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In this paper, we propose a scheme to identify the maximal fault-free substar-ring.
This is the first attempt to derive a reconfiguration scheme with high processor utilization
in the faultyn-star graph. The maximal fault-free substar-ring is connected by a ring of
fault-freevirtual substarsand the maximal length of the ringrig — 1)(n — 2). Our pro-

2 _
posed scheme can tolerate 3 faults such that the processor utilizatiorpisﬁ.
This is a near optimal result since the maximal fault-free substar-ring is constructed using
all of the possible fault-freen(- 2)-substars. Moreover, our algorithm can still work when

the number of faults exceeds- 3. The simulation results also show that the processor

2
utilization is more than 50% if the number of faults is less @r\aﬂ'ﬁl in then-star graph.

Keywords:fault tolerance, interconnection network, parallel processing, reconfiguration,
star graph

1. INTRODUCTION

Recently, one new interconnection network that has attracted lots of attention is the
star graph [5]. The star graph [5], being a member of the class of Cayley graphs, has been
shown to possess appealing features, including low degree of the node, small diameter,
partitionability, symmetry, and high degree of fault tolerance. Especially when the size of
the star graph system increases, fault tolerance is an important issue for such a large system
to continue operation after failure of one or more processors/links. In this paper, we study
how algorithms that are originally designed for the fault-free star graph can be implemented
on star graphs containing faults with high processor utilization. To measure the efficiency
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of the fault-tolerant approach, we ysecessor utilization ratior PUR, which is the total
number of fault-free processors used by our reconfiguration scheme divided by the total
number of processors of arstar graph.

Much research recently has been directed toward studying the aspects of fault-toler-
ant computing on the hypercube and star graph [9, 11, 12, 19, 22-25]. The hierarchy of both
the hypercube and star graph allow assignment of their special subgraphs, subcubes and
substars, which have the same topological features as the original graph. Most of the fault-
tolerant strategies address the issueadnfigurationonce the faulty processors/links are
identified. One effective approach used in the reconfiguration strategies in hypercubes is to
identify the largest fault-free subcube and use the subcube to emulate the entire hypercube
[11]. Ann-star graph can be recursively decomposedri(ric- 1)-substars. The largest
fault-free substar can be easily identified and used to emulate the entire star graph. It is
unreasonable to use the largest fault-free substar approach as a reconfiguration scheme
since its PUR becomes at most &en when an-star graph contains only one fault. A
different but related research topic is how to allocate tasks in the complete star graph [15].
Note that this approach can better accommodate multiple jobs on substars of different sizes.
Therefore, the purpose of this paper is to provide a novel fault-tolerant reconfiguration
scheme in a-star graph so that higher PUR and lower diameter can be obtained.

The major contribution of this paper is that we propose an efficient reconfiguration

2 _
scheme, which can tolerdts n— 3 faults inn-star graph, such that PURQS% and

the diameter i©(n®). Furthermore, our scheme with reasonable PUR can still work when
number of faults exceeds- 3. Based on our simulation results, our algorithm keeps more

2
than 50% PUR if the number of faults is less tﬂaﬁzn—_l in ann-star graph. In addition,

a novel communication pattern with constant time cost will be presented in this paper for
the sake of easily performing algorithm on the maximal fault-free substar-ring. In this
paper, we only consider node faults, and in an edge fault, it is assumed that one of the nodes
incident upon it is faulty. We also assume that faulty nodes can neither perform calcula-
tions nor route data.

The rest of this paper is organized as follows. The primary properties of the maximal
fault-free substar-ring are introduced in section 2. A systematic technique for identifying
the maximal fault-free substar-ring is addressed in section 3. The performance of our
approach is analyzed in section 4. Finally, conclusions are drawn in section 5.

2. PRELIMINARIES

An n-dimensional star graph, also referred tmasar orS,, is an undirected graph
consisting of! nodes (or vertices) and £ 1)n!/2 edges. Each node is uniquely assigned
a labelxx; .. x,, which is the concatenation of a permutation dfstinct symbols X3, X, ...,

X+ Without loss of generality, let thesesymbols be {1, 2, ..n}. Given any node label
X1... X ... X, let the permutation functiap, 2<i < n, be such thagi(X; ... % ... X,) =% ... Xq...
xq(i.e., swapx, andx; and keep the rest of the symbols unchangedy,, fior any node,
there is an edge joiningand nodey(x), and this edge is said the dimensiofach node in
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S is connected ta— 1 adjacent nodes lny— 1 edges. LdE denote a set of faulty nodes in
a faultyS,. An S, with setF is denoted a§. For instance, a star graphwith setF =
{52341, 43152}, org>** ®53 is shown in Fig. 1.
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Fig. 1. A star grapls; with setF = {52341, 43152}.

