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In the context of model compression using the student-teacher paradigm, we propose 
the idea of student-centric learning, where the student is less constrained by the teacher 
and able to learn on its own. We believe the student should have more flexibility during 
training. Towards student-centric learning, we propose two approaches: correlation-based 
learning and self-guided learning. In correlation-based learning, we propose to guide the 
student with two types of correlations between activations: the correlation between differ-
ent channels and the correlation between different spatial locations. In self-guided learning, 
we propose to give the student network the opportunity to learn by itself in the form of 
additional self-taught neurons. We empirically validate our approaches on benchmark da-
tasets, producing state-of-the-art results. Notably, our approaches can train a smaller and 
shallower student network with only 5 layers that outperforms a larger and deeper teacher 
network with 11 layers by nearly 1% on CIFAR-100.    

Keywords: knowledge transfer, student-teacher paradigm, correlation-based learning, self-
guided learning, dense convolution  

1. INTRODUCTION

While deep neural networks have demonstrated superior performance in various com-
puter vision tasks, model compression techniques are needed to make them suitable for use 
on everyday devices. Current state-of-the-art approaches for computer vision tasks such as 
image classification, object detection, and semantic segmentation usually involve large 
neural networks with tens of millions of parameters. These large networks typically require 
specialized processing units with significant on-board storage memory. As a result, these 
large networks are not suitable for deployment on user devices with limited computing 
power and memory such as cell phones and embedded electronics. Model compression 
techniques must be developed to retain the performance of these networks while reducing 
the resources needed to run them. 

One line of work on model compression attempts to train a smaller student network 
based on a larger and more powerful teacher network. The goal of this student-teacher 
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paradigm is to guide the training of the student network by transferring the knowledge 
from the teacher to the student. The student network is also designed to be more compact 
than the teacher network, making the student network more suitable for deployment on 
devices with limited computing power. 

Early student-teacher paradigm-based approaches [1-3] teach the student network to 
mimic the output of the teacher directly. Recently, FitNets [4] showed that matching inter-
mediate representations learned by the teacher network is also helpful for training the stu-
dent network. In the training procedure of FitNets [4], an intermediate student layer is 
forced to mimic the activations of an intermediate teacher layer through a convolutional 
regressor layer. Unfortunately, forcing the student to directly match the activations of the 
teacher is a very strong constraint that can actually hinder the performance of the student. 
Zagoruyko et al. [5, 6] recently show that attention maps (i.e., some statistics computed 
based on the activations of intermediate teacher layers) are better than direct activation 
matching for transferring knowledge. Therefore, we would like to develop approaches of 
knowledge transfer that follows a more student-centric learning paradigm where the stu-
dent network is less constrained to match the teacher network and is freer to learn on its own. 

Towards student-centric learning, we explore two approaches to give the student more 
flexibility during training. 

 

 
Fig. 1. Self-guided learning. In the guided student layer, self-taught neurons, denoted by the green 
block in the figure, are trained from scratch with only the supervisory signals from the data. Other 
neurons in the guided student layer, denoted by the light blue block in the figure, receive knowledge 
from the teacher. 

1.1 Correlation-based Learning 

Instead of forcing the student to directly match the activations of the teacher network, 
we give the student network access to the correlation between the activations of an inter-
mediate teacher network layer. This enables the student network to learn its own interme-
diate feature representations while retaining similar correlation patterns with the teacher. 
Particularly, we explore two types of correlations between activations: the correlation be-
tween different channels and the correlation between different spatial locations. 

1.2 Self-guided Learning 

We give the student network the opportunity to learn by itself in the form of additional 
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self-taught neurons. Procedurally, as shown in Fig. 1, we append the guided student layer 
with additional self-taught neurons. We call them self-taught neurons because they are 
trained from scratch using only the supervisory signals from the data (not the teacher). 
Self-taught neurons allow for the discovery of complementary intermediate representa-
tions to the knowledge provided by the teacher, which are beneficial for solving the target 
task. Notably, self-guided learning is generic and can be combined with correlation-based 
learning or any other forms of knowledge. 

