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In order to restore degraded traffic images in haze and dark environment, we present 

an efficient traffic image haze removal method using sky segmentation and color space 

conversion. The dark channel++ and contrast energy++ features are proposed for the fast 

sky segmentation step. The atmospheric light is estimated based on the haze density in 

different region, and the dehazing procedure is executed in HSI color space. Besides, this 

method takes advantage of the contrast limited adaptive histogram equalization (CLAHE) 

and guided image filtering to ensure a visual pleasing result. The experimental results for 

both synthetic and natural hazy images demonstrate that our algorithm performs compara-

ble or even better results than the state-of-the-art methods in terms of various measurement 

indexes, such as the MSE, SSIM, mean gradient change rate, etc. Two traffic applications, 

such as road-marking extraction and vehicle detection, are presented to verify the effec-

tiveness of the proposed algorithm.   
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1. INTRODUCTION 
 

Haze is a common natural phenomenon which is caused by the turbid medium (e.g., 

water droplets, particles, etc.) in the atmosphere. As we all know, haze will do great harm 

to human’s manufacture and life if it occurs in urban scene. On the one hand, haze drasti-

cally reduces visibility which will cause some serious accidents. On the other hand, the 

pollutants in the air are a serious threat to human health. And the former is particularly 

serious. To solve the first problem, many scientists do research on the inherent reason of 

the fog image formation. The mathematical model established by McCartney [1] is the 

most famous. Based on the atmospheric scattering model, together with the increase of 

observation distance, the intrinsic luminance of the observed object decays according to 

exponential distribution, and the luminance of the atmospheric light increases gradually. 

Hence, the image quality captured by sensors decreases as the distance increases. 

In the domain of transportation, the appearance of haze will bring bad effect for self-

driving system, driving assistance system [2], traffic surveillance system [3], etc. As we 

all know, the image sensors play an important role in traffic scenes and the surveillance 

videos can help the traffic police judge the legal liability in traffic accidents. However, in 

haze weather the number of traffic accidents increases greatly, but the traffic surveillance 

system cannot get clear accident pictures which bring bad effects for traffic accidents de-

termination. Besides, the traffic violation detection system is unable to work so that the 
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road safety is more severe. 

Since we suffer from haze in traffic scene, so many researchers proposed various ap-

proaches to perform haze removal. These methods can be divided into two categories: ico-

nology-based algorithms and physics-based algorithms. The first kind is mainly based on 

image enhancement like histogram equalization which just improve the image contrast. 

The second kind primarily based on the atmospheric scattering model which handle the 

problem with mathematical method, but it may cause other problems such as color distor-

tion, halo artifacts, missing details. Therefore, this paper proposed a novel haze removal 

method using color space conversion and sky segmentation. Experimental results show 

that the proposed method can avoid color distortion and halo artifacts after dehazing and 

obtain more natural haze-free images. Besides, the traffic image sensors often work in dark 

condition, so we increase brightness and restore detail information by image enhancement. 

The proposed method takes full advantages of the iconology-based and physics-based meth-

ods, and thus it can obtain visual pleasing results and even work well in dark environment. 

The rest of this paper is organized as follows. In Section 2, the related works about 

the single image dehazing algorithms and their application in traffic field are reviewed. 

Section 3 introduces the proposed haze removal algorithm for traffic images. The experi-

mental results are given in Section 4. Finally, Section 5 concludes this paper. 

2. RELATED WORKS 

The inherent reason of the formation of fog image can be described using the atmos-

pheric scattering model which is established by McCartney [1]. Based on the mathematical 

model, other researchers make some improvements [4-7] so the complex model can be 

simplified as follows: 

( , , ) ( , , ) ( , , ) (1 ( , , ))I i j k J i j k t i j k A t i j k= + −  (1)
 

where i and j are the row index and the column index of the pixel in the single-channel 

image, and k is the index of channel. I is the observed hazy image which represents the 

intensity can be received by image sensors. J is the restored haze-free image which repre-

sents the intrinsic luminance of the observed object. A is the atmospheric light value which 

is fixed in this model. And t is the transmission map which is related to the depth map. We 

can easily find that haze removal is an ill-posed problem according to Eq. (1). Hence, many 

researchers try to propose various constraints or priors to obtain the haze-free image. 

The majority of early dehazing approaches rely on depth information directly or mul-

tiple images of the observed scene. From the atmospheric scattering model, we can find 

that there is a functional relation between transmission map and depth map. Hence, Kopf 

et al., propose an approach for haze removal which is just suitable for the scene known 

depth information or other equipment like calibrated radar to obtain additional information. 

Schechner et al., [8] perform haze removal by using multiple images acquired from differ-

ent polarization angles which is based on the observation that the light scattered by the 

turbid medium is partially polarized. Park et al., [9] propose a method to calculate the 

depth map by using stereo images. Chen et al., [10] and Narasimhan et al., [11] find that 

two images taken in different weather conditions can be used for depth information esti-

mation. These methods all need additional constraints which cannot be estimated by the 
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single image directly so the practical application is difficult. 

Recently, many researchers propose various algorithms to solve the issues discussed 

above and make significant progress in single image haze removal. Through large-scale 

statistical analysis, Tan [12] assumes that the contrast ratios of haze-free images are higher 

than that in hazy images. Therefore, he restores the hazy image by maximizing the local 

contrast and the most haze in the image is removed. However, this method is essentially 

based on image enhancement, so it brings some bad effects like over-saturation and color 

distortion and its visual effect is sometimes unpleasing. Under the assumption that the 

transmission shading and surface shading have no correlation in local regions, Fattal [13] 

deduces the scene transmission by estimating the albedo of the scene. The results obtained 

by this method are impressive in most cases, but it is time-consuming and the poor perfor-

mance in dense-hazy images cannot be tolerated. He et al., [14] propose a novel image 

prior − dark channel prior based on a kind of statistics of the haze-free natural images. 

Using this prior and the atmospheric scattering model, high quality haze-free images can 

be obtained. But the restored results are bad once the prior is invalid. Besides, the process 

of soft matting is time-consuming which limits its application. Tarel et al., [15] make some 

improvements on He’s method and they use median of median filter replace soft matting 

which significantly reduce the complexity of the algorithm. The speed of the method is 

competitive until now, but color distortion and image noise problems need some optimi-

zation. Meng et al., [16] make some explore on the inherent boundary constraint on the 

transmission function and then propose an efficient regularization method which can pro-

vide pleasing restored images. Although it avoids too dark haze-free results compared with 

He’s, the halo artifacts are more serious. Berman et al., [17] settle the dehazing problem 

from another perspective and they propose a new non-local prior. This method bases on 

the observation that a haze-free image color is well approximated by a few hundred distinct 

colors that form tight clusters in RGB space and the color clusters become haze-lines in 

corresponding hazy image. It performs well on various images and its efficiency is high. 