EachS, containsn disjointS,;'s. Letl' ={1, 2, ...,n, *}, where * denotes don't care
symbol. Every substar &, can be uniquely labeled by a string of symbolE such that
the only repeated symbol is *. Formallyk-dimensional substa or k-substar, is denoted
as a strings = X%, .. X,, and number of * symbols in stri@is k, wherex; = * andx; € T,
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2<i<n. The substar represented Byis a subgraph d§, containing all the vertices
obtained fromG by replacing each * with the digits {1, 2, n}, These vertices are con-
nected by the original links if,. For instance, the **3*1 is a 3-dimensional substar and
contains the set of nodes {54321, 45321, 52341, 25341, 42351, 24351}. Throughtout this
paper, &-substar is said to be faulty if there exists at least one faulty nodekistifstar,

where 1< k< n. Otherwise, th&-substar is said as fault-free. For example, in Fig. 1, the
substars ***41 and ***52 are faulty substars.

Definition 1: j-split andD-split

Let G = XX, ... X% ... X, be ak-substar withg = *. Thej-split onG, 1<j < n, partitions
G along thg-dimension intck number of kK— 1)-substars, each obtained fr@y replac-
ing X, with a legal non- symbol. LetD = {d;, d,, ...,dn, 1}, m<k, be a set of dimensions
such thaky =*,i=1.m. Then, thd-split onG is used to first apply d-split onG, whose
result is then applied tods-split, whose result is then applied tdsssplit, etc., until there
isk(k—1) ...k— m+ 1) number ofK— m)-substars. The final result of tResplit onG is
obtained by applying a 1-split on each of the n)-substars. O

In the above definition, if = 1, then the partitioning result does not remain substars,
which is defined as artual substarin the following. AnS, can be decomposed int(n —
1) ...k + 1) copies ok-substar after applying'-split onS,, whereD' = {d,, d,, ...,d, ...,d.},
foralld =1, 1<i<n-k andk<n. Given &-substal§, 1-split onS is used to decompose
S into k virtual substarsepresented a§, 1< i <k Thevirtual substarX; = x;X, .. X, is a
subgraph of; containing all the vertices obtained fr@&nwherex; is a non+ symbol and
the number of * symbols of, isk— 1. These vertices are connected as follows. Assume
thatd; <d, <d;,...,<d,_, O{1, 2, ...,n} = {dy, Dy, ...,d.}, Where Xy =Xg =Xy =%,
For any nodein X;, there is avirtual edgejoining x and9y; (9¢; (94 (¥))), 2<j<k- 1, and
this virtual edgeis called thevirtual dimensionj Each node iiX; is connected t& — 2
virtual adjacent nodeby k — 2 virtual edges For a fixedvirtual dimensiorj, 1<j <k, each
disjoint node ofX,, in parallel, performs the same permutation funct@ps9q; , and9gy
simultaneously. Under the assumption of the bidirectional link, all paths from nodes of
1<i <k, to one of itssirtual adjacent nodeare edge-disjoint. Moreover, each nod;pf
1<i <k, sending data to one of ittual adjacent nodeseeds 3 time steps.

Consider any pair ofirtual substarsX; andX; obtained from 1-split o, wherei =
j. Each nodex,x; .. x, of X has a direct link to nod®gy; ... y, of X along the dimension
such thak, = sandy, =r, wherer ands are non~ symbols. That is, if we say the relation
of the direct link is represented by lines connectirtgal substay then, eachirtual substar
X; of S is fully connected with every oth¥ of S.

For instance, given a8, a 5-split onG is done to partitioi&s into six 5-substars:
*****1, )\-****2, 7\-~k>\-~k~k37 *****4, *****51 and **)\-**6. COﬂSIder that SubStal’ ****56 |S
one of substars after applyil-split onG, whereD' = {5, 6}. The 1-split o+ 56 is
done to decompose ****56 intairtual substars1***56, 2***56, 3***56, and 4***56, as
shown in Fig. 2. Therefore, = 2,d, =3, andd; = 4. Fig. 2 indicates thatirtual edges
joining x andg,(0s(92(X))) alongvirtual dimensior2, wherex in virtual substars 1« 56,
2xxx 56, 3o+ 56, and 4***56. After performing the permutation function, the number of
nodes with different colors is always equal to 6, so all paths)rmg,(gs(g:(X))) are edge-
disjoint. Node 123456 ofirtual substarls++ 56 has direct links to 213456, 321456, and
423156 ofvirtual substar2***56, 3***56, and 4***56, respectively. The other nodes of
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1***56 also have links to nodes in 2***56, 3***56, and 4***56. Therefow#tual substar
1***56 is fully connected to 2***56, 3***56, and 4***56. Similarlyyirtual substars
2***56, 3***56, and 4***56 are fully connected to each other.