The contribution of our work is summarized as follows. Towards student-centric 
learning, we propose two approaches: correlation-based learning and self-guided learning. 
In correlation-based learning, we propose to use the correlation between activations as a 
new form of knowledge being transferred from the teacher to the student. In self-guided 
learning, we propose the principled idea of self-taught neurons to allow the student to have 
more flexibility during training. We empirically validate our approaches on benchmark 
datasets, achieving state-of-the-art performance. Notably, our approaches can train a 
smaller and shallower student network with only 5 layers that outperforms a larger and 
deeper teacher network with 11 layers by nearly 1% on CIFAR-100. 

2. RELATED WORK 

Model compression using the student-teacher paradigm is pioneered by Bucilua et al. 
[2]. In [2], the authors propose to train a compact neural network to mimic the function 
learned by a large and complex ensemble. This idea is recently adopted by [1] to train a 
shallow student network by regressing the logits produced by the teacher network. More 
recently, in Knowledge Distillation (KD) [3], the authors propose to use the soft target 
distribution produced by the teacher to guide the student. Hinton et al. [3] also show that 
regressing the logits [1] is a special case of KD. 

While the above approaches mainly train the student network to mimic the output of 
the teacher network, FitNets [4] finds that the intermediate representations learned by the 
teacher can also help improve the training process and final performance of the student. 
Particularly, they use the intermediate representations of the teacher network as hints to 
train the student network such that the student’s intermediate representations can match 
the teacher’s intermediate representations through a convolutional regressor layer. Inspired 
by the critical role of attention mechanism in human visual experience, Zagoruyko et al. 
[5] demonstrate that transferring the attention maps of the teacher network, i.e., where it 
looks at, is better for training the student network than the activation matching used in 
FitNets [4]. Different from them [4, 5], we propose to use the correlation between activa-
tions as the hints for training the student network, demonstrating that the correlation be-
tween activations is better than the direct activation matching used in FitNets and [4] the 
attention maps used in [5]. 

Using correlation between activations as a form of knowledge is loosely related to 
previous work on neural style transfer [7]. They propose to use the feature correlation as 
the style representation of images, but they only use the correlation between different chan-
nels, which discards the spatial structure of images. In addition to the correlation between 
different channels, we also propose to use the correlation between different spatial loca-
tions as hints for training the student network. 
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Our idea of self-guided learning is related to a recent work on transfer learning [8]. 
Wang et al. [8] find that increasing model capacity during fine-tuning can help existing 
neurons better adapt and specialize to the target task and significantly improve the perfor-
mance. Inspired by them, we believe adding self-taught neurons in the student network can 
allow the student to discover complementary cues to the knowledge provided by the 
teacher, which are beneficial for solving the target task. 

Besides the student-teacher paradigm-based approaches, there are several other ap-
proaches proposed towards efficient training and inference of deep neural networks. Rep-
resentative approaches include pruning redundant weights and connections in an existing 
network [9-13], quantizing high precision parameters to fixed-point values [14-17], and 
binarizing the weights and activations in neural networks [18-20]. Our work is related to 
them but typically the main network architecture remains bulky in these approaches. Com-
pared to them, the student-teacher paradigm-based approaches can produce a much smaller 
network by transferring the knowledge contained in the large network to the small one. 
Moreover, the aforementioned approaches can be applied to the small student network ob-
tained under the student-teacher paradigm to further reduce its size. 

3. APPROACH 

In this section, we detail our proposed approaches for student-centric learning: corre-
lation-based learning and self-guided learning. We first introduce how we guide the student 
with the correlation between the activations of an intermediate teacher network layer. Then 
we describe how we give the student the opportunity to learn by itself in the form of addi-
tional self-taught neurons. 