However, the performance maybe bad in images with heterogeneous haze since the dense 

haze regions are judged as sky. In [18], Zhu et al., present an effective prior - color atten-

uation prior and create a linear model for estimating the depth information of the hazy 

image. To obtain the parameters of the model, they use a supervised learning method. Its 

dehazing results seem more natural, but the haze removal effect seems worse than other 

methods. Dong et al., [19] modify the imaging model by introducing an additive Gaussian 

white noise and establish a unified probability framework. Then they estimate unknown 

variables iteratively until convergence by imposing some reasonable statistical priors on 

them. Experimental results show that the method works well in the transition zone. To 

avoid the halo artifacts in dehazing images, Li et al., [20] propose a new approach com-

bining with dark channel prior and sky segmentation to perform haze removal. The visi-

bility of the restored images improves significantly. Wang et al., [21] find some images 

with an uneven haze density, so they divide a hazy image into several regions through a 

superpixel segmentation algorithm and then estimate the local atmospheric light in each 

image region. Qu et al., [22] present a novel haze removal method which is based on a 

local consistent Markov random field framework. Their approach has the combined ad-

vantages of detailed recovery and color preservation, but the time complexity is too high, 

and 42 seconds are needed for processing an image with a size of 640×480. Lately, as 

convolutional neural networks (CNNs) have witnessed prevailing success in computer vi-
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sion tasks, they have been introduced to image dehazing as well. Cai et al., [23] introduced 

an end to end system called DehazeNet for estimation of the transmission matrix. Based 

on reformulated atmospheric model as a substitute of estimating transmission matrix and 

atmospheric light, Li et al., [24] propose a light-weight AOD-Net model. 

The above researchers try to propose a universal haze removal algorithm which can 

be applied to different scenes. However, different scenes like UAV images and traffic im-

ages have various characteristics so that it is necessary to optimize the algorithms for dif-

ferent scenes. Yoon et al., [25] present a spatially-adaptive haze removal method that 

merges color histograms with consideration of the wavelength-dependent atmospheric tur-

bidity. This algorithm can mitigate the color distortion problem and work well without 

additional optical equipment. For traffic scenes, Bhoir et al., [26] propose a dehazing 

method using white balance, saliency feature extraction map, foreground region preserva-

tion map and contrast enhancement for remote surveillance system. Yan et al., [27] present 

a new approach for recognizing the speed limit sign in hazy weather. In the haze removal 

process, they add a parameter to the transmission of the dehazing equation to make the 

restored image more natural and have no halo artifacts and color distortions in sky areas. 

To reduce computing time, Dong et al., [28] propose a traffic video dehazing approach 

based on the adaptive dark channel prior and spatial-temporal correlations. They also esti-

mate the degree of haze in each image so that the adaptability of the algorithm is strong. 

Their method is quite efficient and can restore the video with a size of 720×480 at about 

57 frames per second. However, some shortcomings such as missing details and bad per-

formance in dark environment still exist. Optimization for specific problems can improve 

the performance of the dehazing system. 

Thus, we can see that most existing haze removal algorithms mainly focus on a gen-

eral platform or just consider image enhancement or physical model. The focus of our work 

is traffic scene haze removal and we take full advantage of iconological method and phys-

ical method to obtain better dehazing results. The main novelty of our work is that we 

proposed an adaptive dehazing algorithm for traffic scenes using sky segmentation, local 

atmospheric light estimation, color space conversion and image enhancement. Since our 

approach is physically valid, it can provide good dehazing performance even in dark traffic 

scenes and can well retain the fidelity of the colors and detail information as well. 

3. PROPOSED METHOD 

For the proposed method, we assume that the sky region is an essential part in traffic 

scenes based on a large-scale of statistics and then propose our haze removal algorithm. 

First, we perform sky segmentation in hazy images using several haze-relevant features 

which imply the scene depth. Then we divide a hazy image into several regions according 

to its haze density. Next, the local atmospheric light is estimated and the transmission map 

is deduced in the HSI color space for adaptive haze removal. Finally, image enhancement 

as an image post-processing step is executed for the color fidelity and detail information. 

3.1 Sky Segmentation in Hazy Image 

The majority of the existing sky segmentation methods try to get an adaptive classifier 

which can be used for sky segmentation in various scenes. For this purpose, many research-
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ers try to extract many quantitative unique characteristics for sky regions, and then rough 

sky segmentation results can be obtained using a suitable classifier. For reducing misclas-

sification, they conduct a post-processing step to increase the segmentation accuracy. 

Although the results of refined sky segmentation are satisfying using the above 

method, the executing time is long. The time consumption of rough sky segmentation is 

low, but the corresponding results are unsatisfying. Hence, we propose our sky segmenta-

tion approach for high adaptability and efficiency and its schematic diagram is show in Fig. 

1. First, we extract two major characteristics from a hazy image as inputs for k-means 

clustering algorithm. Then, we obtain the rough sky segmentation result and further extract 

the most likely regions of the sky and non-sky from the preliminary result. Next, we cal-

culate other important characteristics (e.g. color features, gradient features, position fea-

tures, etc.) from the hazy image and use the training label obtained in the previous step to 

train the SVM classifier. Finally, we can get the refined sky segmentation results which is 

accurate enough for further processing. 

Input Image

Dark Channel++ 

Features

Contrast Energy 

Features

Features Extraction K-means Clustering

Rough

Segmentation

Acquire Training Data

Color Features

Gradient Features

……
Position Features

Features Extraction

Fine

Segmentation

SVM Classification

 
Fig. 1. Framework of the proposed sky segmentation approach. 

 

(A) Features Extraction 

For the sky segmentation, the better features we obtain, the better performance of sky 

segmentation. Thus, we try various characteristics for the traffic scenes. These character-

istics used here are called dark channel++ and contrast energy++ are introduced as follows: 

The dark channel is valid in non-sky regions which approximates the haze denseness. 

In sky regions, the intensities of pixels are high in all dark channel. Hence, the dark channel 

map can be used as a good feature for sky segmentation in natural scenes. However, for 

traffic scene as shown in Fig. 2 (b), the dark channel feature is invalid on some regions, 

such as white lane and gray road. These regions will be partially clustered as sky region. 

   
(a) (b) (c) 

Fig. 2. Dark channel++ feature extraction; (a) Input hazy image; (b) Dark channel; (c) Dark channel++. 
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Considering the majority of traffic image sensors are vertical to the ground, the 

smaller row number in the image, the greater distance between the object and the image 

sensors. Based on the observation, we introduce the row number as the additional infor-

mation to upgrade the dark channel, as shown in Eq. (2). 

