
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 37, 483-496 (2021)
DOI: 10.6688/JISE.202103_37(2).0013

483

Employing On-Line Training in SDN Intrusion Detection

PO-JEN CHUANG AND KUAN-LIN WU

Department of Electrical and Computer Engineering
Tamkang University

Tamsui, New Taipei City, 25137 Taiwan
E-mail: pjchuang@ee.tku.edu.tw

In SDN anomaly detection systems, when a training mechanism adopts semi-super-

vised learning (consisting of self-training and self-learning) to attain the classifiers of on-
line training, it may cause the accumulation of identification errors – to degrade the per-
formance. This paper presents a new training and learning mechanism which involves the
operations of self-training and active learning to solve the problem. The proposed mecha-
nism first adds samples with “high confidence weights” and classified as “malicious” to
the training set by random selection. It then practices active learning to label those samples
with “low confidence weights” and add them to the training set for training, to further lift
up identification accuracy. A faster clustering method has been brought in to reduce the
operation time of active learning. In classifier retraining, parallel training is applied to keep
the classifier in constant service without interruption. Simulation results show that, in con-
trast to existing active learning IDS (ALIDS), our new mechanism performs better in iden-
tifying unknown attacks, without occupying the operation time of detection as it processes
both training and detection in parallel.

Keywords: software defined networks (SDNs), intrusion detection system (IDS), machine
learning, anomaly detection, on-line training, network security

1. INTRODUCTION

As software-defined networks (SDN) [1, 2] are susceptible to most of the attacks in
traditional networks, it is essential to build proper intrusion detection systems (IDS) into
the SDN structure to provide effective intrusion countermeasures. SDN anomaly detection
systems used to involve supervised learning to train the classifiers. In application, IDS
must identify unknown attacks through the old attack mode given that there is no tag for
the received data. It is hence infeasible to apply the training mechanism of supervised
learning to practical SDN anomaly detection systems because supervised learning uses
only labeled samples for training – it cannot use on-line data for retraining, i.e., it cannot
apply on-line data to adapt the system to new types of attacks.

To solve the problem, some researchers introduce semi-supervised learning [3-7], a
revised training method, to attain the classifiers of on-line training in anomaly detection
systems. Semi-supervised learning, as the name carries, is an adaptive method between
supervised learning and unsupervised learning, consisting mainly of self-learning and self-
training. The concept of self-training is to conduct supervised learning practice in each
round of training, add the samples with the best classification results from the previous
round into the current sample set, and train itself again with the results generated by itself.
There exists one major problem with the self-training practice: It will lead to the accumu-
lation of errors. Self-learning attempts to improve the situation. The key concept of self-

Received March 12, 2020; revised June 16, 2020; accepted August 5, 2020.
Communicated by Fu-Hau Hsu.

PO-JEN CHUANG AND KUAN-LIN WU

484

learning is to increase the number of malicious samples in the training set by repeatedly
identifying the unlabeled sample set. In exercise, we can add malicious unlabeled samples
into the new training set to train the new classifier and to classify the data set until the new
classifier does not recognize the attack sample.

Besides self-training and self-learning, we observe a more recent introduction of ac-
tive learning (AL) in [6]. The new study applies active learning into IDS (to become
ALIDS) and proves that such a practice can reduce the workload for network security an-
alysts and is adaptive to data changes – i.e., able to solve the problems related to data
tampering and avoidance.

To pursue more satisfactory intrusion countermeasures for the SDN structure, we pro-
pose in this paper a new training and learning mechanism which involves both the opera-
tions of self-training and active learning. Our proposed mechanism operates as follows. It
first adds samples with “high confidence weights” and classified as “malicious” to the
training set by random selection and then puts the training practice of active learning into
work. By active learning, it can label those samples with low confidence weights and add
them to the training set for training, to pursue higher accuracy for the classifier. To speed
up the training mechanism, we use a faster clustering method to reduce the operation time
of the active learning practice. We also adopt parallel training in classifier retraining to
help keep the classifier in service and replace it in an uninterrupted way. By doing so, we
can immediately defend an attack when it is detected.

