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With dilation 2, congestion 2, expansion 3/2, and load 1, this short paper first
presents a parallel method for embedding a pyramid with hajghtfor n > 2, into
a (- 1) — dimensional hypercubéi,,_;, in O(n) time. With dilation 2, congestion

2-t+ 3 (or 21 + 2), and load®*"™ / 3Jwhen 0< k= 2 (ork= 2t — 1)< 2n- 2, our

proposed parallel method is further extended to Raipto Hy with load balancing in
O(k) time.
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1. INTRODUCTION

The pyramid [1] is a well-known parallel network in the field of image processing and
pattern recognition [2, 3]. The hypercube is one of the most versatile and popular networks
because it can efficiently simulate many different networks [4, 5]. Previously, some one-to-
one embedding methods [3, 5, 6] have been presented to map pyramids into hypercubes
where one hypercube node emulates at most one pyramid node. With dilation 2, expansion
3/2, and load 1, Stout [3] presented an embedding method to map pyramids into hypercubes.
Because the paths, which are used to emulate the pyramid edges, in the hypercubes are not
specified, Lai and White [6] claimed that the congestion in Stout's methods [3] is uncertain.
Although Stout [3] did not consider congestion, Monien and Sudborough [5] claimed that
the congestion in Stout’s method is 2. With dilation 2, congestion 2, expansion 3/2, and load
1, Monien and Sudborough [5] presented a recursive embedding method to map pyramids
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into hypercubes. With dilation 3 (2), congestion 2 (3), expansion 3/2, and load 1, Lai and
White [6] presented one (the other) recursive embedding method to map pyramids into
hypercubes.

With dilation 2, congestion 2, expansion 3/2, and load 1, this short paper first presents
a parallel method for embedding a pyramid with heighR, forn> 2, into a (& - 1) -
dimensional hypercubél,,_4, in O) time. Not only is the proposed parallel method quite
different from those in [6], but it also has smaller dilation and congestion when compared to
the first method and the second method presented in [6], respectively. The difference
between the proposed embedding method and the two methods in [6] will be discussed in
section 3. In practice, we may find that the size of the hypercube is smaller than that of the
pyramid. Thus, it is necessary to develop an efficient method to map large pyramids into

smaller hypercubes. With dilation 2, congestibri23 (or 2-t*1+ 2), and Ioaq}Z”‘k 13[]

when 0£k=2t (ork=2t— 1)< 2n- 2, our proposed parallel method is further extended to map
P, intoH, in O(K) time. Because all the nodesdFnare evenly embedded intbribdes irH,,

each node i, has the same load. This is why the proposed embedding method has the
load-balancing capability. To the best of our knowledge, this is the first time such a parallel
embedding method with load balancing has been proposed in the literature.

The remainder of this short paper is organized as follows. The next section describes
some basic definitions and terminologies. Section 3 presents the first parallel method for
embeddingP, intoH,,_;. Section 4 presents a parallel method for mapBirigto H,, 0<
k < 2n -2, with load balancing. Finally, some conclusions are dawn in section 5.

2. DEFINITIONS AND TERMINOLOGIES

We introduce here the pyramid that is being embedded and the hypercube that we are
embedding into. We defirf as theh-level pyramid with vertex sat(PR,) = U3{(l,y, x): 0

<y,x<2-1)}and edge seE(R,) = U ((1, Y5, %), (1, Vo, X,)): s — Yol + ke — %ol = 1 and(

ya X2, (1, o %) OV(R) F DU (0 -1 %Q%D,(LY- X)): 0<y,x< 2 —1}. Fig. 1 shows

aPs. For the purpose of exposition, we call the top node in the pyramid or any one subpyramid
the apex node. For example, node (0, 0, 0) in Fig. 1 is the apex node of ggasrd, has
2 nodes an#2“-* edges, where two nodes are linked with an edge if and only if their binary
strings differ by exactly one bit. Two terms, binary string and binary number, are inter-
changeably used in this short paper. Fig. 2 showd;an

A functionf for embedding a grapB(V, E) into a graptG'(V', E) is a mapping of/
(G) into V'(G"), combined with a mapping ef= (u, V) € E(G) into a simple path d&'(V',
E") so thatf(e) = (f(u), f(v)) is a simple path o&'(V', E) with end pointd(u) andf(v).
Commonly, dilation, expansion, congestion, and load are used to evaluate the efficiency of
embedding methods. The maximum distance we must stretch any edge to achieve embed-
ding is called the dilation. The expansion denotes the ratio of the number of nodes in the
target network to that in the source network, V Eg)fl. The congestion is the maximum
number of edges of the source network that are embedded and share any single edge of the
target network. The load is the maximum number of nodes of the source network that are
embedded in any single node of the target network.
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(0,0,0) apex