{ , , }min ( , )c

DC c r g b

M
F I i j

i
++ =  (2)

 

where i and j are the row index and the column index of the pixel, and M is the sum of the 

rows. I is the input hazy image consisting of R, G, B channels. We also calculate the dark 

channel++ map which is shown in Fig. 2 (c). The color of sky regions become warmer and 

the color of foreground objects is colder than before. Besides, the regions in the foreground 

of dark channel++ which is not applicable for the typical dark channel show the satisfying 

results. 

To predict the perceived local contrast on natural images, Choi et al., [29] employed 

contrast energy which contains color information and gradient information. The contrast 

energy map of Fig. 3 (a) is shown in Fig. 3 (b), we can find that the values in sky region 

and non-sky region are diverse. However, the difference between two regions is unappar-

ent and the boundary is fuzzy in traffic scenes. 

   
(a) (b) (c) 

Fig. 3. Contrast energy++ feature extraction; (a) Input hazy image; (b) Contrast energy; (c) Contrast 

energy++. 

 

To make up for the deficiency of this feature, we add row number information and 

luminance information to the calculation process of contrast energy++. The process can be 

written as Eqs. (3)-(5): 

( , )

( , )
CE

Z i j
F

Z i j k





++


= −

+ 
 (3)

 

2 2( , ) ( ( , ) ) ( ( , ) )h vZ i j I i j g I i j g=  +   (4)
 

[0.5( ) ]
( , )

( ) / 3

R G B i
I i j

R G B

+ − +
=

+ +
 (5)

 

where i and j are the row index and the column index of the pixel and R, G, B are the three 

channels of the input hazy image. The symbol  indicates convolution, and gh and gv are 

the horizontal and vertical second-order derivatives of the Gaussian function respectively. 
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 is the maximum value of Z(i, j), k is a contrast gain fixed at 0.1, and  is the noise thres-

hold fixed at 0.2287. The obtained contrast energy++ map using our method shows a better 

visual appearance, since the difference between two regions increases and the boundary 

seems clearer. 

 

(B) Segmentation Method 

Inspired by the existing sky segmentation methods, we propose our segmentation 

method using the rough to fine scheme. The main steps of our approach include k-means 

clustering, training data extraction and SVM classification which are introduced in details 

as follows. 

In the feature extraction stage, we obtain two complementary features which can dif-

ferentiate sky regions and non-sky regions with high robustness. Hence, we can utilize 

them as inputs for unsupervised learning algorithm − k-means clustering to get the prelim-

inary segmentation results, and the detailed steps are as follows: 

Step 1: Transform the two-dimension dark channel++ and contrast energy++ matrices to 

column vectors and perform normalization. 

Step 2: Take the two column vectors as inputs, set the number of clusters to two and per-

form clustering to get the cluster indices and the cluster centroid locations. 

Step 3: Determine sky regions and non-sky regions according to the cluster centroid loca-

tions. 

Step 4: Transform the cluster indices vector to a two-dimension binary image with the 

same size as the hazy image. 

The rough sky segmentation results are shown in Fig. 4 (b). Although the boundary 

between two regions are not accurate, most regions of the result are correct. Thus, we can 

extract the most likely regions of the sky and non-sky from the above result for further 

processing. 

 

   
 

   

(a) Input hazy image. (b) Rough segmentation results. (c) Fine segmentation results. 

Fig. 4. Sky segmentation results. 
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Based on a large-scale of statistics, we give two assumptions regarding the sky re-

gions in binary images: (i) the proportion of sky regions must more than 0.1; and (ii) the 

sky regions must be partly or totally at the top of the images. Using the assumptions, we 

propose our method to extract the most likely sky regions which is introduced in details in 

Algorithm 1, and the non-sky regions can be extracted through a similar process. 

 

Algorithm 1: Sky Region Training Data Extraction 

Input: the rough segmentation map B0, the number of rows M, and the number of col-

umns N 

Output: sky region range [0, pmin; M/10, pmax] 

Auxiliary function: 

 function for returning the first index of zero in a vector: out = find0(in) 

 function for returning the indexes of the longest num subsequence in a vector: [first, 

last] = maxsubsequence(in, num)  

Begin 

 1: s[N] = {0};  

 2: for index from 1 to N do 

 3:  s[j] = find0(B0(:, j)); 

 4: end for 

 5: pmin = 0; pmax = 0; 

 6: for index from 1 to N do 

 7:  s[j] ≥M/10 ? M/10 : 0; 

 8: end for 

 9: [pmin, pmax] = maxsubsequence(s, M/10); 

End 

 

Now, we can obtain the training data of sky regions and non-sky regions. To improve 

the applicability of the SVM classifier, we need more good features like color saturation, 

hue disparity, Canny edge, color gradient. All above features are extracted from the hazy 

image using the method [30]. Then we combine the dark channel++ feature, the contrast 

energy++ feature and the above four features as inputs for supervised learning algorithm - 

SVM to get the refined segmentation results, as shown in Fig. 4 (c).  

The classification process is described as follows. First, we transform the feature ma-

trices in ROI regions to column vectors and train the SVM classifier. Then, the feature 

matrices in whole hazy image are transformed to column vectors and the label of pixels 

can be obtained. Finally, we transform the label vector to a binary image with the same 

size as the hazy image. Experimental results show that the proposed sky segmentation al-

gorithm is simple but effective in both precision and efficiency, and most traffic road 

scenes generally have sky region. Thus, it can be used in traffic dehazing applications. 

3.2 Atmospheric Light Estimation 

The distribution of haze density is inconsistent across the entire image. However, the 

majority of existing methods neglect the haze density and fix the atmospheric light value 

for model simplification which cause over-enhancement and the remaining haze in local 

regions. Besides, the atmospheric light is not always uniform in an image so that the re- 
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stored image is prone to suffer from halo artifacts and uneven brightness. Hence, a novel 

atmospheric light estimation method is proposed, which consists of four parts, as shown in 

Fig. 5. 

First, we perform region division based on haze density via a simple but effective 

method − k-means clustering, and the input image is divided to three parts including sky 

region (dense haze region), medium haze region and thin haze region. Then, we find the 

brightest region of the image using a hierarchical searching method based on quad-tree 

subdivision, and the mean value of the region can be regarded as the atmospheric light in 

dense haze region. Next, a statistical method is used to calculate the atmospheric light in 

thin haze region. Finally, we conduct a series of smooth processing to avoid sudden change 

of the atmospheric light values. 

Input Image Density Division Quad-tree Subdivision

ForegroundSmooth ProcessingAtmospheric Light

Linear Interpolation

Mean Filtering

 
Fig. 5. Illustration of the proposed atmospheric light estimation approach. 