Extensive simulation runs are carried out to evaluate and compare the performance of
our new training mechanism and existing ALIDS. As the results exhibit, our mechanism
is able to identify unknown attacks in a more effective way than ALIDS. Even if an attack
is not identified in the very beginning, we can constantly update the classifier according to
the obtained training results, to achieve real-time attack detection – i.e., to learn how to
identify unknown attacks and successfully prevent them. Our training mechanism is also
favorable in terms of time cost. It does not occupy the operation time of the detection
system because both training and detection are processed in parallel. That is, the classifier
will not stop functioning when it is getting replaced.

2. BACKGROUND STUDY

2.1 Software Defined Networks (SDN)

SDN is a centralized new generation network architecture proposed by Stanford Uni-
versity in 2008 [8]. The introduction of SDN is of special significance in that it makes
possible to transfer the control of network policy from the supplier to the user. The new
architecture is distinctive from traditional networks in being able to replace the “closed”
software on a current network switch and allow the user to control the entire network
through controller software execution. An SDN is composed of separated control and data
layers, i.e., its control layer is separate from the data layer. The data platform is responsible
for transmitting data only, whereas the control platform is in charge of all decision-making.
Such features may help a controller with correct logic to make early detection on suspi-
cious traffic and, as a result, obtain faster responses in SDN-enabled switches. More spe-
cifically, when an SDN is assaulted, switches can instantly start the procedure of dynamic
traffic management and attack blocking, to limit the attack traffic and isolate the attacker.

EMPLOYING ON-LINE TRAINING IN SDN INTRUSION DETECTION 485

An SDN needs an appropriate agreement, such as the OpenFlow (OF) protocol [9], to
contact the control layer and the data layer. The OF protocol includes the OF switch and
OF controller. It is the first agreement implemented in accordance with the features of SDN
and is used to maintain communication between both the OF switch and controller. The
OF switch will first establish a connection with the OF controller through the transport
layer security and the transmission control protocol; the controller then communicates with
the switch by the OF protocol. An OF switch contains one or more flow tables and group
tables, as Fig. 1 shows. Each of the tables holds multiple flow entries (rules) to perform
packet routing. The elements in a flow entry include match fields, priority, counters, in-
structions and others (the interpretation of each element is shown in Table 1) [9]. The
routing table on the switch gives the OF rule in the flow table, and the switch will perform
the specified action based on the flow entry in the flow table.

Fig. 1. The OpenFlow Switch architecture.

Table 1. The flow entry description.

Match fields
matching rules of the flow entry, consisting of the ingress port, packet
headers, and optional metadata specified by the previous table

Priority matching precedence of the flow entry
Counters counts of the matching packets

Instructions used to modify the action set or pipeline processing
Timeouts maximum amount of time or idle time before the flow entry expires
Cookie flow entry identifier specified by the controller
Flags used to alter the way flow entries are managed

As mentioned, an SDN is vulnerable to most of the attacks in traditional networks.
To monitor the network security of SDN, we must bring in proper IDS to the structure to
work out desirable intrusion countermeasures. An IDS is a network security device which
can be in the form of hardware or software. By monitoring the transmission of packets or
the behavior of systems in the network (including system logs in the host, network traffic
or traffic flow), an IDS is able to detect suspectful intrusion. When detecting an intrusion
activity or suspectful intrusion, it will issue a notification to ensure the integrity, privacy
and availability of the system in the network. To fully prevent the risk of network intrusion,
more recent IDS tend to scan and detect all packets transmitted in the network, and then
involve appropriate machine learning algorithms to attain more accurate traffic classifica-
tion: intrusion or non-intrusion.

PO-JEN CHUANG AND KUAN-LIN WU

486

2.2 Machine Learning

Machine learning mechanisms may work by supervised or unsupervised learning. A
supervised learning mechanism will predict the output values of input samples according
to the input-output mapping in the training data of existing labels. Unsupervised learning,
on the other hand, will cluster data with no labels and use only the eigenvalues of the data
for prediction. Semi-supervised learning [3-7] is an adaptive method between supervised
learning and unsupervised learning. It covers a number of machine learning algorithms,
including the self-training and self-learning algorithms. The basic concept of self-training,
as we have specified, is to apply the supervised learning practice in each round of training,
add the samples with the best classification results from the previous round into the current
sample set, and then train again with the self-generated results. It should be noted that such
a self-training practice is likely to build up identification errors. As an extended deviation
of self-training, the self-learning algorithm will identify unlabeled sample sets repeatedly
so as to build up malicious samples in the training set. It can practically add malicious
unlabeled samples into the new training set to train the new classifier and then classify the
data set until the new classifier does not recognize the attack sample [5].