Definition 2: Adjacent substars

Given any twdk-substarsiG = x%...%...X, andH = y;y,...y;...y, are said to be adjacent
if and only if the labels o& andH differ in exactly one dimension, wherec1 <n. O

For instance, the 3-substar= ***31 is adjacent tdd = ***41 but not adjacent t&l'
=**13. In the following, we will describe the adjacent relation whenjtbglit operation
is applied. For two given adjacdasubstarss = XX, ... X ... X, andH =y, ...y, ... y, such
thatx, =y, ==*. If we apply, thg-split onG andH, we will obtaink substars (dimensida-
1) from each ofs andH. One can easily see that all theubstars i©s are adjacent to each
other, and so are thoseHn If the adjacent relations are represented by of the lines connect-
ing substars, eaclk ¢ 1)-substars o&(or in H) are fully connected to each of the other
substars o6(or inH). Furthermore, among these substiars] substars i are adjacent
to k— 1 substars il in a one-to-one manner. For example, if we apply 5-spl@ o1& as
shown in Fig. 1, ****1 is fully connected to ****2, ****3 x4 gnd ****5. If G =
*xx3, H = ***4 and we apply 4-split on ***3 and ****4, we can see that each substar of
*rx] 3, ***23, ***43, and ***53 is fully connected to the others. Similarly, substars ***14,
**x24, ***34, and ***54 are also fully connected. Moreover, 3 pairs of substars (***13,
*Rx]4), (F**23, ****24), and (***53, ***54) are adjacent. Given a sequence &fsubstars
[Go, Gy, -..,Gral, & K, t)-ring will be defined below before we construct our reconfiguration
scheme.
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Fig. 2. Thevirtual edgegoining x and gx(gs(g2(X))) alongvirtual dimensior2, wherex in virtual
substarsl***56, 2***56, 3***56, and 4***56.
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Definition 3: (k, t)-ring
A sequence df-substars@, G, .., G.4] is denoted as atk,(t)-ring if substarss; is
adjacent to its neighborin.1) mod 1&NAGj+1ymea«fOr anyi = 0.1 — 1. O

Before defining our final reconfiguration, we give the following lemma.

Lemma 1: Given a k, t)-ring =[Gy, Gy, ..., G.4], a feasible K — 1, kt)-ring can be con-
structed from thek{ t)-ring.

Proof: Letj be an integer such that thth symbol of allG, 0<i <t-1, in the k, t)-ring
is =, eachG; is applied thg-split to obtaink(k — 1)-substars. All thek(- 1)-substars are
fully connected by the adjacent relation, and ther& aré connections betweds andG, ;
(andG,,;). We can easily derive a feasibke-(1, kt)-ring by visiting all K — 1)-substars of
G and one of th&— 1 connections betwedp andG; ; (andG,.,). 0

The 1-split operation is performed on e&hof a k, t)-ring =[Gy, Gy, -..,G,, -..,G4]
to obtain a sequence waftual substardX,, Xy, ..., X, ..., Xn.1]- As mentioned earlier, each
X; is avirtual substar Based on Lemma 1, our final reconfiguration scheme, namely the
fault-free substar-ring Bk — 1, h), is defined as follows.

Definition 4: Fault-free substar-rinBy(k — 1, h)

LetR(k—1,h) = [X,, Xy, ..., X, -.., Xia] denote a feasible fault-free substar-ring,
where Ky, Xy, ..., %, ..., Xp.1] IS @ sequence of disjoint fault-fre@tual substarsof dimen-
sionk— 1. R(k— 1, h) is constructed by each nodedrconnected to a node X1 moan and
Xi+1ymoa nWith at most dilation 3, for all @i <h— 1. ThereforeR(k—1,h) is

