
EMBEDDING PYRAMIDS INTO SMALLER HYPERCUBES 117

Received March 19, 1998; revised March 4, 1999; accepted April 1, 1999.
Communicated by Jang-Ping Sheu.
* This research was supported by the National Science Council of R.O.C. under contract NSC87-2213-E011-001.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 16, 117-126 (2000)

117

Short Paper

A Parallel Approach for Embedding Large Pyramids
Into Smaller Hypercubes With Load Balancing*

YU-WEI CHEN AND KUO-LIANG CHUNG+

Department of Information Science
Tamsui Oxford University College

Tamsui, Taipei County, Taiwan 251, R.O.C.
E-mail: ywchen@jupiter.touc.edu.tw

+Department of Information Management and Institute of Information Engineering
National Taiwan University of Science and Technology

Taipei, Taiwan 106, R.O.C.
E-mail: klchung@cs.ntust.edu.tw

With dilation 2, congestion 2, expansion 3/2, and load 1, this short paper first
presents a parallel method for embedding a pyramid with height n, Pn for n ≥ 2, into
a (2n - 1) - dimensional hypercube, H2n - 1, in O(n) time. With dilation 2, congestion

2n

-

t + 3 (or 2n-t+1 + 2), and load 2 32n k− / when 0 £ k = 2t (or k = 2t - 1) £ 2n - 2, our

proposed parallel method is further extended to map Pn into Hk with load balancing in
O(k) time.

Keywords: congestion, dilation, parallel algorithm, hypercube, load balancing, nCUBE 2S,
pyramid

1. INTRODUCTION

The pyramid [1] is a well-known parallel network in the field of image processing and
pattern recognition [2, 3]. The hypercube is one of the most versatile and popular networks
because it can efficiently simulate many different networks [4, 5]. Previously, some one-to-
one embedding methods [3, 5, 6] have been presented to map pyramids into hypercubes
where one hypercube node emulates at most one pyramid node. With dilation 2, expansion
3/2, and load 1, Stout [3] presented an embedding method to map pyramids into hypercubes.
Because the paths, which are used to emulate the pyramid edges, in the hypercubes are not
specified, Lai and White [6] claimed that the congestion in Stout's methods [3] is uncertain.
Although Stout [3] did not consider congestion, Monien and Sudborough [5] claimed that
the congestion in Stout’s method is 2. With dilation 2, congestion 2, expansion 3/2, and load
1, Monien and Sudborough [5] presented a recursive embedding method to map pyramids

admin
打字機文字
DOI:10.1688/JISE.2000.16.1.7

YU-WEI CHEN AND KUO-LIANG CHUNG118

into hypercubes. With dilation 3 (2), congestion 2 (3), expansion 3/2, and load 1, Lai and
White [6] presented one (the other) recursive embedding method to map pyramids into
hypercubes.

With dilation 2, congestion 2, expansion 3/2, and load 1, this short paper first presents
a parallel method for embedding a pyramid with height n, Pn for n ≥ 2, into a (2n - 1) -
dimensional hypercube, H2n - 1, in O(n) time. Not only is the proposed parallel method quite
different from those in [6], but it also has smaller dilation and congestion when compared to
the first method and the second method presented in [6], respectively. The difference
between the proposed embedding method and the two methods in [6] will be discussed in
section 3. In practice, we may find that the size of the hypercube is smaller than that of the
pyramid. Thus, it is necessary to develop an efficient method to map large pyramids into

smaller hypercubes. With dilation 2, congestion 2n - t + 3 (or 2n - t + 1 + 2), and load 2 32n k− /

when 0 £ k = 2t (or k = 2t - 1) £ 2n - 2, our proposed parallel method is further extended to map
Pn into Hk in O(k) time. Because all the nodes in Pn are evenly embedded into 2k nodes in Hk,
each node in Hk has the same load. This is why the proposed embedding method has the
load-balancing capability. To the best of our knowledge, this is the first time such a parallel
embedding method with load balancing has been proposed in the literature.

The remainder of this short paper is organized as follows. The next section describes
some basic definitions and terminologies. Section 3 presents the first parallel method for
embedding Pn into H2n - 1. Section 4 presents a parallel method for mapping Pn into Hk, 0 £
k £ 2n - 2, with load balancing. Finally, some conclusions are dawn in section 5.