 

(A) Haze Density Region Division 

In Section 3.1, we realize sky segmentation in hazy image so that we can easily extract 

non-sky regions from images now. Besides, the dark channel++ of a hazy image approxi-

mates the haze denseness well and is not affected by white lane or gray road. Hence, the 

dark channel++ feature can be used as a vector for k-means clustering that realizes haze 

density division in non-sky regions. However, the results of k-means clustering in our ex-

periment show that the regions with similar haze density is discontinuous that may cause 

some noise in local regions. To avoid this problem, we introduce the position feature which 

has relationship with the distance between the objects and the image sensor. The realization 

process can be described as: 

Step 1: Calculate the dark channel++ matric and set the element values in sky region to 

minus one. 

Step 2: Calculate and normalize the position matric that is each element of every row 

equals the row number divided by the number of rows and note that the element 

value in sky region are set to minus one. 

Step 3: Transform the two-dimension dark channel++ and position matrices to column 

vectors. 

Step 4: Take the two column vectors as inputs, set the number of clusters to three and 

perform clustering to get the cluster indices and the cluster centroid locations. 
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Step 5: Determine sky region, medium haze region and thin haze region according to the 

cluster centroid locations. 

Step 6: Transform the cluster indices vector to a two-dimension gray image with the same 

size as the hazy image. 

 

(B) Atmospheric Light in Distant Regions 

In traffic scenes, the sky regions are always essential parts of images. Besides, the sky 

region is always the brightest of the whole image based on statistical analysis. Thus, we 

make some improvements on traditional quad-tree decomposition algorithm that can be 

used in images with random sizes. To extract the atmospheric light in distant region, the 

following steps are conducted. 

First, we set the stopping condition that is the difference value between maximum 

value and minimum value of the mean values of the corresponding four region is less than 

0.1, and input the hazy image. Then, the hazy image is decomposed to four approximately 

equal regions and the mean value of pixels in each sub-block are calculated that is the score 

of each sub-region. Next, the sub-region with the highest score are decomposed until the 

stopping condition is satisfied. Finally, the brightest region of the image can be obtained 

and the atmospheric light in distant region is obtained. 

 

(C) Atmospheric Light in Near Regions 

In Section 3.2(A), the gray image which represents the haze density in different re-

gions is obtained. Here, we can use it to set the values of pixels in other regions to zero 

and extract the thin haze region which can be used as the input. The main route to realize 

atmospheric light estimation by statistical method is extracting the brightest pixels in top 

1 percent, and them calculate the mean value of these pixels. More details about atmos-

pheric light estimation in near regions are shown in Algorithm 2. 
 

Algorithm 2: Atmospheric Light Estimation in Near Regions 

Input: the thin haze region If, and the cumulative probability p 

Output: atmospheric light [whiteR, whiteG, whiteB] 

Auxiliary function: 

 function for converting the true color image RGB to the grayscale image I: I = 

rgb2gray(RGB) 

 function for returning quantiles of the elements in vector X for the cumulative probabil-

ity p in the interval [0, 1]: Y = quantile(X, p) 

 function for returning the row and column indexes of the elements satisfying conditions 

in array X: [row, col] = find(X, conditions) 

 function for returning the linear indices ind corresponding to the row, column and di-

mension subscripts in row, col and dim for a matrix of size sz: ind = sub2ind(sz, 

row, col, dim) 

 function for returning a row vector whose elements are the lengths of the corresponding 

dimensions of A: sz = size(A) 

 function for returning an array of ones where the size vector, sz, defines size(A): X = 

ones(sz) 

 function for returning the mean along dimension dim: M = mean(A, dim) 
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Begin 

 1: Ifg = rgb2gray(If); 

 2: ival = quantile(Ifg(:), p); 

 3: [rind, cind] = find(Ifg >= ival); 

 4: sel(:,1) = If (sub2ind(size(If), rind, cind, ones(size(rind)))); 

 5: sel(:,2) = If (sub2ind(size(If), rind, cind, 2*ones(size(rind)))); 

 6: sel(:,3) = If (sub2ind(size(If), rind, cind, 3*ones(size(rind)))); 

 7: [whiteR, whiteG, whiteB] = mean(sel,1); 

End 

 

(D) Smooth Processing 

Although we obtain the atmospheric light values in dense haze region and thin haze 

region, we cannot use it directly due to the sudden change of atmospheric light values in 

neighboring regions. To avoid this problem, we take the medium haze region as a transition 

region and perform interpolation in vertical direction of the atmospheric light map. This 

operation is just effective in images always contain sky regions in the first few rows. As 

shown in Fig. 6 (a), the sky region just takes the left upper part of the image, so the sudden 

change in horizontal direction is serious. For further smooth processing, we perform mean 

filtering on the preliminary atmospheric light map and the final result is satisfying, as 

shown in Fig. 6 (c). 

   

(a) Input hazy image. (b) Interpolation result. (c) Mean filtering result. 

Fig. 6. Smooth processing result. 

 

3.3 Physics-based Haze Removal in HSI Color Space 

Single image dehazing is a challenging problem in the computer vision field, and 

many researchers try to solve the problem in RGB color space. Thus, various novel priors 

(e.g., dark channel prior, non-local prior, color attenuation prior, etc.) are proposed. How-

ever, many other problems (e.g., color distortion, halo artifacts, missing details, etc.) are 

produced to the restored images that affect the image quality. Considering different priors 

possess different advantages, we try to take advantages of various effective priors and pro-

pose a haze removal algorithm based on HSI color space. The proposed method consists 

of four parts. 

First, we perform color space transformation on the hazy image and extract the H, S, 

and I matrices, respectively. Then, the I channel can be restored and the relationship be-

tween I and S matrices are deduced, and the restored S channel can be obtained. Finally, 

we keep the H channel fixed and get the preliminary dehazing results. 

(A) Color Space Transformation 

As show in Eq. (6), the transformation formulas are not complex, and the dark channel  
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prior and non-local prior can be easily combined in HSI color space. The process can be 

written as: 

2

2

3min( , , )
1

3

( ) ( )
where arccos .

2 ( ) ( )( )

G B
H

G B

R G B
S

R G B

R G B
I

R G R B

R G R B G B



 



 
= 

− 


= −
+ +

+ +
=



 − + −
 =
 − + − − 

 (6) 

In [14], He et al., propose a dark channel prior based on a kind of statistics of the 

haze-free natural images. The prior can be described using Eq. (7) that means at least one-

color channel having very low intensity at some pixels in most of the non-sky regions. 

{ , , } ( )
( ) min ( min ( ( )))dark c

c r g b y x
J x J y

 
=  (7) 

where Jdark is the dark channel of J tending to be zero, Jc is a color channel of J and Ω(x) 

is a local region that is centred at x. In HSI color space, we can perform the max operation 

on S channel and insert Eq. (7) into the equation, thus the similar prior can be obtained. 