Level 0

Level 1
100 101
%) 00 00
Level 2 110 111
010 011
200201202 (203)
Fig. 1. A pyramid with three level®,. Fig. 2. A three-dimensional hyperculbé,

3. EMBEDDING P, INTO H, _,

In this section, we will present an embedding function to Ryapto H,,_; with
dilation 2, expansion 3/2, congestion 2, and load 1. The initial concept behind our embed-
ding method is tha®, is first mapped intdi;, then one augmented apex node and Ra'sr
are mapped intbls; continuing this way, after mappiy into H,,_,, one augmented apex
node and fouP,’s are further mapped intbl, . 1.

Using the binary-reflected Gray codes and the above recursive construction approach,
the embedding functiofy used to ma, into H,,_, is defined as

_OG'(y)Gh(x1"'2,G' (x)0""), 0<l<n-1
60900 = B3 e o0de 0y, 1ot

where (, y, X) is the address of one nodeFnand the binary-reflected Gray co@&b) =g,
_10n_2- - - Qo Of ann-bit binary stringp=b,_,b,_,- - - by is defined ag, = b; ® b, 4, 0<i
<n-2, andg,_; = b,_1. Here, the symbab is defined as a bitwise exclusive-or (XOR)
operator. The lengths @'(x) andG}(x) arel and 1, respectively, whei®}(x) denotes
the least significant bit d&'(x). Note thatG%x) and 2are empty strings, and thgf (x).

The symbols 1-'-2 and 0-' denote the string% andw, respectively

n-|
(G'(y)G)(x)1"'"2,G' (x)0" ™) of f, denotes a (2— 1)-bit string combined by 5 binary strings
with lengthl, 1,n -1 - 2,1, andn—I. Usingf;, embeddind®; into Hsis shown in Fig. 3,
where the lines itls denote paths emulating the edgeBsin The apex node (0, 0, 0),
for example, is embedded into the node 01000 (=(01, 00®}).in

I N
i ]
10[3,1,0(2,3,0 2,3,1§2,3,2 2,3,3
i o 1l I I
Ul 1T 1T || ——
11 2,2,0 2,2,1¥2,2,2 2,2,3f1,1,1
! | g )
| 1 T¢ ﬁ%L
01[0,0,0(2,1,0 2,1,1¥2,1,2 2,1,3Y1,0,1
Il M Il 1l =t
L] =T Ui L] 1l
oo(fo,éjfz_,o,e 2,0,1¥2,0,2 2,0,3
T {u )

000 001 011 010 110 111 101 100
Fig. 3. Embeddingdp; into Hs.
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In the following three lemmas, we will show that embedéinipto H,,_; can be done
with load 1, dilation 2, and congestion 2.

Lemma 1. Using the embedding functidn embeddind?, into H,,_; has load 1.

Proof: Suppose any two distinct nodés ¥i, ;) and (,, Y2, X)) in P, are embedded into the
same node iil,,_;. There are three cases to be considered. For the firdt edseby f;,
we have either(G" (y,)GE (x,)I "™ 7%, G" (x,)0" )= (G2 (y,)GZ (x,)I "27%,G"2(x,)0"2),

Or (G (%), G (x)Gy (%)) =(G"(¥2), G"(%,)Gy (%)) - Becausel(, y1, x,) and (;,

Y2, %) are distinct, we know thag" (y,) # G'2(y,) or G"(x,) # G?(x,). Thus, the two

nodes (i, y1, X1) and (5, Y2, X,) are not embedded into the same nodes, and this is a
contradiction. For the second cadgel, and I, n - 1, byf;, we have the following two
equationsiG" (y,)Gg ()1 = G (,)G¢ (x,)1" 2 and G (x,)0™" =G (x,)0" 2.

It follows thatG" (y;)Gg (x,)1°™ = G (,)G¢ (x,) andG" (x,)0™* = G?(x,). Sincel;

—1,> 0, we haveG2 (x,) =1 andG{? (x,) = 0, and this is a contradiction. For the third case

l;<1,andl,= n— 1, two nodesl(, y1, X;) and (5, ¥», X,) are embedded into two nodes in
subcubes0, 13*"200 and{0, 1}2”‘3Gg‘1(x)Gg‘1(x), respectively. This is a contradiction.
As a result, embedding, into H,,_; by usingf; has load 1. O

Lemma 2. Using the embedding functidn embeddind?, into H,,_, has dilation 2.