2. DEFINITIONS AND TERMINOLOGIES

We introduce here the pyramid that is being embedded and the hypercube that we are
embedding into. We define Ph as the h-level pyramid with vertex set V P l y xh l

h() {(, ,):= =
−U 0

1 0
£ y, x £ 2l - 1)} and edge set E P l y x l y xh l

h() {((, ,), (, ,)):= =
−U 1

1
1 1 2 2 |y1 - y2| + |x1 - x2| = 1 and (l,

y1, x1), (l, y2, x2) ∈ = ∪ − 



  =

−V P l
y x l y xh l

h() } {((, ,), (, ,)):U 1
1 1

2 2 0 £ y, x £ 2l - 1}. Fig. 1 shows

a P3. For the purpose of exposition, we call the top node in the pyramid or any one subpyramid
the apex node. For example, node (0, 0, 0) in Fig. 1 is the apex node of pyramid P3. An Hk has
2k nodes and k2k - 1 edges, where two nodes are linked with an edge if and only if their binary
strings differ by exactly one bit. Two terms, binary string and binary number, are inter-
changeably used in this short paper. Fig. 2 shows an H3.

A function f for embedding a graph G(V, E) into a graph G'(V', E') is a mapping of V
(G) into V'(G'), combined with a mapping of e = (u, v) Œ E(G) into a simple path of G'(V',
E') so that f(e) = (f(u), f(v)) is a simple path of G'(V', E') with end points f(u) and f(v).
Commonly, dilation, expansion, congestion, and load are used to evaluate the efficiency of
embedding methods. The maximum distance we must stretch any edge to achieve embed-
ding is called the dilation. The expansion denotes the ratio of the number of nodes in the

target network to that in the source network, i.e.,
| ()|
| ()|

′ ′V G
V G . The congestion is the maximum

number of edges of the source network that are embedded and share any single edge of the
target network. The load is the maximum number of nodes of the source network that are
embedded in any single node of the target network.

EMBEDDING PYRAMIDS INTO SMALLER HYPERCUBES 119

3. EMBEDDING Pn INTO H2n ----- 1

In this section, we will present an embedding function to map Pn into H2n - 1 with
dilation 2, expansion 3/2, congestion 2, and load 1. The initial concept behind our embed-
ding method is that P2 is first mapped into H3, then one augmented apex node and four P2’s
are mapped into H5; continuing this way, after mapping Pk into H2k - 1, one augmented apex
node and four Pk’s are further mapped into H2k + 1.

Using the binary-reflected Gray codes and the above recursive construction approach,
the embedding function f1 used to map Pn into H2n - 1 is defined as

f l y x
G y G x G x l n
G y G x G x l n

l l n l l n

n n n1
0

2 1

1 1
0

1
1 0 0 1

1
(, ,)

(() () , ()),
((), () ()), ,

= ≤ < −
= −





− − −

− − −

where (l, y, x) is the address of one node in Pn and the binary-reflected Gray code Gn(b) = gn

- 1 gn - 2 ◊ ◊ ◊ g0 of an n-bit binary string b = bn - 1 bn - 2 ◊ ◊ ◊ b0 is defined as gi = bi ≈ bi + 1, 0 £ i
£ n - 2, and gn - 1 = bn - 1. Here, the symbol ≈ is defined as a bitwise exclusive-or (XOR)
operator. The lengths of Gl(x) and G xl

0 () are l and 1, respectively, where G xl
0 () denotes

the least significant bit of Gl(x). Note that G0(x) and 10 are empty strings, and that G x0
0 ().

The symbols 1n - l - 2 and 0n - l denote the strings 11 11
2

L123
n l− −

 and 00 00L123
n l−

, respectively.

(() () , ())G y G x G xl l n l l n
0

2 11 0− − − of f1 denotes a (2n - 1)-bit string combined by 5 binary strings
with length l, 1, n - l - 2, l, and n - l. Using f1, embedding P3 into H5 is shown in Fig. 3,
where the lines in H5 denote paths emulating the edges in P3. The apex node (0, 0, 0) in P3,
for example, is embedded into the node 01000 (=(01, 000)) in H5.