( )

3
max ( ) 1 ( )dark

y x
S J x

R G B
= −

+ +
 (8) 

where 3/(R+G+B) is always positive, and Jdark(x) tends to be zero, so the Eq. (8) can be 

simplified to Eq. (9). 

( )
max ( ) 1
y x

S


=
( )

max ( ) 1
y x

S


=  (9) 

Hence, the dark channel prior has an equivalent definition in HSI color space that can 

be applied in different ways. In [17], Berman et al., observe that colors of a haze-free image 

are well approximated by a few hundred distinct colors forming tight clusters in RGB space, 

and the color clusters become haze-lines in corresponding hazy image. To show the obser-

vation clearly, we depict the haze-lines in RGB and HSI color space respectively, as shown 

in Figs. 7 (a) and (b). In most haze conditions, the airlight is tend to pure white, so the 

haze-lines can be assumed to pass through the fixed point. Furthermore, it is obvious that 

the hue value is invariant by projecting haze-lines on to the HS plane, as shown in Fig. 7 

(c). Hence, we take this strategy to keep the color fidelity. 

(B) Transmission Map of I Channel 

In essence, the I channel image is a gray image, satisfying the atmospheric scattering 

model which is shown in Eq. (1), and the I value has linear relationship with R, G and B 

values. Hence, Eq. (10) can be easily deduced. 
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Fig. 7. Different forms of haze-lines; (a) Haze-lines in RGB space; (b) Haze-lines in HSI space; (c) 

Haze-lines are projected on to the HS plane. 

 

(B) Transmission Map of I Channel 

In essence, the I channel image is a gray image, satisfying the atmospheric scattering 

model which is shown in Eq. (1), and the I value has linear relationship with R, G and B 

values. Hence, Eq. (10) can be easily deduced. 

( , ) ( , ) ( , ) (1 ( , ))J I AI i j I i j t i j I t i j= + −  (10) 

where IJ is the intensity of the hazy image, II is the intensity of the haze-free image, and IA 

is the intensity of the atmospheric light. 

Inspired by the infrared image defogging technology, some measures have been taken 

to calculate the transmission map of the single channel image. Li [31] observes single 

channel images and finds that gray value changes in regions with different relative depth 

information and the relative depth information of adjacent pixels is similar. Based on the 

observation, we take the I channel image as the depth map and deduce the transmission 

map. 

0

1 1
( , ) (1 )(1 ( , ))It i j I i j

e e




 

= − − + 
 

 (11) 

where  is the compensation coefficient, and  is the atmospheric scattering coefficient. 

In our experiments, we find that when  set to be 0.85 and  set to be 0.98 can provide the 

best performance. 

 

(C) Transmission Map of S Channel 

Since the process of calculating S values contain nonlinear operation, we cannot apply 

the atmospheric scattering model to variable S directly. For simplification, we make an 

assumption that the saturation of images still satisfies Eq. (1) and obtain Eq. (12). 

( , ) ( , ) ( , ) (1 ( , ))J I AS i j S i j T i j S T i j= + −  (12) 
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where SI is the saturation of the hazy image, SJ is the saturation of the haze-free image, SA 

is the saturation of the atmospheric light approximately equal to zero, and T is the trans-

mission map of S channel which is different from t in Eq. (10). Therefore, Eq. (12) can be 

simplified to the following form: 

( , ) ( , ) ( , ).J IS i j S i j T i j=  (13) 

Next, we can deduce the T based on the definition formula of saturation and Eq. (13). 

[ min( , , )]

[ min( , , )]

J J J JI

J I I I I

I R G BI
T

I I R G B

−
= 

−
 (14) 

Since the min operation will not change the relationship in Eq. (10), we can deduce 

the following equation: 

min(RJ, GJ, BJ) = t  min(RI, GI, BI) + (1 − t)  min(RA, GA, BA). (15) 

Besides, the airlight in haze conditions is nearly pure white. Thus, the R, G and B 

values equal approximately that Eq. (16) can be deduced. 

min( , , )A A A AI R G B  (16) 

Now, we can get the simple Eq. (17) by inserting Eq. (10), (15) and (16) into Eq. (14). 

I

J

I
T t

I
=   (17) 

 

 

   

 

   
(a) (b) (c) (d) (e) 

Fig. 8. Preliminary haze removal result; (a) Input hazy image; (b) I channel and S channel of hazy 

images; (c) Transmission maps of I channel and S channel; (d) Dehazing results of I channel and S 

channel; (e) Dehazing result of input hazy image. 

 

3.4 Image Enhancement 

Fig. 8 (d) shows the haze removal images in I and S channels, and we keep the hue 

values fixed and transform the dehazing result back to RGB color space. Fig. 8 (e) shows the 

final image. From the results, we can clearly see that our method can solve the problems of  
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color distortion and halo artifacts, but it still suffers from missing details for partial darkness.  

Thus, image enhancement as a post-processing step is carried out to ensure a visual 

pleasing result. We try various approaches (e.g., gamma correction, contrast limited adap-

tive histogram equalization (CLAHE), guided image filtering, etc.) to handle the problem 

of partial darkness and restore more detail information. Note that Gamma correction and 

CLAHE can handle the problem of partial darkness well, but gamma correction causes 

overexposure and CLAHE worsens the problem of missing details. Guided image filtering 

restores more detail information but worsens the problem of partial darkness. Therefore, 

we propose a novel post-processing method that includes the following three steps: 

Step 1: Improve the overall image brightness by multiplying a constant parameter K which 

is determined by the image itself. 

Step 2: Improve the local image brightness by CLAHE, set the contrast enhancement limit 

parameter to 0.001, and the desired histogram shape parameter to ‘rayleigh’. 

Step 3: Highlight detail information by guided image filtering, set the local window radius 

parameter to be 15, and the regularization parameter to be 0.004. 

Fig. 9 shows the intermediate results of post-processing. Compared with Fig. 9 (a), 

the visibility of Fig. 9 (d) improves apparently. Note that the constant parameter K is re-

lated with the pixel values of sky region. Hence, we can take advantage of the sky segmen-

tation results to get the K value. First, the number of sky pixels Nsky is counted. Then, the 

intensity values of the hazy image are arranged from large to small. Next, the intensity 

value Isky whose index is equal to Nsky are found. Finally, the constant parameter K approx-

imately equal to the reciprocal of Isky. 

    
(a) (b) (c) (d) 

Fig. 9. Image enhancement result; (a) Preliminary dehazing result; (b) Overall brightness improve-

ment result; (c) Local brightness improvement result; (d) Detail enhancement result. 