Proof: Let the functiordist(p, q) denote the Hamming distance between two binary strings
p andg. We will first consider the edge linking of any nodle @L,y, X to its parent node

Q' %é EE@ 0<l<n-1. By the definition of Gray codéE:I %% is the same as the

leftmostl bits of G'* (y), e.g.,G%(5) = 111 and3%(10) = 1111. There are two cases to be
considered: @ I <n-2 andl =n-2. The dilations for the two casess0<n-2 and|

=n- 2, are given bylist(f,(I + 1,y, ¥, f.(, %5 %D) = anddiSt(G(lJﬂ(Y)aGc')([%D)*'
dist(Gy™(x), )+ dist(Gy™(x), 0)<2 and disi(fi(n-1y, x), fi(n-2 %% 50

dist(GQ'l(Y),GS_Z(ﬁg) + dist(GI ()G (x), 02 <2. We further consider the edges

linking any nodel(y, X to its adjacent nodek ¢, x+ 1) and [ y + 1,x), 0<x, y< 2 — 1.
Whenl =n-1, itis easy to check thdist(f;(n— 1,y, X, f(h—1,y, x+ 1))< 2 anddisf(f;
(n=1,y,%,fi(n—1,y + 1, X)) = 1. The dilations for the case<d < n— 1 are given bylist
(fl(l! y! X)v fl(|1 y! X+1))
= dist(Gy(x), Gi(x+D)+ dist(G'(x), G'(x+1)<2 a n d dist(f(l,y, x),
f.(1, y,+1, X)) =dist(G'(y),G'(y+1)) =1. We complete the proof. O

Before presenting the following lemma, we will first define the full-free node in a
hypercube. A node in a hypercube is called a full-free node if no pyramid node is embed-
ded into that node and each edge incident to the full-free node is not a part of the path
emulating any pyramid edge.
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Lemma 3.Using the embedding functidp embeddingdp, into H,,_; has congestion 2; there
exists a full-free node adjacent to the node emulating the aBgalong the most significant
dimension.

Proof: The congestion 2 is shown by induction on the heigRt.ofForn = 3, the lemma is
true as shown in Fig. 3. There exists a full-free node (11, 004) adjacent to node (01,
000) emulating the apex P, along the most significant dimension. For samassume
that the above lemma is true.

Changingnton + 1, byf;, the four subpyrami@ 's with apexes (1, 0, 0), (1, 0, 1), (1, 1,
0), and (1, 1, 1) are embedded into four subcubes (0{¢?, )0, 1}"-Y), (0{0, 1}"-2, 1{0, 1}
n-1 ({0, 1}"-2, 0{0, 1}"- 1), and (1{0, 1}-2 1{0, 1}"- 1), respectively. According to the
hypothesis, embedding ea¢hinto a (2 — 1)-dimensional subcube has congestion 2.
Consider the edges linking the node-phiy,(2 -*— 1) and [, y, 2-1), and linking the node-
pair (,2-*-1,x)and (, 2-% x), 2<1<n- 1. Two nodes in one node--pair belong to the
different P, each other. Becausist(f,(l, y, 2" -12), f,(I,y, 2'™") = dist(G}(2'™" -1),
Gy(2'™M) + dist(G'(x), G'(x +1)) = 0+1=1, the communication paths emulating the edges
do not increase the congestion. Therefore, we will only concentrate on edges linking the
apex to its four children and linking any two adjacent nodes at leve? 1. in

By f,, the five nodes (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1R1).iare embedded
into (01"-1, 0"+ 1), (001-2, 0'+Y), (011-2 10, (101-2, 0'+Y), and (1112, 10", respectively.
Following the hypothesis, there exist four full-free nodes@L.0'+1), (001'-2,10Y, (1112,
0"*1), and (1012, 10') when fourP,'s in P, , are embedded into fourr(2 1)-dimensional
subcubes if,, . 1. After embedding, ., intoH,,. ,, the node (01t 2 0" %) emulates the apex
in P, 1. The communication pattern for these five hypercube nodes emulating the corre-
sponding five pyramid nodes is shown in Fig. 4, where the lines denote the paths emulating
the edges linking two adjacent nodes at level 1 and linking the apex and its children.
Obviously, the congestion is also 2 for these eight communication paths.

Ho12,0mH) ull-freg
(1{0,1}"*~1,0{0,1}™ (40,131,140, 1}™)
full-free (1ﬂ+1 10"
apex l
17t gt lo1™1,10M)
(000,137, 040,13 | |} (${0,1371,1(0,1}™)
n—2
fjo1 ’0n+ ) full-free

Fig. 4. Communication pattern for the five hypercube nodes emulating the pyramid nodes at the top two
levels.