Active learning (AL) is a more recently introduced machine learning algorithm. It has
been applied to IDS to form the active learning intrusion detection system (ALIDS) in [6].
Similar to self-training, from the results of identification, ALIDS conducts binary classifi-
cation of data according to data confidence. Based on the value of data confidence, it first
classifies data into high/low confidence data and then adds data with high confidence into
the training set. ALIDS does not discard data with low confidence. It instead handles them
by active learning to ensure more correct labels. To process the data with low confidence,
ALIDS employs K-means [10] in AL to do clustering first. After clustering, the expert or
the so-called oracle classifier in AL will take over to label the data in each cluster and add
the processed low confidence data into the training set. It then trains the classifier with the
new training set, to replace the current classifier. In this way, ALIDS actually realizes a
better on-line training method – with certain drawbacks. For instance, by adding all data
samples with high confidence into the training set, it may generate a fast-growing training
set and also extremely unbalanced classes of samples in the training set, which in turn may
incur unfavorable consequences. Possible consequences include that the trained classifier
may yield unsatisfactory accuracy for low proportional classes of samples and also the
probability of accumulated identification errors may hike up.

3. OUR PROPOSED LEARNING AND TRAINING

A traditional data training mechanism trains the classifiers in advance, solely by the
adopted training set. An on-line training mechanism is relatively more sophisticated as,
during the system functioning time, it can progressively enhance the classifier’s ability to
identify unknown attacks. In this investigation, we intend to pursue more satisfying on-
line training by means of proper semi-supervised learning. As noted above, a semi-super-
vised learning approach which is helpful in attaining the classifiers of on-line training tends
to produce accumulated identification errors. How to reduce the probability of accumulat-
ing identification errors turns out to be a major challenge for related studies. We also ob-
serve from existing semi-supervised learning practices that adding suitable data samples to

EMPLOYING ON-LINE TRAINING IN SDN INTRUSION DETECTION 487

the on-line training set can be a feasible way to reduce the buildup of identification errors.
Based on these findings, we decide to set up a new on-line training and learning mechanism
which can work better than previous mechanisms, especially in avoiding potential defects,
to realize more competent SDN intrusion detection.

Fig. 2 gives our SDN intrusion detection architecture which aims to enhance anomaly
detection systems in SDN, i.e., to engage on-line training and handle abnormal traffic in a
more effective way. The proposed architecture contains three parts: data feature detection,
the learning mechanism and abnormal result processing. In the figure, we can shift the
on-line training job (the right portion of the flow chart) from the controller to another server,
such as a flow analyzer, so as to maintain the controller’s required real-time quick re-
sponses to flow control.

Fig. 2. Our SDN intrusion detection architecture.

In data feature detection, we use flow entry statistics to determine if the flow is
abnormal or not – according to the corresponding rule. In practice, the controller will file
requests to the switch for statistics once per second. The learning mechanism will process
and analyze the recorded results when they are accumulated to a certain pre-set amount. It
then adds the analyzed results to the training set to re-train the classifier. In abnormal
result processing, the controller will be notified of the abnormal flow in the classified
results after statistical information classification. It then adds the flow entries with defense
rules into the flow table according to the corresponding attack types in the flow.

The learning mechanism will take the hybrid of self-training and active learning as
the algorithm infrastructure. Fig. 3 gives the flowchart. It shows that we use labeled train-
ing samples to train the basic classifier and use this classifier to identify the actual flow
data, i.e., the unlabeled data. From identification results, we then set binary classification
of data according to data confidence, to attain high and low confidence data. Note that we
take the value of the highest classification category probability in the classifier as the value
of confidence. A data with a value lower than 0.95 will be considered a low confidence
data; otherwise, it is a high confidence data. The probability calculation for a decision tree
is to divide (the number of samples of the same category in leaf nodes) by (the number of
all samples in leaf nodes) to obtain the sample classification category probability in the
tree. As for a random forest, it is to divide (the classification category probability of all
trees) by (the number of trees) as the final classification category probability.