4. EXPERIMENTAL RESULTS 

To demonstrate the effectiveness of the proposed algorithm, a large number of exper-

iments have been done in different conditions including synthetic images and real-world 

images. Note that image enhancement is executed as post-processing of other dehazing 

methods for fairness. We compare the dehazing results with the state-of-the-art methods, 

such as dark channel prior (DCP) [14], Tarel [15], boundary constrained context regulari-

zation (BCCR) [16], non-local image dehazing (NLD) [17], color attenuation prior (CAP) 

[18], DehazeNet [23] and AOD-Net [24]. Note that the most of the following experiments 
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Fig. 10. Dehazed results compared with state-of-the-art methods on synthetic hazy images. 

are implemented in MATLAB R2019b on an Intel Core i7 3.19Ghz PC with 16GB RAM; 

especially, AOD-Net is implemented in Pytorch on an Intel PC with GTX1660Ti GPU. 

4.1 Qualitative Comparison 

(A) Synthetic Image Tests 

In our experiments, the eight algorithms are tested using the synthetic hazy images 

from the SOTS dataset which contains 1000 synthetic test images [32]. One can clearly 

see that the DCP method can remove most of the haze. However, compared with the 

ground truth images, most regions of the images seem too dark especially in non-sky re-

gions. Besides, the dehazing results of sky regions may be bad for invalid dark channel 

prior. For example, color deviation of the white clouds in the first image and third image, 

halo artifacts in the fourth image and fifth image, and some noise in the second image, etc. 

Tarel’s method can remove most of the haze except the corners or gaps, such as the corners 

of the buildings and the gaps of the cars in the fourth image. Besides, his results suffer 

from over-enhancement. For example, the road in the fourth image is darker than it should 

be, and the color of the pedestrian’s clothes in the fifth image is different from the ground 

truth. As can be seen in the figure, the results generated by the BCCR method share the 

similar visual effects with the DCP method. Although it overcomes the problem of partial 

darkness especially in non-sky regions, the problems of halo artifacts and noise are worse 

in sky regions. Compared with the above methods, the NLD method makes a good perfor-

mance in non-sky regions from the first to the fourth image, but the haze around the pe-

destrians in the fifth image still exist. Besides, this method still cannot keep the fidelity of 

the sky regions in most images. From the results generated by the CAP method, we can 

find all dehazing images are natural and have no halo artifacts. Comparing with the ground 

truth, we find most regions of the CAP method is satisfying except the road regions which 

are darker than those in the ground truth. Compared with the conventional methods, the 

dehazing results of deep learning-based methods seem more natural and contain no halo 

artifacts. However, the color deviation phenomenon widely exists in the results generated 

by the AOD-Net method, especially in real-world images. Besides, the DehazeNet method 

can remove most haze in near regions, but the dehazing effect is poor in distant regions. 

As can be seen in the next-to-last row of Fig. 10, the proposed method has no such 

problems. The haze of our method is totally removed, especially around corners and gaps. 

The sky regions are natural and have no halo artifacts, the non-sky regions are bright es-

pecially in road regions, and the details of the scene objects in our results are also rich. 
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Fig. 10. (Cont’d) Dehazed results compared with state-of-the-art methods on synthetic hazy images. 

 

(B) Real-World Image Tests 
Apart from synthetic images, we also collect some challenging real-world images to 

compare with the above six algorithms. These images can be divided into two categories: 

general environment and dark environment. 



FAN GUO, JUN-FENG QIU, JIN TANG, WEI-QING LI 

 

240 

 

In general environment, most conventional methods can remove most of the haze ex-

cept the results of the CAP method contain white blocks in the third image and fourth 

image. But the CAP method can keep the fidelity of the sky regions which is the deficiency 

of other methods. In contrast, the deep learning-based methods contain few halo artifacts 

and the fidelity of sky regions is better than conventional methods. In general, the dehazing 

results of DehazeNet method have a comparable perception with our results. Besides, in 

our experiments we also find that the dehazing results of all the methods suffer from partial 

darkness, but the final results are pleasing due to our effective post-processing. Thus, we 

can deduce that all the results generated by the existing state-of-the-art methods share sim-

ilar defects with synthetic images, but even more serious is the contrast and color of the 

dehazing results. From experimental results we can see that the proposed method can to-

tally remove the haze, keep the color natural and restore more details, as shown in Fig. 11. 
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Fig. 11. Different dehazed results on the general environment of the real-world hazy images. 



TRAFFIC IMAGE DEHAZING USING SKY SEGMENTATION AND COLOR SPACE CONVERSION 241 

Fig. 12. Different dehazed results on the dark environment of the real-world hazy images. 
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Fig. 11. (Cont’d) Different dehazed results on the general environment of the real-world hazy images. 

 

For dark environment, the problems of color deviation and partial darkness are worse 

than that in general environment. As we can be seen in Fig. 12, the roads turn blue in the 

first image and second image obtained by DCP method, Tarel’s method, NLD method and 

DehazeNet method. The jungles in the first image and second image obtained by DCP 

method, AOD-Net method and DehazeNet method also seem too dark. In contrast, the 

proposed method can remove most haze, increase the brightness, keep the color fidelity, 

and restore more detail information as well, as shown in Fig. 12. 
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Fig. 12. (Cont’d) Different dehazed results on the dark environment of the real-world hazy images. 

 

The simulation was built using a MATLAB simulator. The collisions are not dis-

cussed under the assumption that they can be solved using MAC layer protocols, and the 
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signals can be received only in LOS propagation. In simulation, we derived a transmit 

power value by a real distance in Eq. (4) and we can obtain a simulated distance by applied 

this transmit power value in Eq. (1). Each node was forced to remain active during the 

localization. The sensor nodes were deployed in an effective 300 × 300m area that was 

free from obstacles, and 100 sensor nodes were randomly deployed as a Gaussian distribu-

tion. In addition, the degree of irregularity (DOI) in the radio propagation model was app- 

lied in the simulation to determine whether the proposed scheme would be practical [16]. 

4.2 Quantitative Comparison 

(A) Synthetic Image Tests 

To quantitatively assess the performance of six algorithms in synthetic images, we 

calculate the MSE and SSIM [33] of the results in Fig. 10 for comparison. The MSE can 

be calculated as: 

21
MSE gray grayJ G

N
= −  (18) 

where Jgray is the gray image of the dehazing image, Ggray is the gray image of the ground 

truth image, and N is the number of pixels within the image. A lower MSE represents a 

better dehazing effect. The index of SSIM is used to evaluate the ability to preserve the 

structural information of the algorithms. A higher SSIM means that the dehazing image 

shares more similarity with the ground truth image, so the result is more acceptable. 

Table 1. MSE and SSIM values on the synthetic images in Fig. 10. 