Fig. 1. A pyramid with three levels, P3. Fig. 2. A three-dimensional hypercube, H3.

Fig. 3. Embedding P3 into H5.

YU-WEI CHEN AND KUO-LIANG CHUNG120

In the following three lemmas, we will show that embedding Pn into H2n - 1 can be done
with load 1, dilation 2, and congestion 2.

Lemma 1. Using the embedding function f1, embedding Pn into H2n - 1 has load 1.

Proof: Suppose any two distinct nodes (l1, y1, x1) and (l2, y2, x2) in Pn are embedded into the
same node in H2n - 1. There are three cases to be considered. For the first case l1 = l2, by f1,
we have either (() () , ())G y G x l G xl l n l l n l1 1 1 1 1

1 0 1
2

1 0− − − = (() () , ())G y G x l G xl l n l l n l2 2 2 2 2
2 0 2

2
2 0− − − ,

or ((), () ())G y G x G xn n n− − −1
1

1
1 0

1
1

=((), () ())G y G x G xn n n− − −1
2

1
2 0

1
2

. Because (l1, y1, x1) and (l2,

y2, x2) are distinct, we know that G y G yl l1 2
1 2() ()≠ or G x G xl l1 2

1 2() ()≠ . Thus, the two

nodes (l1, y1, x1) and (l2, y2, x2) are not embedded into the same nodes, and this is a
contradiction. For the second case l1 < l2 and l2 π n - 1, by f1, we have the following two
equations: G y G x G y G xl l n l l l n1 1 1 2 2 2

1 0 1
2

2 0 2
1 21 1() () () ()− − − −= and G x G xl n l l n l1 1 2 2

1 20 0() ()− −= .
It follows that G y G x G y G xl l l l l l1 1 2 1 2 2

1 0 1 2 0 21() () () ()− = and G x G xl l l l1 2 1 2
1 20() ()− = . Since l1

- l2 > 0, we have G xl
0 2
2 1() = and G xl

0 2
2 0() = , and this is a contradiction. For the third case

l1 < l2 and l2 = n - 1, two nodes (l1, y1, x1) and (l2, y2, x2) are embedded into two nodes in

subcubes { , }0 1 002 3 n− and { , } () ()0 1 2 3
0

1
0

1 n n nG x G x− − − , respectively. This is a contradiction.

As a result, embedding Pn into H2n - 1 by using f1 has load 1. ¨

Lemma 2. Using the embedding function f1, embedding Pn into H2n - 1 has dilation 2.

Proof: Let the function dist(p, q) denote the Hamming distance between two binary strings
p and q. We will first consider the edge linking of any node (l + 1, y, x) to its parent node

l
y x, ,
2 2





  



 , 0 £ l < n - 1. By the definition of Gray code, G

yl

2










 is the same as the

leftmost l bits of Gl + 1(y), e.g., G3(5) = 111 and G4(10) = 1111. There are two cases to be
considered: 0 £ l < n - 2 and l = n - 2. The dilations for the two cases, 0 £ l < n - 2 and l

= n - 2, are given by dist(f1(l + 1, y, x), f l
y x

1 2 2
(, ,)) 



   = and dist G y G xl l((), ())0

1
0 2

+   +

dist G xl((),)0
1 1+ + dist G xl((),)0

1 0 2+ ≤ a n d dist f n y x((, ,),1 1− f n
y x(, ,))1 2
2 2

− 



  

dist G y G xn n((), ())0
1

0
2

2
− −   + dist G x G xn n(() (),0

1
0

1 20 2− − ≤ . We further consider the edges

linking any node (l, y, x) to its adjacent nodes (l, y, x + 1) and (l, y + 1, x), 0 £ x, y £ 2l - 1.
When l = n - 1, it is easy to check that dist(f1(n - 1, y, x), f1(n - 1, y, x + 1)) £ 2 and dist(f1

(n - 1, y, x), f1(n - 1, y + 1, x)) = 1. The dilations for the case 0 £ l < n - 1 are given by dist
(f 1 (l , y , x) , f 1 (l , y , x + 1))
= dist G xl((),0 G xl

0 1())+ + dist G xl((), G xl ())+ ≤1 2 a n d dist f l y x((, ,),1
f l y x1(, ,+1,)) = dist G y G yl l((), ())+ =1 1. We complete the proof. ¨

Before presenting the following lemma, we will first define the full-free node in a
hypercube. A node in a hypercube is called a full-free node if no pyramid node is embed-
ded into that node and each edge incident to the full-free node is not a part of the path
emulating any pyramid edge.