In addition, the full-free node (1112, 0"*?) is adjacent to the node (0t 0'*+?)
emulating the apex iR, . ; along the most significant dimension. We complete the proof.
O
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It is easy to verify that the expansion #&2/((4"— 1)/3)= 3/2. In addition, Qf) time
is sufficient to translate ambit binary stringb for 0< b < 2"— 1 (binary-reflected Gray
codeG"(b")) to the corresponding binary-reflected Gray c@lé) (n-bit binary string
bib!_,---bb) =b’ for b’ {0, I and 1<i <n) [7]. By Lemmas 1, 2, and 3, we have the
following result.

Theorem 4.With dilation 2, congestion 2, load 1, and expansionR/2an be embedded
into H,,_ 1 in O(n) time.

The advantage of the mapping functfpis that it can be easily computed due to its
closed form representation. From the description of the proposed embedding method, it is
important that any node with addressy(lx) in P, can be mapped into the corresponding
node inH,,_;. Thatis, our embedding method can be performed in a parallel manner. In
contrast, the two embedding methods in [6] used to Ppapto H,,_, are carried out in a
recursive manner. In their first embedding method using the bottom-up approach, Lai and
White first mapP, into Hs; then they map one apex and fé&yls into Hs, and so on. In
general, after mappinginto Hy,_,, they further map one apex and f&yis into Hy, ;.

The second embedding method presented in [6] uses the recursive top-down approach and
is somewhat complicated, so we omit a description due to space limitations. The interested
readers are referred to [6].

To summarize, a performance comparison among the previous results [3, 5, 6] and

ours for embeddin®, into H,,_; is shown in Table 1.

Table 1. Performance comparison among the five methods for embeddiRginto H, _ ;.

method dilation expansion congestion
[6] 3 3/2 2
[6] 2 3/2 3
[5] 2 3/2 2
[3] 2 3/2 2
this paper 2 3/2 2

4. EMBEDDING P INTO H FORO<k<n-1

This section presents an embedding function used tdPpiap H,, 0< k< 2n-1,
with load balancing. Ikis odd (even), then we Ikt= 2t — 1 (k = 2t), wheret is a positive
integer. Extendindy, we will first present an embedding function used to Rapto Hy,
0<k=2-1< -1, with load balancing. The embedding function for the kas& will
be discussed later. For clarity, suppBses partitioned into two parts: the top subpyrafpid
with t levels and “Yattached subpyramidg_,’s, each witm —tlevels. By Theorem 4, the top
subpyramidp, can be embedded intd)Zt_, 1~ The two attached subpyramifs,’s can be
thought of as a supernode such that tiResés form a 2-'x 2 mesh which can be embedded
into Hy_ ; with dilation 1 [8, 9]. Based on the above description, the new embedding function
f, used to map, intoH,, 0<k=2t—1<2n-2, is defined as
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E(G'(y)Gg(x)l“"Z,G'(x)ot-'), 0<l<t-1

f(l,y, ) = E(Gt_l(y),Gt‘l(x)m), l=t-1

ge‘ Ngrerd G ()

Usingf, with n = 3,k = 3, andt = 2, embeddingp; into H; is shown in Fig. 5. The
lines inH; denote with paths emulating some edgeBsinwith each edge linking two
pyramid nodes which are embedded into two different noddg iThe apex node (0, 0, 0)
and two base nodes (2, 0, 0) and (2, 1, Bsjrfor example, are embedded into the node
000 (=(0, 00)) irHs. The edge linking node 000 and 00Hi denoted by <000, 001>, is
shared by 6 paths emulating the 6 edges <(2, 0, 0), (2, 0, 1)>, <(2, 1, 0), (2, 1, 1)>, <(1, O,
0), (2, 1, 0)>, <(1, 0, 0), (2, 0, 0)>, <(0, O, 0), (1, 0, 0)>, and <(0, 0, 0), (1, 1, @> in

t<l<sn-1

1,1,0} £1,1,1)
1 (2,3,0? 2,3,1) (2,3,2 Z;2,3,3)
(27?70} / (27?71) (2’%72 —'(27%13)
elo——elnl T —elag T o ls
0 (2,0,0%§2,o,1) (2,02 §2,0,3)
(070v0) — 17070}; j17071)
H— :
00 01 11 10

Fig. 5. Embeddingdp; into Hs.

Based orf,, we have the following theorem.

Theorem 5.With dilation 2, congestion"2'** + 2, and load2*"™ / 3[] P, can be embedded
intoH,, 0<k=2-1<2n-2.