3.1 Correlation-based Learning 

To study the student-teacher paradigm, one must properly specify the form of the 
knowledge contained in the teacher network. Directly transferring the teacher’s activations 
to the student leaves very few flexibilities for the student to learn the model itself. Since 
the teacher network is not guaranteed to be optimal, this may hinder the performance of 
the student network. Therefore, we propose to use the correlation between activations as a 
form of knowledge. This enables the student network to learn its own intermediate feature 
representations while retaining similar correlation patterns with the teacher. 

Note that we are not simply computing the correlation between each dimension of the 
activations as this will result in a huge correlation matrix. Matching the huge correlation 
matrix imposes as strong constraints on the student as transferring the activations and is 
also computationally expensive. For a layer in the network, the activations can be indexed 
by their corresponding channel and spatial location. We take advantage of this fact and 
propose to use two types of correlations as the knowledge: the correlation between differ-
ent channels and the correlation between different spatial locations. 

Formally, the activation of a layer l is a three-dimensional array of size Nl  Hl  Wl 
where Nl is the number of channels or feature maps in layer l, Hl and Wl are spatial dimen-
sions of the feature map. We can reshape the activation array to a matrix Fl

  NlHl, where 
Ml is the number of spatial locations in one feature map and equals to Hl  Wl. 
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The correlation between channels is given by the Gram matrix Cl
  NlNl, where Cl

ij 
is defined as the inner product between the feature activations in channel i and channel j: 

1

.
lM

l l l
ij ik jk

k

C F F


     (1) 

Before transferring the matrix Cl to the student, we first normalize it. For an instance 
of matrix Cl, we compute the mean and standard deviation based on all the elements in Cl. 
Then we normalize Cl by subtracting the mean from each element and divide each element 
by the standard deviation. After that, we transfer the normalized Cl computed based on the 
activations of a teacher hidden layer to a student hidden layer with L2 loss. Formally, the 
L2 loss function is defined as follows: 

Channel 2|| ( ( )) ( ( )) || ,S Tl l
S TL vec norm C vec norm C    (2) 

where norm(ꞏ) refers to the normalization operation described above, vec(ꞏ) denotes the 
vectorization operation, 

Sl
SC denotes the correlation between different channels in the stu-

dent hidden layer lS and 
Tl

TC denotes the correlation between different channels in the 
teacher hidden layer lT. 

As verified in previous work on neural style transfer [7], the correlation between 
channels Cl is blind to the global arrangement of images. To account for spatial structure 
in images, we also consider the correlation between spatial locations. We use the Gram 
matrix Sl

  MlMl to denote the correlation between spatial locations, where l
ijS is defined 

as the inner product between the feature activations on location i and location j: 

1
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Similar to the correlation between channels, we transfer the correlation between spa-
tial locations from the teacher to the student with the following L2 loss function: 

Spatial 2|| ( ( )) ( ( )) || ,S Tl l
S TL vec norm S vec norm S     (4) 

where norm(ꞏ) and vec(ꞏ) have the same definition as above, denotes the correlation 
between different spatial locations in the student hidden layer lS and 

Tl
TS  denotes the corre-

lation between different spatial locations in the teacher hidden layer lT. 
When transferring 

Tl
TC  to 

Sl
SC , we assume that the student hidden layer has the same 

number of channels or feature maps with the teacher hidden layer. When transferring 
Tl

TS  
to 

S
S
lS , we assume that the feature map of the student hidden layer has the same spatial 

dimensions with the teacher hidden layer. The two requirements can be easily satisfied in 
practice as we will see in our experiments. If any requirement is not satisfied, we can add 
a regression layer on top of 

Sl
SC  or 

S
S
lS  such that the output matches the size of 

Tl
TC  or 

Sl
SC . A 

similar strategy has also been employed in FitNets [8]. We do not focus on this in this 
paper and leave this as future work. 