EMBEDDING PYRAMIDS INTO SMALLER HYPERCUBES 121

Lemma 3. Using the embedding function f1, embedding Pn into H2n - 1 has congestion 2; there
exists a full-free node adjacent to the node emulating the apex in Pn along the most significant
dimension.

Proof: The congestion 2 is shown by induction on the height of Pn. For n = 3, the lemma is
true as shown in Fig. 3. There exists a full-free node (11, 000) in H5 adjacent to node (01,
000) emulating the apex in P3 along the most significant dimension. For some n, assume
that the above lemma is true.

Changing n to n + 1, by f1, the four subpyramid Pn ’s with apexes (1, 0, 0), (1, 0, 1), (1, 1,
0), and (1, 1, 1) are embedded into four subcubes (0{0, 1}n - 2, 0{0, 1}n - 1), (0{0, 1}n - 2, 1{0, 1}
n - 1), (1{0, 1}n - 2, 0{0, 1}n - 1), and (1{0, 1}n - 2, 1{0, 1}n - 1), respectively. According to the
hypothesis, embedding each Pn into a (2n - 1)-dimensional subcube has congestion 2.
Consider the edges linking the node-pair (l, y, 2l - 1 - 1) and (l, y, 2l - 1), and linking the node-
pair (l, 2l - 1 - 1, x) and (l, 2l - 1, x), 2 £ l £ n - 1. Two nodes in one node--pair belong to the
different Pn each other. Because dist f l y l((, ,),1

12 1 − − f l y l
1

12(, ,) − = dist Gl l((),0
12 1− −

Gl l
0

12())− + dist G xl((), G xl ())+ =1 0+1=1, the communication paths emulating the edges
do not increase the congestion. Therefore, we will only concentrate on edges linking the
apex to its four children and linking any two adjacent nodes at level 1 in Pn + 1.

By f1, the five nodes (0, 0, 0), (1, 0, 0), (1, 0, 1), (1, 1, 0), and (1, 1, 1) in Pn + 1 are embedded
into (01n - 1, 0n + 1), (001n - 2, 0n + 1), (011n - 2, 10n), (101n - 2, 0n + 1), and (111n - 2, 10n), respectively.
Following the hypothesis, there exist four full-free nodes (011n - 2, 0n + 1), (001n - 2,10n), (111n - 2,
0n + 1), and (101n - 2, 10n) when four Pn ’s in Pn + 1 are embedded into four (2n - 1)-dimensional
subcubes in H2n + 1. After embedding Pn + 1 into H2n + 1, the node (011n - 2, 0n + 1) emulates the apex
in Pn + 1. The communication pattern for these five hypercube nodes emulating the corre-
sponding five pyramid nodes is shown in Fig. 4, where the lines denote the paths emulating
the edges linking two adjacent nodes at level 1 and linking the apex and its children.
Obviously, the congestion is also 2 for these eight communication paths.

 Fig. 4. Communication pattern for the five hypercube nodes emulating the pyramid nodes at the top two
 levels.

In addition, the full-free node (111n - 2, 0n + 1) is adjacent to the node (011n - 2, 0n + 1)
emulating the apex in Pn + 1 along the most significant dimension. We complete the proof.

 ̈

YU-WEI CHEN AND KUO-LIANG CHUNG122

It is easy to verify that the expansion is 22n - 1/((4n - 1)/3) ª 3/2. In addition, O(n) time
is sufficient to translate an n-bit binary string b for 0 £ b £ 2n - 1 (binary-reflected Gray
code Gn(b')) to the corresponding binary-reflected Gray code Gn(b) (n-bit binary string

′ ′ ′ ′ = ′−b b b b bn n 1 2 1L for ′ ∈bi { , }0 1 and 1 £ i £ n) [7]. By Lemmas 1, 2, and 3, we have the
following result.