Method 
MSE SSIM 

s1 s2 s3 s4 s5 Mean s1 s2 s3 s4 s5 Mean 

DCP 2450.5 1393.5 8042.2 2137.6 7337.2 4272.2 78.4% 85.7% 55.6% 80.0% 54.5% 70.8% 

Tarel 1604.3 888.7 2623.0 1326.0 1260.0 1540.4 81.7% 89.3% 76.4% 78.4% 87.6% 82.7% 

BCCR 1923.1 2739.2 3404.2 2143.5 5044.3 3050.9 83.6% 71.1% 81.1% 83.0% 72.0% 78.2% 

NLD 768.4 2404.9 2854.8 1727.5 3287.8 2208.7 92.0% 78.3% 81.2% 83.5% 80.1% 83.0% 

CAP 339.6 313.3 547.1 657.9 686.0 508.8 93.9% 97.4% 91.9% 93.2% 94.9% 94.3% 

AOD-Net 360.4 1251.9 850.5 741.3 507.1 742.2 92.5% 89.3% 87.1% 86.7% 92.3% 89.6% 
DehazeNet 616.5 933.9 566.2 913.8 930.8 792.2 89.4% 95.7% 93.9% 89.7% 94.8% 92.7% 

ours 371.7 968.2 250.4 380.5 444.1 483.0 94.7% 92.4% 94.3% 95.1% 95.4% 94.4% 

 

The quantitative results are shown in Table 1. The mean MSE of the DCP method is 

the highest and its mean SSIM is the lowest for its not-so-good performance in sky regions 

and partial darkness in non-sky regions. Since the BCCR method overcomes some short-

comings of the DCP method, it achieves better MSE and SSIM results. The performances 

of the NLD method and Tarel’s method are medium and the dehazing results generated by 

the CAP method and our method are the best. For deep learning-based methods, their eval-

uation indexes are generally better than most conventional methods. Our results generally 

achieve the lowest MSE value and the highest SSIM value, which demonstrated that the 

proposed method outperforms the seven existing algorithms. 

 

(B) Real-World Image Tests 

For objectively assessing the performance of six algorithms in real-world images, we  
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use two indexes − the mean gradient change rate r and the coefficient of black pixels  [34] 

as the assessment indexes for detail restoration. Besides, two novel indexes are also adop-

ted as the assessment of color fidelity [33, 34]. The calculation equations of the above 

indexes are shown in Eqs. (19)-(22). 

/J Ir r r=  (19) 

where rJ is the mean gradient of the dehazing image, and rI is the mean gradient of the hazy 

image. A higher r means that the dehazing image restores more details comparing with the 

hazy image. 

0 /JgrayN N =  (20) 

where NJgray0 is the number of black pixels in the gray image of the dehazing image, and N 

is the number of pixels within the image. A lower  means that the dehazing image can 

solve the partial darkness problem better. 

21
HMSE H HJ I

N
= −  (21) 

where JH is the hue image of the dehazing image, IH is the hue image of the original image, 

and N is the number of pixels within the image. 

( )num ( ) 0.01
diff H H

diff

N
N diff J I

N
 = = −   (21) 

where Ndiff is the number of little change pixels between the dehazing hue image and orig-

inal hue image, and N is the number of pixels within the image. A lower HMSE or  means 

that the dehazing image can solve the color deviation problem better. 

Considering most conventional methods contain halo artifacts in sky regions, we just 

calculate the mean gradient change rate r in non-sky regions. The corresponding results 

are shown from Tables 2-5. It is obvious that the proposed method overcome the partial 

darkness problem and restore more detail information compared with other state-of-the-art 

methods. Besides, our post-processing method also helps other methods to overcome the 

above two problems. Therefore, we can deduce that our algorithm generally achieves the 

best results on all indexes, which is consistent with our subjective observations. 

Table 2. Mean gradient change rate on real-world images in Figs. 11 and 12. 

Method 
r 

Fig. 11(r1) Fig. 11(r2) Fig. 11(r3) Fig. 11(r4) Fig. 12(r1) Fig. 12(r2) Fig. 12(r3) Mean 

DCP 2.886 2.088 2.857 4.140 2.674 3.759 4.764 3.310 

Tarel 3.682 2.872 4.438 5.016 4.063 5.151 5.904 4.447 

BCCR 3.089 2.133 3.491 4.206 3.219 4.110 5.027 3.611 

NLD 3.185 2.216 3.101 4.135 2.904 4.089 5.144 3.539 

CAP 2.369 1.873 3.094 4.068 2.580 3.271 3.706 2.994 

AOD-Net 2.596 2.137 2.975 4.086 2.661 3.622 4.294 3.196 

DehazeNet 3.099 2.087 3.178 4.344 3.042 3.792 4.464 3.429 

ours 3.131 2.170 3.361 4.452 3.501 3.829 4.765 3.601 
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Table 3. Coefficient of black pixels on real-world images in Figs. 11 and 12. 

Method 
σ 

Fig.11(r1) Fig.11(r2) Fig.11(r3) Fig.11(r4) Fig.12(r1) Fig.12(r2) Fig.12(r3) Mean 

DCP 0.000% 0.000% 0.603% 0.000% 1.431% 1.830% 3.705% 1.081% 

Tarel 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

BCCR 0.052% 0.000% 0.000% 0.000% 0.009% 0.000% 0.000% 0.009% 

NLD 0.174% 0.718% 0.841% 1.305% 0.000% 0.058% 0.223% 0.474% 

CAP 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

AOD-Net 0.140% 0.131% 0.093% 0.053% 0.138% 0.174% 0.011% 0.106% 

DehazeNet 0.000% 0.000% 0.000% 0.000% 0.624% 0.241% 0.000% 0.124% 

ours 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 

Table 4. HMSE values on real-world images in Figs. 11 and 12. 

Method 
HMSE 

Fig.11(r1) Fig.11(r2) Fig.11(r3) Fig.11(r4) Fig.12(r1) Fig.12(r2) Fig.12(r3) Mean 

DCP 1243.8 24.9 4846.0 1006.8 7401.2 3552.6 265.9 2620.2 

Tarel 1535.8 18.8 3413.1 2034.8 6943.5 5016.9 615.9 2797.0 

BCCR 2210.1 23.9 5239.1 1880.6 6693.5 3554.0 1969.3 3081.5 

NLD 1853.5 1859.1 6746.3 2085.8 7369.0 3628.2 320.0 3408.8 

CAP 1120.2 28.7 2763.7 1493.7 6415.9 2641.9 144.1 2086.9 

AOD-Net 5512.3 1742.9 5553.1 5248.6 9587.1 5949.9 2173.3 5109.6 

DehazeNet 960.9 19.5 1074.2 1995.9 4454.9 2848.1 171.5 1646.4 

ours 60.6 192.0 210.1 322.3 883.8 928.4 172.1 395.6 

Table 5. Coefficient of color deviation pixels on real-world images. 