PO-JEN CHUANG AND KUAN-LIN WU

488

Fig. 3. The flowchart of our learning mechanism.

We move on to process low confidence data by active learning and add both high and
low confidence data into the training set after sample selection, to train the classifier with
the new training set and replace the classifier currently in use. Adopting active learning to
process data with low confidence will help to attain more correct labels. In active learning,
we employ the balanced iterative reducing and clustering using hierarchies (BIRCH) clus-
tering algorithm [11], instead of K-means [10], because the BIRCH algorithm is faster
without affecting the accuracy of clustering. To be more specific, BIRCH can achieve a
good clustering effect by only one scanning without having to set the number of clusters
in advance like K-means. That is, BIRCH can generate clustering feature trees by which
we can save data compression to certain extent. Note that the expert in active learning will
be taken over by the oracle classifier trained and learned from the test set data, i.e., the
accuracy of the oracle classifier will represent the ability of the expert. The classification
results are then labeled to the samples of each cluster.

To preserve the identification ability of known attacks, we randomly select 30% of
high confidence attack samples and add them into the training set. (Note that we do not
include high confidence normal samples because they tend to produce noise). We never-
theless include all low confidence attack samples into the training set to help the re-trained
model identify new unknown attacks more effectively. In practice, adding low confidence
normal samples can further lift the normal category identification ability of the re-trained
model, but, to avoid possible noise, we select only 20% of such samples into the training
set.

We use the match fields in the flow entries to set up new forwarding rules which can
help us better distinguish attack traffic from normal traffic. When detecting an abnormal

EMPLOYING ON-LINE TRAINING IN SDN INTRUSION DETECTION 489

message, the IDS will send the anomaly classification result to the controller so that it can
build the defense rule and block the attack traffic. After building the defense rule based on
the received anomaly classification result, the controller will set the same match field pa-
rameter of the flow entry (for the attack) in a new flow entry and give it a higher priority
to replace the original forwarding (by discarding) in order to block the attack traffic. Such
a practice is favorable as it can effectively block attack traffic and meanwhile maintain
ordinary network services. Fig. 4 displays the detailed flowchart of the proposed defense
mechanism.

Fig. 4. The flowchart of the proposed defense mechanism.

4. PERFORMANCE EVALUTION

Extended simulation has been conducted to evaluate and compare the performance of
ALIDS [6] and our new training mechanism. In the simulation, we use Python to write the
classifier and learning programs under the execution environment of the Intel Xeon E3 v3
@3.40GHz CPU, 32GB Memory, and WINDOWS 10 operating system. Fig. 5 exhibits
the architecture of our experimental simulation. We involve various classifiers in the sim-
ulation (along with their performance comparison) and use the NSL-KDD dataset [12] to
train and test the classifiers. Six classification algorithms are employed, including the de-
cision tree (DT) [13], k-nearest neighbor (KNN) [14], random forest (RF) [15], random
tree (RT), bagged trees (BT) [16] and deep neural networks (DNN)) [17].

The adopted data sets vary with environmental assumptions. We use KDDTest+ as
the test set, dividing it into a total of 226 100-sample test subsets which are input into the
classifier, one by one, for identification. The obtained results will be stored in and pro-
cessed by the trainer. Each time when a classifier finishes identifying a test subset, we set
a one second delay to keep the classifier from identifying the 226 test subsets too rapidly
(so as to lift the training update times of the classifier during the test). The training times
vary for different classification algorithms, falling between 10 and 30.

PO-JEN CHUANG AND KUAN-LIN WU

490

Fig. 5. Our experimental architecture.

Considering that the NSL-KDD dataset is a general intrusion detection dataset, not
specially built for the SDN, we then select a subset of its features, as Table 2 lists, all of
which can be more easily recorded from the SDN controller. We then test the traffic infor-
mation closest to the SDN, to demonstrate the fact that our training and learning mecha-
nism obtains higher accuracy and lower time cost than existing ALIDS. All classification
algorithms adopt the subsets of the NSL-KDD dataset (with KDDTrain+_20Percent being
the basic training set), except DNN which adopts the complete training set KDDTrain+
because it requires a large amount of data for training.