Theorem 4. With dilation 2, congestion 2, load 1, and expansion 3/2, Pn can be embedded
into H2n - 1 in O(n) time.

The advantage of the mapping function f1 is that it can be easily computed due to its
closed form representation. From the description of the proposed embedding method, it is
important that any node with address (l, y, x) in Pn can be mapped into the corresponding
node in H2n - 1. That is, our embedding method can be performed in a parallel manner. In
contrast, the two embedding methods in [6] used to map Pn into H2n - 1 are carried out in a
recursive manner. In their first embedding method using the bottom-up approach, Lai and
White first map P2 into H3; then they map one apex and four P2’s into H5, and so on. In
general, after mapping Pk into H2k - 1, they further map one apex and four Pk’s into H2k + 1.
The second embedding method presented in [6] uses the recursive top-down approach and
is somewhat complicated, so we omit a description due to space limitations. The interested
readers are referred to [6].

To summarize, a performance comparison among the previous results [3, 5, 6] and
ours for embedding Pn into H2n - 1 is shown in Table 1.

Table 1. Performance comparison among the five methods for embedding Pn into H2n ----- 1.

method dilation expansion congestion

[6] 3 3/2 2

[6] 2 3/2 3

[5] 2 3/2 2

[3] 2 3/2 2

this paper 2 3/2 2

4. EMBEDDING Pn INTO Hk FOR 0 £££££ k £££££ n ----- 1

This section presents an embedding function used to map Pn into Hk, 0 £ k < 2n - 1,
with load balancing. If k is odd (even), then we let k = 2t - 1 (k = 2t), where t is a positive
integer. Extending f1, we will first present an embedding function used to map Pn into Hk,
0 £ k = 2t - 1 < 2n - 1, with load balancing. The embedding function for the case k = 2t will
be discussed later. For clarity, suppose Pn is partitioned into two parts: the top subpyramidP̂t

with t levels and 4t attached subpyramids Pn t− ’s, each with n - t levels. By Theorem 4, the top
subpyramid ̂Pt

 can be embedded into H2t - 1. The two attached subpyramids Pn t− ’s can be
thought of as a supernode such that these Pn t− ’s form a 2t - 1 ¥ 2t mesh which can be embedded
into H2t - 1 with dilation 1 [8, 9]. Based on the above description, the new embedding function
f2 used to map Pn into Hk, 0 £ k = 2t - 1 £ 2n - 2, is defined as

EMBEDDING PYRAMIDS INTO SMALLER HYPERCUBES 123

f l y x2 (, ,) =

(() () , ()),

((), () ()),

((), ()),
.

G y G x G x l t

G y G x G x l t

G
y

G x t l n

l l t l l t l

t t t

t
l t

t
l t

0
2

1 1
0

1

1
1

1 0 0 1

1

2 2

1

− − −

− − −

−
− + −

≤ < −

= −













≤ ≤ −















Using f2 with n = 3, k = 3, and t = 2, embedding P3 into H3 is shown in Fig. 5. The
lines in H3 denote with paths emulating some edges in P3, with each edge linking two
pyramid nodes which are embedded into two different nodes in H3. The apex node (0, 0, 0)
and two base nodes (2, 0, 0) and (2, 1, 0) in P3, for example, are embedded into the node
000 (=(0, 00)) in H3. The edge linking node 000 and 001 in H3, denoted by <000, 001>, is
shared by 6 paths emulating the 6 edges <(2, 0, 0), (2, 0, 1)>, <(2, 1, 0), (2, 1, 1)>, <(1, 0,
0), (2, 1, 0)>, <(1, 0, 0), (2, 0, 0)>, <(0, 0, 0), (1, 0, 0)>, and <(0, 0, 0), (1, 1, 0)> in P3.

Fig. 5. Embedding P3 into H3.

Based on f2, we have the following theorem.

Theorem 5. With dilation 2, congestion 2n - t + 1 + 2, and load 2 32n k− / , Pn can be embedded
into Hk, 0 £ k = 2t - 1 £ 2n - 2.

