the more than 50% processor utilization in an faulty S5

when 1 £ r £ 8.  This shows that the percentage of the processor utilization of maximal
fault-free substar-ring Rs(n - 3, h) is always greater than 50% when r < n(n - 1)/2.

The average PUR is discussed in the following.  The average PUR is defined as the
sum of the percentage of the processor utilization of each Rs(n - 3, h) * PUR of Rs(n - 3, h).
For instance, in Table 1, when n = 5 and r = 4, 99.57% of Rs(2, 48) with PUR = 80% and 0.
43% of Rs(2, 45) with PUR = 75% are identified, so the average PUR is 99.57% * 80% + 0.
43% * 75% = 79.9785%.  In our simulation, we estimate the average PUR under the case of
5 £ n £ 12.  The simulation results of the average PUR with different value of r are depicted
in Fig. 5.  The average PUR with a value of r larger than n(n - 1)/2 is always larger than
50% as depicted in Fig. 5.  The average PUR is inversely proportional to the value of r; i.e.,
the larger the value of r is, the lower the average PUR will be.  For instance, when the
number of faulty Sn - 2 substars is n(n -1)/10, 2n(n -1)/10, and 3n(n -1)/10, the average
PUR is about 90%, 80%, and 70%, respectively.  Consequently, the smaller the number of
faulty Sn - 2 substars is, the high the average PUR is.

In a conclusion, when the number of faulty Sn - 2 is smaller than n(n -1)/2, more than
50% of average PUR are obtained by our simulation  results.  This indicates that our scheme
can obtain a reasonable average PUR, so our scheme is a truly effective reconfiguration
method.
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Table 1. Percentage distribution of the processor utilization of maximal fault-free
substar-ring Rs(2, h) in an S5, where the number of faulty 3-substars is from 1
to 19 and 3 £££££ h £££££ 57.

The number of faulty 3-substars
PUR h

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
5% 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.33 26.5 55.01 84.15 100

10% 6 0 0 0 0 0 0 0 0 0 3.21 11.45 26.40 45.68 65.38 74.96 66.72 43.31 15.85 0
15% 9 0 0 0 0 .24 .65 2.73 7.24 15.05 23.79 33.35 37.03 32.85 24.55 15.03 6.14 1.68 0 0
20% 12 0 0 0 0 0 0 0 .65 1.23 2.63 4.67 5.61 5.18 3.51 2.14 .64 0 0 0
25% 15 0 0 0 0 0 0 .4 1.9 4.35 8.36 9.47 8.7 6.65 4.19 1.54 0 0 0 0
30% 18 0 0 0 0 0 .37 .6 2.12 5.69 10.29 11.62 10.20 6.68 2.37 0 0 0 0 0
35% 21 0 0 0 0 0 0 1.10 3.31 8.07 11.09 12.12 7.82 2.96 0 0 0 0 0 0
40% 24 0 0 0 0 0 1.58 2.12 5.26 8.19 12.39 9.61 4.24 0 0 0 0 0 0 0
45% 27 0 0 0 0 ..40 .12 1.26 5.57 12.17 12.89 7.71 0 0 0 0 0 0 0 0
50% 30 0 0 0 0 0 .06 6.21 10.02 16.29 15.35 0 0 0 0 0 0 0 0 0
55% 33 0 0 0 0 0 4.70 4.96 15.14 28.96 0 0 0 0 0 0 0 0 0 0
60% 36 0 0 0 0 1.52 .87 9.88 48.79 0 0 0 0 0 0 0 0 0 0 0
65% 39 0 0 0 0 0.45 5.44 70.73 0 0 0 0 0 0 0 0 0 0 0 0
70% 42 0 0 0 0 2.07 86.21 0 0 0 0 0 0 0 0 0 0 0 0 0
75% 45 0 0 0 .43 95.32 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80% 48 0 0 0 99.57 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85% 51 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
90% 54 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
95% 57 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 5. The average PUR of Rs(n-3, h) of Sn, for 5 £ n £ 12.

L = m(n-1)/10

Number of faulty (n-2)-substurs Dimension of Star Graph
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5. CONCLUSIONS

In this paper, we have proposed a reconfiguration scheme to identify  the maximal
fault-free substar-ring for tolerating  faults in faulty n-dimensional star graphs.  The fault-
free substar-ring is connected by a ring of fault-free virtual substars with dilation 3.  This is
the first result to propose a reconfiguration scheme in the faulty star graph.  Our proposed

scheme can tolerate n - 3 faults so that the processor utilization is 
n n

n n

2

2
2 3− +
−  and the

diameter is 9
2

4
3 1 3

2
( )

( )( )
n

n n n−  + − −




.  This is a near optimal result since the maximal

fault-free substar-ring is constructed by using all of the possible fault-free (n - 2)-substars.
To demonstrate the applicability of our scheme, we have described how to apply a sorting
algorithm to our reconfiguration scheme.  Moreover, our reconfiguration scheme can work
when the number of faults exceeds n - 3.  We have also simulated the algorithm to show
that the reconfiguration scheme has high  processor utilization.

In order to preserve a low diameter and obtain better processor utilization, identifying
the maximal fault-free substar-ring Rs(k - 1, h) has been the main objective of this study.
Determining the maximal fault-free substar-ring Rs(k - 1, h) is controlled by what values of
k and h being are the best selection. It is possible to construct a Rs(k - 1, h), k £ n - 2, to
obtain a large diameter and greater processor utilization.  If k - 1 = 1, our scheme becomes
a simple problem of ring embedding on a faulty star graph [25].  However, in this paper, we
have only focused on identifying the maximal fault-free substar-ring Rs(n - 3, h) to keep a
smaller diameter and obtain reasonable processor utilization.
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