Method 
 

Fig.11(r1) Fig.11(r2) Fig.11(r3) Fig.11(r4) Fig.12(r1) Fig.12(r2) Fig.12(r3) Mean 

DCP 59.5% 7.1% 73.0% 49.4% 89.6% 95.0% 85.4% 65.6% 

Tarel 57.5% 24.9% 76.7% 74.8% 93.9% 92.4% 81.3% 71.6% 

BCCR 69.9% 7.2% 65.6% 43.0% 74.5% 78.9% 70.4% 58.5% 

NLD 72.3% 68.0% 79.8% 75.4% 92.5% 74.0% 84.5% 78.1% 

CAP 52.3% 7.9% 50.6% 53.7% 67.1% 76.6% 58.6% 52.4% 

AOD-Net 92.8% 70.3% 96.3% 94.8% 95.6% 95.6% 96.7% 91.7% 

DehazeNet 39.4% 9.4% 60.8% 63.3% 90.1% 95.0% 69.2% 61.0% 

ours 11.8% 12.7% 25.1% 28.1% 46.5% 32.1% 46.1% 28.9% 

 

(C) Complexity 

In terms of time complexity, for an image of size r ×  c, the complexity of the dehazing 

part is O(r ×  c). To reduce the executing time of sky segmentation and haze density division, 

we resize the input image to 256 ×  256, which affect little final accuracy but save much 

time. Thus, the running time of our algorithm can be reduced to less than 1s. As shown in 

Table 6, the time consumption of our method increases slowly with the resolution increas-

ing. It seems that the execution time of AOD-Net method has no relevance to image reso-

lution for adequate computing power of GPU. The CAP method and our method are much 

faster than others, and our method makes a better performance on HD resolution. With the 

development of communication technologies, HD videos become common things in our 

daily life, thus our dehazing algorithm has a broader application prospect. 
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Table 6. Time consumption comparison with the state-of-the-art dehazing methods. 
Image  

Resolution 
DCP Tarel BCCR NLD CAP AOD-Net DehazeNet ours 

640×345 11.930s 1.431s 1.683s 5.390s 0.453s 3.815s 1.427s 0.547s 

400×600 12.428s 1.485s 1.711s 5.879s 0.496s 3.836s 1.537s 0.607s 

576×768 23.056s 2.229s 2.325s 5.906s 0.712s 3.900s 3.041s 0.735s 

1210×628 41.416s 6.064s 3.537s 8.002s 1.216s 3.886s 5.248s 1.094s 

2074×1556 392.530s 49.787s 11.563s 18.964s 4.844s 4.058s 22.304s 3.428s 

4.3 Traffic Scene Applications 

In this section, two traffic applications, road marking features extraction and vehicle 

detection, are presented to verify the effectiveness of the proposed method. 

 

(A) Road-Marking Features Extraction 

Road-marking detection is an essential part in traffic scene, which can help the traffic 

police judge the legal liability in traffic accidents. Here, we utilize the gray histogram-

based method to extract the road marking features. As can be seen in Fig. 13, the extraction 

results of DCP, BCCR and NLD methods make a little improvement compared with the 

original image. The CAP method extracts the least road-marking features, and the Tarel’s 

method extracts the most of the road-marking features. However, compared with the result 

using our method, there are more non-marking pixels that are mistaken as the road marking 

features by using Tarel’s method. That’s because Tarel’s method has over-enhancement 

problem. Thus, the conclusion that our method makes the best performance for more ef-

fective information extraction and less noise can be drawn. 

       
(a) (b) (c) (d) (e) (f) (g) 

Fig. 13. Road-marking feature extraction results; (a) Feature extraction result for original image; (b) 

Feature extraction result for DCP method; (c) Feature extraction result for Tarel’s method; (d) Fea-

ture extraction result for BCCR method; (e) Feature extraction result for NLD method; (f) Feature 

extraction result for CAP method; (g) Feature extraction result for our method. 

 

       
(a) (b) (c) (d) (e) (f) (g) 

Fig. 14. Vehicle detection results; (a) Original image; (b) Detection result obtained by DCP method; 

(c) Detection result obtained by Tarel’s method; (d) Detection result obtained by BCCR method; (e) 

Detection result obtained by NLD method; (f) Detection result obtained by CAP method; (g) Detec-

tion result obtained by our method. 
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(a) Original image. (b) DehazeNet method. (c) Our method. 
Fig. 15. Dehazed results on other scene images. 

 
 

(B) Vehicle Detection 

The proposed dehazing method can also improve the detection of vehicles. We choose 

two thousand haze-free traffic images and collect the positive samples and negative sam-

ples. Then, the corresponding histogram of oriented gradient (HOG) features are calculated 

to train the SVM classifier. As shown in Fig. 14, we extract the HOG features of the seven 

images and perform vehicle detection. However, the white truck can’t be detected in the 

original image and the images restored by Tarel, BCCR and CAP methods.  

The red bounding boxes in the second, fifth and seventh images show that vehicle 

detection result in our restored image is most similar to the ground truth, when compared 

with the results in DCP and NLD restored images. Thus, many traffic scene applications 

can be benefit from the proposed algorithm. 

5. DISCUSSION 

To verify the generalization ability of our algorithm, a large quantity of experiments 

is carried out on other scenes. Some illustrative examples are shown in Fig. 15. Since the 

dehazing performance of DehazeNet method is better than other state-of-the-art methods 

in most cases, we thus choose it as a comparison target. As can be seen in Fig. 15, our 

algorithm can remove most haze in near regions and distant regions, while the DehazeNet 

method makes a poor performance in distant regions (e.g., the mountain in the first image, 

and the horizon in the second image). Besides, the problem of partial darkness does not 

exist in our dehazing results, so more effective information can be extracted from the re-

stored image (e.g., jungles in the third image). Thus, we can deduce that although our al-

gorithm is designed for traffic scene, it can perform well for other scenes as well. 
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5. CONCLUSIONS 

Traditional haze removal methods suffer from the problems of color distortion, partial 

darkness and missing details. These problems will make a not-so-good performance in  

general and dark environment. To solve this problem, we propose an efficient traffic image 

dehazing method using sky segmentation and color space conversion. Specifically, in sky 

segmentation process, we propose two effective features including dark channel++ and 

contrast energy++ to separate the sky region in traffic scene. Since the atmospheric light 

is not always uniform in an image, we estimate the local atmospheric light based on the 

haze density. Then, the hazy image is transformed from the RGB color space to the HSI 

color space, and the restored I and S channel can be finally obtained. We also improve the 

local brightness and detail information by CLAHE and guided filtering, respectively. Be-

sides, two traffic scene applications are introduced to verify the practicality of our method. 

The comparative experiments and quantitative evaluations showed that the proposed 

method could provide better results for traffic scene images compared with other repre-

sentative algorithms. Besides, compared with deep learning-based methods, the proposed 

method also has competitive performance in the case of limited computing power or small-

scale dataset. 
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