Xo o X1 Xy & .. X Xp1 © Xo. |

If the connectiorX;,; <> X, does not exist, then a fault-free substar-chain, denoted by
Cyqk-1,h), is constructed. Obviously, a fault-free substar-Rg§ — 1, h) can be treated
as a fault-free substar-chayk — 1, h) with the same size eirtual substars The proces-
sor utilization ofR(k — 1, h) andCyk — 1, h) is (k— 1)! x h. We can describe the diameter
of R(k—1,h) andCyk — 1, h) as follows. First, if each virtual substar is seen as a unit, then

there arén virtual substarX which form a ring, S@Dis the diameter of the ring of virtual
substars. In eack; of R(k— 1, h), we can only use 3 steps to jump to the next virtual

substar since all of the edges@®fare nonfaulty i, is obtained by 1-split 0&;, so B%hD
is needed. When we arrive at the final virtual subgtawe still need at mos3$ x [g(k - Z)D
steps to arrive at any nodesXp, since [%(k - Z)Dis the diameter df.;. Therefore, the

diameters oR(k— 1,h) andCy(k - 1,h) are at mosfg (k- 2) B%huand B (k-2)[J 3,

whereh=n(n-1) ... k—1). In this paper, we will only focus on constructing a feasible
fault-free substar-ring(n — 3, h) in a faulty star graph.
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3. CENTRALIZED ALGORITHM FOR IDENTIFYING
MAXIMAL FAULT-FREE SUBSTAR-RING

In section 3.1, an efficient algorithm will be proposed to identifyfRfre— 3, h) that
can tolerate at most— 3 faults. To show the applicability of this scheme, we will explain
how to apply the ASCEND/DESCEND algorithmsRyn — 3, h). To tolerate more tham
— 3 faults, a modified algorithm is given in section 3.2.

3.1 Construction of R{(n — 3, h) With n — 3 Faults

In the following, we will describe a centralized algorithm to identify the maximal
fault-free substar-ringy(n — 3, h) (IMSR) in order to tolerata — 3 faults in a faultyn-star
graph. Furthmore, we also will explain how to apply the ASCEND/DESCEND algorithms
onRy(n- 3, h).

The IMSR algorithm is divided into three steps. First, we recognize all maximal
fault-freeS,, substars from aﬂ;f. Second, an(- 2, t)-ring is constructed from th§,.,
substars, whem(h— 1)— (n—3)<t<n(n— 1)— 1. Third, the maximal fault-free substar-
ring R(n— 3, h), h< (n— 2}, is constructed by applying 1-split on e&:hsubstar ofrf—
2,1)-ring. The steps in the IMSR algorithm are described in detail in the following.

First, we applyD-split on § to obtainn(n — 1) S, substars based on the best selec-
tion of setD. Different values of sdd will produce different sets of fault-free and faulty
substars. If possible, all faulty nodes may be located irgpnender the best selection of
a setD. Then, at most? — n— 1 fault-freeS,, substars can be used. Finding the bedd set
is done by recognizing the maximal numbeSof substars. Our best detproduces the
maximum number of fault-fre®,,. This can be easily justified since all faulty nodes are
possibly collected to the same substars by our select&d setthe maximum number of
fault-freeS,, will be obtained. This task is carried out as follows. Given a set of faulty
noded, f = |F|, in ann-star, consider a node or substarx;x, ... X, x € {*, 1, 2, ...,n} and
i = 1.n. An extraction function is defined l&{x;X.... %... X,) =X. A predicate functiof2]
is defined by

_[1ifx=TRUE
P(X) ‘[o if x = FALSE.

Let t! be the occurrences ef(y) =i under a fixed valud, 1<i<nandy;e F. Thatis,
t! =3 [L,P(es(y;) =i), where %&(y;) =" is a boolean expression. Lrejdenotemax_, (t").
The best seb is obtained by finding the dimensiokandk' such thaim, andm, are the
first and second largest values amaoggwhered = 1..n. For example, assume a faulty star
S with F = {12435, 32451, 52134}; sinag(12435) =e,(32451) =e,(52134) = 2, we have
t2 =3 andt? =tZ =t? =t =0. Thereforem, = max’,(t?) =3. Similary, we can also
obtainm, = 1,m; =2,m, = 2, andms = 1. Thus, séD is {2, 3} or {2, 4} since bothm; and
m, are equal to 2. If we chooBe= {2, 3}, the minimal number of faulty substars is 2. That
is, *24** and *21** are faulty substars, and *12** *13** *14** *]5** *23%* x5k
*JLwk *JQxx KJArx KJGrx KAPxx *ADxx *AJr* and *45** are fault-free substars.

The next step is to constructra<2, t)-ring from S° under seb = {k, k?}. Intuitively,
k-split on the faultyg, is performed to partitio§’ into n copies ofS,, substars so that we
can construct an(- 1,n)-ring. Each (— 1)-substar of then(— 1, n)-ring is fault-free onot.
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We then applk-split on all thes,; substars of then¢- 1,n)-ring to obtaim(n— 1) §,, substars.
In our scheme, we withdraw all the faulty substars fnfm- 1) S,, substars. Therefore, a
(n—2,1)-ring is constructed from all the non-fauly, substars, where< n(n— 1) - f.