Table 2. The selected SDN features for the NSL-KDD dataset.
Feature Name Description

duration length (number of seconds) of the connection
service network service on the destination, such as HTTP, telnet, ssh, etc.
protocol_type type of the protocol, e.g. tcp, udp, etc.
src_bytes number of data bytes from source to destination
dst_bytes number of data bytes from destination to source
count number of connections to the same host as the current connection in the

past two seconds
srv_count number of connections to the same service as the current connection in

the past two seconds

The number of training samples tends to affect the accuracy of a classifier. Theoreti-
cally speaking, more training samples will result in better classification accuracy. The con-
tents of training samples are also influential. For both SDN and general network environ-
ments with the same number of samples, the SDN environment usually turns over better
classification accuracy mainly because of the difference in selected features. When oper-
ating training and learning by a small number of features, we are more likely to generate
noise and be influenced by it. To reduce such influence, we must remove noise as much as
possible to maintain the correct performance of training samples. Take ALIDS as an

EMPLOYING ON-LINE TRAINING IN SDN INTRUSION DETECTION 491

example. ALIDS has a learning mechanism which unconditionally joins samples into the
training set. It may hence add noise into the training set during the training and learning
process, causing the trained model unable to enhance its classification ability or, even
worse, to show signs of decline. In contrast, our mechanism adds only selected samples to
the training set, which enables it to reduce the probability of generating noise and hence
improves the performance of the classification model even with fewer sample features.

Fig. 6. The training time and final training set size.

Fig. 6 displays the training time and final training set size for both ALIDS and our
proposed mechanism. As it shows, our mechanism takes less training time than ALIDS
because we can filter noise and meanwhile reduce the number of samples. Take the clas-
sification algorithm DNN, whose training requires the longest time, as an example. By
DNN, we see more than 7 seconds of training time difference between ALIDS and our
mechanism, with the advantage to our mechanism. Such an advantage mainly comes from
our effective noise filtering as well as ability to properly select samples into the training
set (in contrast to ALIDS which includes all samples in the training set).

Fig. 7 gives the update times and system accuracy for both mechanisms. It reveals a
fact that gradual increase in running time and update times may progressively enhance the
performance of the classifier. For instance, in KNN classification, the accuracy of our
mechanism becomes steady upon updating twice and then rises 2% higher when updating
increases to 8 times (mainly because our filtering mechanism makes it possible to involve
less training samples than ALIDS). For ALIDS, the accuracy decreases and gets steady
upon updating twice. Its training samples keep growing at a very fast speed and, with the
large number of training samples, its training set fails to yield good accuracy (because,
without a filtering mechanism, ALIDS is susceptible to the impact of noise). Note that
when the number of training samples grows significantly (as in ALIDS), the training set
may likely lose learning ability. Our mechanism, on the other hand, uses proper sample
selection (acting as a noise filter) to reduce noise and meanwhile maintain stable increase
in training samples. It helps us to obtain more effective learning and a stronger classifier
(i.e., a classifier with better classification and identification ability).

PO-JEN CHUANG AND KUAN-LIN WU

492

Fig. 7. Update times and system accuracy.

Fig. 8. The influence of the expert.

Fig. 8 depicts the expert influence in both mechanisms. As we can see, noise fluctu-
ates between 13.7% and 23% for ALIDS and accuracy varies significantly with noise. Its
expert ability grows from 76.8% to 99%, but the high expert ability and large number of
training samples does not necessarily translate into high accuracy – if the noise in cluster-
ing and high confidence data remains (i.e., not screened out as in our mechanism).

In our mechanism, the ratio of noise is inversely proportional to the expert ability,
and both the ratio of noise and accuracy stay steady by approximately 90% expert ability.
It indicates an effective noise filter will significantly help a learning mechanism to reduce
and avoid the influence of noise. As noise is usually generated in high confidence data and

Update times and system accuracy

EMPLOYING ON-LINE TRAINING IN SDN INTRUSION DETECTION 493

cluster labeling, ALIDS, which adopts direct random sampling without proper selection
policy as our mechanism, hence cannot perform as well in screening out noise.