We denote LKnow as the loss function used for transferring the knowledge from the 
teacher network to the student network. Based on our above explanation, LKnow can be 
LChannel alone, LSpatial alone or the average of LChannel and LSpatial. LKnow provides supervision 

Sl
SS
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for an intermediate layer in the student network1. In addition, we supervise the class prob-
ability distribution output by the student network using the cross entropy with ground truth 
labels. We can also combine the standard cross entropy loss function with the loss function 
proposed in Knowledge Distillation (KD) [9]. To be more concrete, we use the following 
loss function LClass to guide the class probability distribution output by the student network:  

LClass = LGT + (1   )LKD   (5) 

where LGT denotes the cross entropy with ground truth labels, LKD is proposed by KD [3] 
and denotes the cross entropy with the soft target distribution produced by the teacher, and 
 [0,1] controls the weight between LGT and LKD. Note that the cross entropy in LKD is 
scaled by the square of the temperature used for computing the soft target distribution, as 
suggested by KD [3]. 

Now we explain our training scheme of the student network. As illustrated in the top 
figure in Fig. 2, LKnow is employed to supervise an intermediate student layer. It influences 
the first layer up to the guided layer in the student network. LClass guides the class proba-
bility distribution output by the student network and influences the whole student network. 

We can train the student network in a single-stage fashion or a two-stage fashion. For 
the single-stage training, we use the weighted sum of LKnow and LClass as the loss function, 
which is defined as follows, 

LSingle = LKnow + LClass,   (6) 

where  is the weight parameter. The two-stage training fashion is similar to FitNets [4]. 
We first train the student network from the first layer up to the guided layer with LKnow. At 
the second stage, we train the whole network with LClass. 

3.2 Self-Guided Learning 

In previous work [4, 5], when they transfer activations [4] or attention maps [5] from 
an intermediate teacher layer to an intermediate student layer, all the neurons in the guided 
student layer are forced to be supervised by the knowledge from the teacher. To give the 
student more flexibility and enable student-centric learning, we propose to give the student 
opportunity to learn by itself in the form of additional self-taught neurons. 

As shown in Fig. 1, self-taught neurons refer to neurons that do not receive knowledge 
from the teacher and are learned by the student itself from scratch using only the supervi-
sory signals of the data. For self-guided learning, we append the guided student layer with 
additional self-taught neurons and concatenate the intermediate representations learned by 
the newly added neurons and original neurons in the layer, before passing them to the next 
layer. We can add self-taught neurons to more than one guided student layer if there are 
multiple intermediate student layers receiving knowledge from the teacher. 

We illustrate the training scheme of the student network with self-taught neurons in 
the bottom figure in Fig. 2. The training scheme is similar to that of the student network 
without self-taught neurons. The LKnow is employed to supervise an intermediate student 
layer and the LClass guides the class probability distribution output by the student network 
and influences the whole student network. The only difference is that LKnow does not su-
pervise the self-taught neurons in the guided student layer and only supervise other neurons 

1 We can also supervise multiple student layers using the knowledge from multiple teacher layers. This will
require us to select multiple pairs of student/teacher layers manually and we leave this for future study. 
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in that layer. LKnow influences the first layer up to the guided layer in the student network, 
except self-taught neurons. Similarly, we can train the student network, following the sin-
gle-stage fashion or the two-stage fashion detailed above. 

 

 
(a) Training scheme of the student network without self-taught neurons. 

 
(b) Training scheme of the student network with self-taught neurons. 

Fig. 2. Training scheme of the student network. 
 

Note that when combined with KD, i.e., when the parameter  in Eq. (5) is smaller 
than 1, all the student networks including the self-taught neurons are guided by the 
knowledge of the teacher in the form of soft target distribution. But the self-taught neurons 
never receive knowledge directly from intermediate teacher layers. Guiding the whole stu-
dent network with soft target distribution still allows the self-taught neurons to learn its 
own intermediate representations. 

It is also worthwhile to mention that the idea of self-taught neurons is generic and 
applicable no matter the form of the knowledge. We can combine self-guided learning with 
correlation-based learning or any other forms of knowledge. 