Lemma 2: Given a i — 1, n)-ring, if f < n - 3, it is possible to construct a+ 2, t)-ring
from the 60— 1, n)-ring, wheren?—2n+ 3<t<n*-n-1.

Proof: Given a seD = {k, k}, we apply theD-split on theS’. A (n— 1, n)-ring is first
obtained by applying thesplit on theS". If thek'-th symbol ofG, 0<i<n-1,in (-1,
n)-ring is *, then to eacks; is applied thd'-split operation to obtain— 1 S,, substars. As
mentioned earlier, all thg,., substars are fully connected (by the adjacent relation), and
there aren — 2 connections betwe&s andG;; andG.,;. Sincen— 3 S,, substars o6, at
most are faulty, there exists at least one connection be@gemdG,,;. For the similar
reason given in Lemma 1, it is trivial to derive a feasible 2,t)-ring by visiting all non-
faulty substars of5; even when there are at mast(3) faulty substars i5;, wheren(n —
1)-(n-3)<t<n(n-1)- 1. O
Therefore, an{— 2,t)-ring, is constructed, whem®— 2n+ 3<t<n?-n-1. There

aren(n—1) S,, substars, and— 3 of them are faulty at most. In this case, the 2, t)-ring
2 —
usesn(n — 1) — (n — 3) S, substars if < n — 3; therefore, the PUR%%, and the

n(n-1)(n-3
diameter is[%(n - 4)D+ %E The reason is similar to that mentioned in sec

tion 2. For example, if S& = {4, 5}, then ****] ¢ *¥***Q ¢ Fkkk] (5 *FF*Z ¢ Fhkkrly
< ****1] is a (4, 5)-ring as indicated in Fig. 3. Note that substars ***41 and ***52 are
faulty. Therefore, a (3, 18)ng results as shown in Fig. 3.

Fig. 3. A maximal fault-free substar-rify(2,54).
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Given a (- 2,t)-ring =[Gy, Gy, ...,G4], all the fi— 2)! nodes of5; exchange their
contents with the corresponding nodes of adjacent sul@tansq:0or Gi.1ymoa: Using the
GROUP-COPY procedure [20], this task is carried out in 3 time steps if there are no faults.
But if faults exist, the GROUP-COPY procedure won't work, so the task Gfsts 2)
time using only f — 3)! direct links. A scheme to reduce the communication cost is pro-
posed here. Our scheme is to apply 1-split on 8achubstaiG; of a f— 2, t)-ring to
obtainvirtual substarsX;, where < j < (n— 2)t. EachX; is worked as a processing unit.
TheseX; can finally construct a ring with 3-dilation links as shown in Theorem 1.

Theorem 1:Given a (1 — 2,t)-ring =[Gy, Gy, ...,G,, ...,G4], it is possible to constructR
(n—3,h) = [Xo, Xy, ... X, ..., X4] Such that each pair of neighboriKgandX;., is connected
at most 3-dilation links, whetfe= (n— 2)t.

Proof: First, if X; andX., are located in the san® of the fi— 2,t)-ring, 1<1<t, thenX
is directly linked taX.,;. Second, i; andX;., are, respectively, located in the neighboring
G, andG,, of the fi— 2,t)-ring, then there exists a pair ¥f (in G)) andX" (in G;;) such
thatX' is direct linked toX". The 3-dilation links ar¥; <> X' <> X" <> X.,. Furthermore,
if X" =X.4, then there are only 2-dilation links betwegmandX.;. As a result, each pair of
neighboringX; andX;.; of R(n — 3, h) is connected by most 3-dilation links. O
Recall the above example; Fig. 3 shows a feaBlifl 54) = [5**21, 4**21, 3**21,
2**51, 4**51, 3**51, ..., 1**35, 4**35, 2**35, 3**25, 4**25 1**25]. Note thawirtual
substars3**12 and 2**14 are, respectively, located in ***12 and ***14, and that the edges
between 3**12 and 2**14 are 3**12» 4**12 «» 2**14,
The IMSR algorithm is outlined as follows.

Algorithm: Identifying maximal fault-free substar-ring (IMSR)

Input: An §, with faulty node seff, where 1<f<n- 3.

Output: Substar sequenciy X, ...,X,_1] is obtained, wheren(- 2)(n?— 2n + 3)<h< (n
-2)(n?—n-1).

Step 1:Find the best s@& = {k, k'}. The maximal number of fault-free substars is obtained
by partitioningS' into disjointS,_, substars along dimensioksindk'.