Fig. 9. Precision, TPR, accuracy and F1-score.

In addition to Accuracy (ACC), Fig. 9 also lists the Precision, TPR and F1-score re-
sults of each classifier for both mechanisms. Table 3 exhibits that, for a trained classifier,
the classification result of a sample can be divided into four performance categories ac-
cording to the True and Predicted classifications: True Positive (TP), False Positive (FP),
False Negative (FN) and True Negative (TN). We can take the four categories to help il-
lustrate Precision, TPR and F1-score.

Table 3. Sample classification performance categories.
True

Classification
Predicted Classification

Predicted to be positive Predicted to be negative

Truly positive True Positive, TP False Negative, FN

Truly negative False Positive, FP True Negative, TN

Note that ACC is referred to as the percentage of correct sample prediction for the
classifier. Based on Table 3, we can get ACC by Eq. (4.1):

.
TP TN

ACC
TP TN FP FN




  
 (4.1)

We can use Precision, indicated by Eq. (4.2), to judge if the positive data sample predicted
by the classifier is truly positive, and then attain the so-called False Alarm Rate by 1 
Precision.

1
TP

Precision False Alarm Rate
TP FP

  


 (4.2)

Result data of each classifier

PO-JEN CHUANG AND KUAN-LIN WU

494

TPR (True Positive Rate) is the percentage of truly positive data samples which are pre-
dicted by the classifier as positive. It can be taken to indicate Detection Rate or Recall, as
Eq. (4.3) shows.

TP

TPR Detection Rate Recall
TP FN

  


 (4.3)

To check the performance of a classifier by either Precision or Recall is insufficient. F1-
score has been taken as a more fitting and comprehensive performance indicator for a
trained classifier [18]. F1-score, as indicated in Eq. (4.4), considers both Precision and
Recall: It is the harmonic mean of Precision and Recall. Note that high Precision does not
necessarily indicate good performance unless it goes with high Recall. It is also true that,
with low Precision, high Recall alone may not guarantee good performance. We can expect
a classifier to yield good performance only when both Precision and Recall are signifi-
cantly high or “balanced”. In other words, we can use F1-score to judge if Precision and
Recall are favorably balanced and to judge if the trained classifier yields good performance.

2 2
1

2

Precision Recall TP
F score

Precision Recall TP FP FN

  
  

   
 (4.4)

As Fig. 9 shows, in contrast to ALIDS, our mechanism obtains higher TPR, Accuracy
and F1-score (but not Precision) for all classifiers. As for Precision, ALIDS produces
slightly better results in most of the classifiers except KNN (where both mechanisms show
very close results) and BT (where our mechanism yields a better value). Our mechanism
nevertheless produces constantly higher F1-score in all classifiers because its Precision
values are always accompanied by more balanced Recall values. The fact pinpoints again
the importance of selecting proper samples into the training set. Compared with ALIDS
which includes all samples in the training set, our mechanism involves significantly less
training samples and realizes more effective noise filtering. It is able to shape a stronger
classifier with enhanced learning ability and, as a result, to improve the performance of
SDN intrusion detection effectively.

5. CONCLUSIONS

In this investigation, we present a new training and learning mechanism to attain bet-
ter intrusion countermeasures for the SDN structure. Our proposed mechanism involves
the hybrid operations of self-training and active learning, preserving advantages while
eliminating disadvantages, to reach more satisfactory performance. The new training and
learning mechanism starts by randomly selecting samples with high confidence weights
and classified as malicious and adding such samples to the training set. It then puts the
training mechanism of active learning into work. Through the operation of active learning,
the proposed mechanism is able to label samples with low confidence weights and add
them to the training set for training, to raise the accuracy of the classifier. It meanwhile
adopts a faster clustering method to cut down the operation time of active learning, and
involves parallel training in classifier retraining in order to keep the classifier in constant
service (without service interruption even during replacement). As the obtained simulation
results demonstrate, in comparison to the existing ALIDS training mechanism, our new

EMPLOYING ON-LINE TRAINING IN SDN INTRUSION DETECTION 495

mechanism performs more effectively in lifting up the identification accuracy of classifiers
as well as the identification ability of unknown attacks. Note that our mechanism attains
the performance gain (better identification accuracy and effective prevention of unknown
attacks) at a rather contained time cost – mainly because we practice both training and
detection in parallel without occupying the operation time of the detection system.