4. EXPERIMENTAL EVALUATION 

In this section, we provide quantitative evaluation of our proposed approaches corre-
lation-based learning and self-guide learning for the task of model compression. We use 
the TensorFlow as a tool to implement the networks and train them on a Nvidia GTX-1080. 

4.1 Datasets and Settings 

We conduct experiments on two benchmark datasets: CIFAR-10 [19] and CIFAR-
100 [11]. The CIFAR-10 dataset contains 60,000 color images of size 32×32, which can 
be divided into 10 categories and 6,000 images for each category. The CIFAR-100 dataset 
contains 60,000 color images of size 32×32 in 100 categories, with 600 images per cate-
gory. 
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We experiment with network architectures based on the widely-used VGG network 
[21]. The detailed network architectures used in our experiments are shown in Table 1. 
The number of their parameters is shown in Table 2. The teacher-augmented network and 
student-augmented network are used in our experiments regarding self-guided learning. 
Please refer to Section 4.3 for more details. Some layers in Table 1 are shown in boldface. 
They are the selected intermediate layers to provide knowledge (teacher, teacher-aug-
mented) or to receive knowledge (student, student-augmented). These layers have more 
parameters than other layers and have a greater impact on the final prediction, which can 
effectively guide the training of student network. 

 

Table 1. Network architectures (shown in columns). 
Network Architecture 

Teacher Student Teacher-Augmented Student-Augmented 
11 weight layers 5 weight layers 11 weight layers 5 weight layers 

conv3-64 
conv3-64 conv3-64 

conv3-64 
conv3-64 

conv3-64 

maxpool 
conv3-128 
conv3-128 conv3-128 

conv3-128 
conv3-128 

conv3-128 

maxpool 
conv3-256 
conv3-256  
conv3-256 

conv3-256 
conv3-256 
conv3-256 
conv3-256 

conv3-256 

maxpool 
conv3-512 
conv3-512 
conv3-512 

conv3-512 
conv3-1024 
conv3-512 
conv3-512 

conv3-1024 

global average pooling 
fc-n (n = no. of classes) 

softmax 
The convolutional layer parameters are denoted as “conv<receptive field size>-<number of channels>”. The 
ReLU function and batch normalization layers are not shown for brevity.  

 

Table 2. Number of parameters. 

Dataset Teacher Student 
Compression 

ratio
Teacher- 

Augmented
Student- 

Augmented 
Compression 

ratio 
CIFAR-10 7.65M 1.56M 20.39% 11.19M 2.75M 24.58% 
CIFAR-100 7.69M 1.61M 20.93% 11.23M 2.84M 25.29% 

 

4.2 Evaluation of Correlation-based Learning 

In this section, we evaluate the performance of correlation-based learning and show 
the results in Table 3. We consider three baselines: transferring activations [4], transferring 
attention maps [5] and KD [11]. For correlation-based learning, we consider three cases: 
using the correlation between channels alone (Channel, LKnow = LChannel), using the corre- 
lation between spatial locations alone (Spatial, LKnow = LSpatial) and using both of them (Both, 
LKnow = ½(LChanel + LSpatial)). For each approach, we have tried training the student work with 
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the single-stage training fashion and the two-stage stage training fashion. When following 
the single-stage training fashion, we set  to 0.1. We have tried setting the value of  to 1 
or 0.3. When  equals to 1, the student network does not take advantage of the soft target 
distribution output by the teacher and the performance is only based on our correlation-
based learning approach.  equaling to 0.3 means that our approach correlation-based 
learning is combined with KD to obtain the final performance. In Table 3, ‘Single’ and 
‘Two’ means training the student network following the single-stage and two-stage train-
ing fashion respectively. 

 

Table 3. Accuracy on CIFAR-10 and CIFAR-100 for correlation-based learning and pre-
vious approaches. 