Step 2:ldentify a 6 — 2,t)-ring based on Lemma 2 among all the fault-f&e, substars,
wheren’—2n+ 3<t<n?’-n-1,

Step 3:Construct the maximal fault-free substar-riRgn — 3, h) according to Theorem 1,
where i— 2)(n?-2n+ 3)<h< (n-2)("*-n-1)

The total time cosft s Of the IMSR algorithm is analyzed as follows. In step 1, the
time cost Off) can be obtained by using a linear-time integer sort [1] to determine the value
of setD. Whenf =n - 3, the time cost is @f). Step 2 only costs @)time to construct the
(n—2,1)-ring. In step 3, a time cost of ] is needed to split ea&_, of (n— 2,1)-ring
to obtainRy(n — 3, h), whereh < (n— 2)t. Consequently, the total time costlgfsg can be
obtained using the following equation:

Tiwsr = O(?) + O(M) + O(°) = O(°).
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To demonstrate the application capability, we will show how to execute the sorting
operation orRy(n — 3, h) = [Xo, Xy, ..., X, ..., Xs _4]. First, an efficient sorting algorithm for
a star graph [17] can be performed on eaddinal substarX; of R(n — 3, h) such that the
unsorted elements on eaxfare sorted. Second, if eadtual substarX; of R(n— 3, h) is
worked as a processing unit, then the Odd-Even Transposition Sort algorithm [1] can be
performed on a ring of these processing units. After performing the above operations, data
elements in alvirtual substarswill be sorted. The detail algorithm can refer the similar
sorting operations on the maximal fault-free subcube-ring in faulty hypercubes [23]
Furthermore, using the similar matrix-multiplication operations on the maximal fault-free
subcube-ring [23], we can also perform the matrix-multiplication algorithRy(on- 3, h).
Similarly, many scientific algorithms on star graphs [8, 20] can be tailored onte @+
3,h).

3.2 ConstructionR(n — 3, h") With More Than n — 3 Faults

In section 3.1, it was shown thatra- 2, t)-ring and itsR(n — 3, h) can not be
constructed whefi> n— 3. In this subsection, we will describe how to constRygt— 3,

h") whenn - 3 <f <n?—n. Itis known that alN-node ring can be one-to-one embedded
with dilation 3 in any connectedknode network [4]. Given § and its best sé& = {k, k},
initially, we construct a tree, namedybstar-tree Tamongn S,_,’s, which are obtained by
performingk-split on §7. Each node adubstar-tree Ts anS,_;. Then, all possible fault-
freevirtual substarscan be obtained by performikgsplit and 1-split operations on each
node ofsubstar-tree T These fault-fregirtual substarscan still form a connected network.
Therefore, a ring of theirtual substarswith 3-dilation links is obtained. The ring is de-
noted afR(n — 3, h"). In the following, we will describe the modified IMSR’ algorithm
used to construgubstar-tree Tand to then obtain the finRl(n— 3, h’).

The detail algorithm of modified IMSR’ algorithm is described below. We apply
spliton S to producen S,_1's and collect them into sét, whereD = {k, k'}. Thesubstar-
tree T is constructed based on Y&t As we stated earlier, each nodewafstar-tree Ts an S,

_1 Substar. The total number of nodesualbstar-tree Tis at mosin. Before we describe
how to construcsubstar-tree Twe will define a function ADE, G') to represent the adja-
cent relation of a pair @& _,'s G andG', whereG andG' belong to seW. k'-split is
performed orG andG' to decompos& andG' into 2(n— 1) S,_,'s, each of which is fault-
free or not. Let function A, G') denote the number of pairs of adjacent fault-Bee
substarx andy, wherex andy are located it andG', respectively. If ADG, G') > 0, then
there exists at least one pair of adjacent fault$egs betweerG andG'. Otherwise, no
fault-freeS, _,'s are adjacent if ADG, G') = 0. For example, if s& = {4, 5}, then substars
**x4], ***51, and ***52 are faulty substars as shown in Fig. 4, and there is no fault-free
adjacent subst&;'s between ****1 and ****2, so AD(****1, ****2) = 0. Equation AD
(****1, ****3) = 1 holds because ***21 and ***23 are the only pair of fault-free adjacent
substars. Similarly, equations AD(****1, ****4) = 2 AD(****1, ****5) = 2, and AD
(****3, ****2) = 2 can be obtained.