Proof: There are three same cases to be considered: embqidltrgHa 1 embeddlng‘4
attachedP, _,’s into H,_,, and communicating between the bottom nodes @nd the
apexes of these .'S. Inthe first case, by Theoremlz} can be embedded mt@t ;1 with

dilation 2, congestlon 2, load 1, and expansion 3/2. In the second case, two attached
subpyramidsﬁn_t 's are thought of as a supernode such that tRegs form a 2-* x 2' mesh

which can be embedded irttl, _ ; with dilation 1 [8, 9]. It is easy to verify that this case has
dilation 1, congestion™2**— 2, and load {2 4" t-2)/ 3[] For the third case, By it is easy

to see that all the nodes at the bottom Ieve,:g @fre embedded into the nodes with labeling

{0, 1}2-301 or {0, 1}2-310. As mentioned in the second casé; &22' mesh is embedded

into H,_;. Hence, any bottom node fl{l and its two children are embedded into the same
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hypercube node, sdoy,_,by_3- - - b,01 (orby_sby_5- - - b,10), and the other two children are

embedded into its adjacent ndse Jby_3- - - b,00 (orby sby 3- - - b11),be {0, 1} for 2 <i

< 2t— 2 (see Fig. 3). Thus, it has dilation 1 and congestion 2. As a Rgsalt be embedded

into Hy with dilation 2 (= max{2, 1, 1}), congestiofi2*1+2 (=2 + 2-"*1-2 + 2), and load

2"/ 3[(=(2 - 4+ 1)/3= (2 - #'-2)/3+1). O
Consider the other cader 2t. The new embedding functidncan be obtained by

extendingf, slightly, and it is given by

OG' (y)Gh(x)17'720,G' (x)0'™"), O0<l<t-1
f,(1, y, X) = %GH(V)O, G (XG5 (X)), l=t-1

th(%E*G‘@%@). t<l<n-1

The three cases to be considered are the same as those in Theorem 5. In the first case, by
Theorem 4,FA{ is embedded into one half B, ({0, 1}"-10, {0, 1}"). In the second case,

each attached subpyranf, can be thought of as a supernode such that tgseform

a 2 x 2 mesh which can be embedded iHtpwith dilation 1, congestion"2!— 1, and load

[#"" -1)/3[} In the third case, each bottom nodePosay (t -1, %Q%D communi-
cates with its four children, apexesRf,’s, say {, y, ¥, t, y, x+ 1), ¢, y+ 1,x),and {, y + 1,

. . -1, t-1 t-1
x + 1). These five nodes P}, are embedded int(> (@EO,G (EEDG (EED), and
(G'(y),G'(X)), (G'(y),G'(x+1), (G'(y+1),G'(x)), and(G'(y+1),G'(x+1)). The node

(G'_l(%aQGH(EEDGH(ﬁg) and one of the other four mapped nodes are the same.

These four mapped hypercube nodes can be thought as of a ring with length 4. For instance,
the five nodes (2, 1, 0), (3, 2, 0), (3, 2, 1), (3, 3, 0), and (3, 3PL)re mapped into the five

nodes (010, 001), (011, 000), (011, 001), (010, 000), and (010, GBQL)éspectively. Itis easy

to see that both nodes (2, 1, 0) and (3, 3, B} are mapped into the same node (010, 001) in

He. Therefore, this case has dilation 2 and congestiGorsequently, the embedding has
dilation 2 (= max{2, 1, 2}), congestiol2+ 3 (=2 + 2% -1 4 2), and Ioao[}z"‘k /3]

(=(4""+2)/3=(4""-1)/3+1). We have the following corollary.

Corollary 6. With dilation 2, congestion"2! + 3, and load2*"™ / 3[] P, can be embed-
ded intoH,, 0<k=22<2n- 2.

Based orf, andfs, this embedding can be accomplished in a parallel manner. Because
O(K) time is sufficient to translatekabit binary stringb for 0< b < 2<— 1(binary-reflected
Gray codeGX(b") into the corresponding binary-reflected Gray c@ib) (k-bit binary
string byby_;---byb) = b’ for b’ {0, $ and 1<i <k) [7], we have the following result.

Corollary 7. Embedding?, into H, can be accomplished using the above parallel algorithm
in O(K) time.
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5. DISCUSSION AND REMARKS

Our major contribution in this short paper has been to present a parallel embedding
algorithm which can be used to map large pyramids into smaller hypercubes with load
balancing. With dilation 2, congestioh2+ 3 (or 2-'*1+ 2), and Ioaq}Z”‘k / 3[Jwhenk
=2t (ork = 2 — 1), our method can embé{into H, in O() time.
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