Proof: There are three same cases to be considered: embedding P̂t
 into H2t - 1, embedding 4t

attached Pn t− ’s into H2t - 1, and communicating between the bottom nodes of P̂t
 and the

apexes of these Pn t− ’s. In the first case, by Theorem 4, P̂t
 can be embedded into H2t - 1 with

dilation 2, congestion 2, load 1, and expansion 3/2. In the second case, two attached
subpyramids Pn t− ’s are thought of as a supernode such that these Pn t− ’s form a 2t - 1 ¥ 2t mesh
which can be embedded into H2t - 1 with dilation 1 [8, 9]. It is easy to verify that this case has
dilation 1, congestion 2n - t + 1 - 2, and load () /2 4 2 3⋅ − −n t . For the third case, by f2, it is easy
to see that all the nodes at the bottom level of P̂t

 are embedded into the nodes with labeling
{0, 1} 2t - 301 or {0, 1}22t - 310. As mentioned in the second case, a 2t - 1 ¥ 2t mesh is embedded
into H2t - 1. Hence, any bottom node in P̂t

 and its two children are embedded into the same

YU-WEI CHEN AND KUO-LIANG CHUNG124

hypercube node, say b2t - 2b2t - 3 ◊ ◊ ◊ b201 (or b2t - 2b2t - 3 ◊ ◊ ◊ b210), and the other two children are
embedded into its adjacent node b2t - 2b2t - 3 ◊ ◊ ◊ b200 (or b2t-2b2t- 3 ◊ ◊ ◊ b211), bi Œ {0, 1} for 2 £ i
£ 2t - 2 (see Fig. 3). Thus, it has dilation 1 and congestion 2. As a result, Pn can be embedded
into Hk with dilation 2 (= max{2, 1, 1}), congestion 2n - t + 1 + 2 (= 2 + 2n - t + 1 - 2 + 2), and load
2 32n k− / (=(2 · 4n – t + 1)/3 = (2 · 4n – t –2)/3+1). o

Consider the other case, k = 2t. The new embedding function f3 can be obtained by
extending f2 slightly, and it is given by

f l y x3 (, ,) =

(() () , ()),

(() , () ()),

((), ()), .

G y G x G x l t

G y G x G x l t

G
y

G x t l n

l l t l l t l

t t t

t
l t

t
l t

0
2

1 1
0

1

1 0 0 0 1

0 1

2 2
1

− − −

− − −

− −

≤ < −
= −













≤ ≤ −










The three cases to be considered are the same as those in Theorem 5. In the first case, by
Theorem 4, ̂Pt

 is embedded into one half of H2t, ({0, 1}n - 10, {0, 1}n). In the second case,
each attached subpyramid Pn t− can be thought of as a supernode such that these Pn t− ’s form
a 2t ¥ 2t mesh which can be embedded into H2t with dilation 1, congestion 2n - t - 1, and load

4 1 3n t− − ) / . In the third case, each bottom node of P̂t
 say (, ,),t

y x− 



  1

2 2
 communi-

cates with its four children, apexes of Pn t− ’s, say (t, y, x), (t, y, x + 1), (t, y + 1, x), and (t, y + 1,

x + 1). These five nodes in Pn are embedded into (() , () ())G
y

G x G xt t t− − −



    1 1 1

2
0

2 2 , and

((), ()),G y G xt t ((), ()),G y G xt t +1 ((), ()),G y G xt t+1 and ((), ()).G y G xt t+ +1 1 The node

(() , () ())G
y

G x G xt t t− − −



    1 1 1

2
0

2 2 and one of the other four mapped nodes are the same.

These four mapped hypercube nodes can be thought as of a ring with length 4. For instance,
the five nodes (2, 1, 0), (3, 2, 0), (3, 2, 1), (3, 3, 0), and (3, 3, 1) in P5 are mapped into the five
nodes (010, 001), (011, 000), (011, 001), (010, 000), and (010, 001) in H6, respectively. It is easy
to see that both nodes (2, 1, 0) and (3, 3, 1) in P5 are mapped into the same node (010, 001) in
H6. Therefore, this case has dilation 2 and congestion 2. Consequently, the embedding has
dilation 2 (= max{2, 1, 2}), congestion 2n-t + 3 (= 2 + 2n-t - 1 + 2), and load 2 32n k− /
(() / () /)= + = − +− −4 2 3 4 1 3 1n t n t . We have the following corollary.