Continually,substar-tree Ttan be constructed as follows. First, the root of Trise
a substar selected from Standomly. Using the Breadth-First-Searching method, we can
expand the branches sifibstar-tree Ts follows. Branches of trderepresent the possible
connecting substars. Each nadef substar-tree Tprobes each remaining substdrom
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AD(****I, ****3) =1

Fig. 4. Constructing aubstar-tree T

set?¥. If the condition ADg, V) > 0 exists, then nodgis connected to substarand we
can eliminates from set¥. By repeatedly performing the above probing operations until
set¥ is empty or no further connecting substar can be fauuktar-tree s constructed.
Since there exists at least one branch of each nodaludtar-tree Tsubstar-tree Tis a
connected network. The 1-split oppration is performed on eagts@star obubstar-tree

T to obtain all possibleirtual substars Eachvirtual substatis treated as a processing unit,
and theseirtual substarsstill form a connected network. Therefore, a maximal fault-free
substar-rindgx(n — 3, ") with 3-dilation links can be obtained [4], whére< n(n— 1)(n - 2)

— 1. Recalling the above example, let the rociudfstar-tree e ****1, the branches of
root be ****3, ****4 gnd ****5 and the branch of ****3 be ****2. The substar-tree Ts
shown in Fig. 4. After applying 1-split on all tBgs of substar-tre€l, anRy(2, 17* 3) =
Ry(2, 51) with 3-dilation links is obtained.

Finally, we will analyze the total time coBtsg of the modified IMSR algorithm. In
step 1 of identifying al§,_,, a time cost of Off) is needed if we use a linear-time integer
sort [1]. Wherf =n?—n- 1, the time cost is @f). During construction afubstar-tree T
the AD operation is performed @] times, and each time, @(time is needed. It takes O
(n®) time to construcsubstar-tree T A time cost of Of°) is needed to split(hn— 1) S,_,'s
into n(n — 1)(n — 2) virtual substars Consequently, the total time complexityTafsrcan
be measured by the following equation:

Timsr= O(®) + O@®) + O(°) = O().
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4. PERFORMANCE ANALYSIS

In this section, we will analyze the distributed percentage of the processor utiliza-
tion of the maximal fault-free substar-ring under two cases in which the number of faulty

2 _
processors is assumed. First,igf not larger than — 3, then the PUR is at Iea&%.

Second, we will find the PUR of our reconfiguration scheme even mhén<f<n?—n- 1.

The percentage of the processor utilizatioRgf — 3, h) is analyzed as follows. In
our simulation, the addresses of faulty processors are randomly generated in each of 10000
simulations for fixech andf. To illustrate the fault tolerance capability, we will consider
the worst case of simulating the PUR. &yis partitioned inta(n— 1) S,_, by step 1 of the
IMSR algorithm. Here, we denote the number of fa8lty, by r. The factor of the value
of r presents the degree of occurring faults. The larger the valus, ¢fie more faults there
will be. The factor of the value ofis used to analyze the PUR. If the percentage of the
processor utilization d&(n— 3, h) is larger than 50%, then the slowdown factor of compu-
tation has a better chance of reducing to less than 2. In the dase of3, the PURS at

2 e
Ieast% and is always larger than 50%. All possible maximal fault-free substar-

rings R(n — 3, h) and the percentage distribution of processor utilization in a f&jlty
where 1<r <5 -5-1 (=19) and X h< 57, are shown in Table 1. For instance, when
=5andr =1, 2, and 3, 100% of the casestan be identified aBy(2, 57) with 95%
processor utilization, 100% of the cases can be identifi&f2s54) with 90% processor
utilization, and 100% of the cases can be identifid@i(@s51) with 85% processor utilization,
respectively. When =5 andr = 4, 99.57% of the cases®fcan be identified a2, 48)
with 80% processor utilization, and 0.43% of the cases can be identifidi(td5) with
75% processor utilization. This indicates that the smaller the values othe maximal
fault-free substar-ring with high PUR generally be determined. As shown in Table 1, all
more than 73% cases to exploit the more than 50% processor utilization in arSfaulty
when 1<r < 8. This shows that the percentage of the processor utilization of maximal
fault-free substar-rin@y(n — 3, h) is always greater than 50% whes n(n — 1)/2.

The average PUR is discussed in the following. The average PUR is defined as the
sum of the percentage of the processor utilization of Bgohk- 3, h) * PUR of R(n— 3, h).
For instance, in Table 1, when= 5 andr = 4, 99.57% oR(2, 48) with PUR = 80% and 0.
43% ofRy(2, 45) with PUR = 75% are identified, so the average PUR is 99.57% * 80% + 0.
43% * 75% = 79.9785%. In our simulation, we estimate the average PUR under the case of
5<n<12. The simulation results of the average PUR with different valuarefdepicted
in Fig. 5. The average PUR with a valuer ddirger tham(n — 1)/2 is always larger than
50% as depicted in Fig. 5. The average PUR is inversely proportional to the value.of
the larger the value afis, the lower the average PUR will be. For instance, when the
number of faultyS,_, substars is(n —1)/10, Z(n -1)/10, and 8(n —1)/10, the average
PUR is about 90%, 80%, and 70%, respectively. Consequently, the smaller the number of
faulty S,_, substars is, the high the average PUR is.