REFERENCES

1. G. A. Ajaeiya, “Flow-based intrusion detection system for SDN,” in Proceedings of
IEEE Symposium on Computers and Communications, 2017, pp. 787-793.

2. A. Abubakar, “Machine learning based intrusion detection system for software defin-
ed networks,” in Proceedings of the 7th International Conference on Emerging Securi-
ty Technologies, 2017, pp. 138-143.

3. A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,”
in Proceedings of the 11th Annual Conference on Computational Learning Theory,
1998, pp. 92-100.

4. J. Zhang, C. Chen, Y. Xiang, and W. Zhou, “Robust network traffic identification with
unknown applications,” in Proceedings of the 8th ACM SIGSAC Symposium on Infor-
mation, Computer and Communications Security, 2013, pp. 405-414.

5. P.-J. Tsai, “Hybrid intrusion detection system toward unknown attack classification,”
Master Thesis, Institutional Repository of National Chiao Tung University, Taiwan,
2014.

6. S. McElwee, “Active learning intrusion detection using k-means clustering selection,”
in Proceedings of Southeast Conference, 2017, pp. 1-7.

7. Y. Xue and P. Peauseroy, “Constant false alarm rate for online one class SVM learn-
ing,” in Proceedings of IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, 2018, pp. 2821-2825.

8. N. McKeown, et al., “OpenFlow: enabling innovation in campus networks,” ACM SIG-
COMM Computer Communication Review, Vol. 38, 2008, pp. 69-74.

9. “OpenFlow Switch Specification, Version 1.3.4.,” https://www.opennetworking.org/
images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-swit-
ch-v1.3.4.pdf.

10. A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM Computing
Surveys, Vol. 31, 1999, pp. 1-69.

11. T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data clustering
method for very large databases,” in Proceedings of ACM SIGMOD International
Conference on Management of Data, 1996, pp. 103-114.

12. M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” in Proceedings of the 2nd IEEE International Conference on
Computational Intelligence for Security and Defense Applications, 2009, pp. 53-58.

13. J. R. Quinlan, “Introduction of decision trees,” Machine Learning, Vol. 1, 1986, pp.
81-106.

14. N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regres-
sion,” The American Statistician, Vol. 46, 1992, pp. 175-185.

15. L. Breiman, “Random forests,” Machine Learning, Vol. 45, 2001, pp. 5-32.

PO-JEN CHUANG AND KUAN-LIN WU

496

16. L. Breiman, “Bagging predictors,” Machine Learning, pp. 24, 1996, pp. 123-140.
17. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, Vol. 521, 2015, pp.

436-444.
18. Precision and recall, https://en.wikipedia.org/wiki/Precision_and_recall, 2020.

Po-Jen Chuang (莊博任) received the B.S. degree from Na-

tional Chiao Tung University, Taiwan, in 1978, the M.S. degree in
Computer Science from the University of Missouri at Columbia,
U.S.A., in 1988, and the Ph.D. degree in Computer Science from the
Center for Advanced Computer Studies, University of Southwestern
Louisiana, Lafayette, U.S.A. (now the University of Louisiana at
Lafayette), in 1992. Since 1992, he has been with the Department of
Electrical and Computer Engineering, Tamkang University, Taiwan,
where he is currently a Professor. He was the Department Chairman
from 1996 to 2000. His main areas of interest include parallel and

distributed processing, fault-tolerant computing, mobile computing, network security,
cloud computing, software defined networking, virtualization and internet of things.

Kuan-Lin Wu (吳冠霖) received his B.S. and M.S. degrees in
Electrical and Computer Engineering in 2016 and 2019 from
Tamkang University, Taiwan. He is currently with CAMEO Com-
munications, Inc. in Taiwan. His research interests include software
defined networking and network security.