Corollary 6. With dilation 2, congestion 2n - t + 3, and load 2 32n k− / , Pn can be embed-
ded into Hk, 0 £ k = 2t £ 2n - 2.

Based on f2 and f3, this embedding can be accomplished in a parallel manner. Because
O(k) time is sufficient to translate a k-bit binary string b for 0 £ b £ 2k - 1(binary-reflected
Gray code Gk(b')) into the corresponding binary-reflected Gray code Gk(b) (k-bit binary
string ′ ′ ′ ′ = ′−b b b b bk k 1 2 1L for ′ ∈bi { , }0 1 and 1 £ i £ k) [7], we have the following result.

Corollary 7. Embedding Pn into Hk can be accomplished using the above parallel algorithm
in O(k) time.

EMBEDDING PYRAMIDS INTO SMALLER HYPERCUBES 125

5. DISCUSSION AND REMARKS

Our major contribution in this short paper has been to present a parallel embedding
algorithm which can be used to map large pyramids into smaller hypercubes with load
balancing. With dilation 2, congestion 2n - t + 3 (or 2n - t + 1 + 2), and load 2 32n k− / when k
= 2t (or k = 2t - 1), our method can embed Pn into Hk in O(k) time.

ACKNOWLEDGMENTS

The authors would like to thank the four anonymous reviewers for their constructive
comments for improving the quality and presentation of this new version.

REFERENCES

1. S. Tanimoto and T. J. Ligoki, “A prototype pyramid machine for hierarchical cellular
logic,” Parallel Computer Vision, Orlando, FL, Academic Press, 1987, pp. 43-83.

2. R. Miller and Q. F. Stout, “Data movement techniques for the pyramid computer,”
SIAM Journal on Computing, Vol. 16, No. 1, 1987, pp. 38-60.

3. Q. F. Stout, “Hypercubes and pyramids,” Pyramidal Systems for Computer Vision, V.
Cantoni and S. Levialdi, eds., Springer, 1986, pp. 75-89.

4. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes, Morgan Kaufmann Pub., CA., Chap. 3, 1992.

5. B. Monien and H. Sudborough, “Embedding one interconnection network in another,”
Computing [Supplementum], No. 7, 1990, pp. 257-282.

6. T. H. Lai and W. White, “Mapping pyramid algorithms into hypercubes,” Journal of
Parallel and Distributed Computing, Vol. 9, No. 1, 1990, pp. 42-54.

7. F. Annexstein, “Parallel implementations of graph embeddings,” Lecture Notes in Com-
puter Science 678, 1993, pp. 207-217.

8. S. L. Johnsson, “Communication efficient basic linear algebra computations,” Journal
of Parallel and Distributed Computing, Vol. 4, No. 2, 1987, pp. 133-172.

9. Y. Saad and M. H. Schultz, “Topological properties of hypercube,” IEEE Transactions
on Computers, Vol. 37, No. 7, 1988, pp. 867-872.

Yu-Wei Chen) received the B.S. and Ph.D. degrees from the Department of
Information Management of National Taiwan University of Science and Technology, R.O.
C., in 1993 and 1999, respectively. In 1994, he began work toward the Ph.D. degree after
taking first year courses for the M.S. degree. He is now an assistant professor at Tamsui
Oxford University College. His research interests include parallel and distributed computing,
fault-tolerant computing, and networks.

YU-WEI CHEN AND KUO-LIANG CHUNG126

Kuo-Liang Chung () received the B.S., M.S., and Ph.D. degrees in Computer
Science and Information Engineering from National Taiwan University, R.O.C. He is a pro-
fessor in the Department of Information Management and the Institute of Information Engi-
neering of National Taiwan University of Science and Technology. His current research
interests include image processing, compression, computer graphics, computational geometry,
and theoretical computer science. He is a member of ACM and IEEE.