In a conclusion, when the number of faulty , is smaller tham(n —1)/2, more than
50% of average PUR are obtained by our simulation results. This indicates that our scheme
can obtain a reasonable average PUR, so our scheme is a truly effective reconfiguration
method.
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Table 1. Percentage distribution of the processor utilization of maximal fault-free
substar-ring Ry(2, h) in an S;, where the number of faulty 3-substars is from 1
to 19 and 3<h < 57.

The number of faulty 3-substars
PR b
1 2 3 4 5 6 1 § 9 10 u 12 138 ¥4 1 1% 17 18 1
% 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 265 5501 8415 1200
0% 6 0 0 0 0 0 0 0 0 0 320 1145 2640 4568 6538 74.96 66.72 4331 1585 0
%% 9 0 0 0 0 24 65 273 724 1505 2379 3335 3703 3285 2455 1503 614 188 0 0
0% 1000 0 0 0 0 0 65 123 263 467 561 518 351 214 64 0 0 O
% 1B 00 0 0 0 0 4 19 435 836 947 87 665 419 1 0 0 0 0
% 18 0 0 0 0 0 3 6 212 569 1029 1162 2020 668 237 0 0 0 0O 0
v 2 00 0 0 0 0 110 331 807 1009 1212 78 2% O 0 O O O O
% 240 0 0 0 0 158 212 526 8191239 961 424 0 0 0 0 0 0 0
& 2710 0 0 0 .40 12 126 ST L2728 7740 0 0 0 0 0 0 O
5% 3 0 0 0 0 0 06 621200126291%% 0 0 0 0 0 0 0 0 0
5% 3 0 0 0 0 0 470 4% 1514 28% 0 0 0 0 0 0 0 0 0 0
60% 3 0 0 0 0 152 87 9O O 0 0O O O O 0O O O 0O O
% 3 0 0 0 0 04 54707 0 0 0 0 0 0 0O 0 0 0 0 0
% 4 0 0 0 020820 0 0 0 0 0 0 0 0 0 0 0 0 0
% 4 0 0 0 &% 0 0 0 0 0 0 0 0 0 0 0 0 0 0
80% 48 0 0 0% 0 0 0 0 0 0 0 0O 0 0 0 0 0 0 O
%% S8 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9% 5 0w o0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
%% 5100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
—
1 ~ I
0.9 =
0.8 =
e 07 =
o 06 - —
g 05 A =
Z 04 - =
03 A =
02 A =
0.1 A 1
04 ngll

L
L = m(n-1)/10 o

Number of faulty §-2)-substurs Dimension of Star Graph

Fig. 5. The average PUR Bf(n-3, h) of §, for 5< n< 12.
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5. CONCLUSIONS

In this paper, we have proposed a reconfiguration scheme to identify the maximal
fault-free substar-ring for tolerating faults in fauligimensional star graphs. The fault-
free substar-ring is connected by a ring of fault-freal substarswith dilation 3. This is
the first result to propose a reconfiguration scheme in the faulty star graph. Our proposed

2
. . | — +
scheme can tolerate— 3 faults so that the processor utilizationts 32> n22—nn 3 and the

diameter is[g(n - 4)D+ éwg This is a near optimal result since the mayi

fault-free substar-ring is constructed by using all of the possible faultifre2)¢substars.

To demonstrate the applicability of our scheme, we have described how to apply a sorting
algorithm to our reconfiguration scheme. Moreover, our reconfiguration scheme can work
when the number of faults exceeds 3. We have also simulated the algorithm to show
that the reconfiguration scheme has high processor utilization.

In order to preserve a low diameter and obtain better processor utilization, identifying
the maximal fault-free substar-rifgy(k — 1, h) has been the main objective of this study.
Determining the maximal fault-free substar-riRgk — 1, h) is controlled by what values of
k andh being are the best selection. It is possible to constigka 1,h), k< n- 2, to
obtain a large diameter and greater processor utilizatido- 1If = 1, our scheme becomes
a simple problem of ring embedding on a faulty star graph [25]. However, in this paper, we
have only focused on identifying the maximal fault-free substarRifrg- 3, h) to keep a
smaller diameter and obtain reasonable processor utilization.
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