Approach 
CIFAR-10 CIFAR-100 

Single Single+KD Two Two+KD Single Single+KD Two Two+KD 

Channel 90.68 90.27 91.03 91.62 67.10 68.37 66.99 69.25 

Spatial 91.27 90.92 90.77 91.27 66.88 68.36 67.41 68.73 

Both 89.78 89.26 91.11 91.67 67.11 68.59 67.70 69.21 

Activation 90.37 90.06 91.04 91.32 66.58 67.23 67.48 69.38 

Attention 90.52 90.58 90.40 90.97 66.99 67.77 66.46 68.78 

KD 89.73 67.36 

Teacher 92.02 68.68 

Student 89.18 64.66 
The highest performance under each setting is shown in boldface. See text for more details. 

 

The suffix ‘+KD’ means training the student network with  = 0.3. If there is no suffix 
‘+KD’, the student network is trained with  = 1. 

From Table 3 we can see that our correlation-based learning approach consistently 
outperforms transferring activations [4] and attention maps [5] under almost all the settings. 
Particularly, we find that combining the two types of correlations yields better results than 
using only one type of correlation in most cases. Moreover, two-stage training consistently 
performs better than single-stage training. Also, combining with KD always gives us ad-
ditional improvement. 

Notably, on CIFAR-10, correlation-based learning combined with KD can achieve 
the accuracy of 91.67%, which is very close to 92.02%, the accuracy of the teacher network. 
On CIFAR-100, we can see that our student network can obtain the accuracy 69.25%, 
which is higher than 68.68%, the accuracy of the teacher network. 

4.3 Evaluation of Self-Guided Learning 

Self-guided learning can be combined with any form of knowledge. In our experi-
ments, we consider two forms of knowledge: the correlation between channels proposed 
by us and the direct activation matching proposed by FitNets [4]. The results are summa-
rized in Table 4. 

The experiments involve all the four networks shown in Table 1. In Table 4, we show 
three set- tings: ‘Original’, ‘Augmented’ and ‘Augmented+Self-Guided’. ‘Original’ refers 
to transferring the knowledge from the teacher network to the student network. ‘Aug-
mented’ refers to transferring the knowledge from the teacher-augmented network to the 



HONG-JI WANG, XIANG XU, BAO-MIN XU, SHUANG-YUAN YU, QUAN-XIN WANG 1348

Table 4. Accuracy on CIFAR-100 for self-guided learning. 

Knowledge Setting CIFAR-100 
Single Single+KD 

Channel 
Original 67.10 68.37 

Augmented 67.67 69.10 
Augmented+Self-Guided 68.21 69.58 

Activation 
Original 66.58 67.23 

Augmented 68.04 68.03 
Augmented+Self-Guided 67.89 68.40 

Student-Augmented 66.26
The highest performance among ‘Original’, ‘Augmented’ and ‘Augmented+Self-Guided’ is shown in boldface. 
See text for more details. 

 

student-augmented network. ‘Original’ and ‘Augmented’ do not involve our self-guided 
learning approach. Under these two settings, we are simply transferring the correlation 
between channels or the activations from the teacher to the student. ‘Augmented+Self-
Guided’ means that we transfer the knowledge from the teacher network to the student-
augmented network. Under ‘Augmented+Self-Guided’, the intermediate teacher layer2 
only has 512 channels but the intermediate student layer3 has 1024 channels, of which 512 
channels are supervised by the knowledge from the teacher and the other 512 channels are 
self-taught neurons. 

Comparing ‘Augmented+Self-Guided’ and ‘Original’, we can see that by adding ad-
ditional self- taught neurons to the intermediate student layer, we can improve the accuracy 
by more than 1% on CIFAR-100, whether the knowledge provided by the teacher is the 
correlation between channels or the activation. Note that ‘Augmented+Self-Guided’ and 
‘Original’ use the same teacher network and the only difference is whether the student 
have additional self-taught neurons. 

One may argue that the improvement of the performance comes from the increase of 
the model capacity due to the added self-taught neurons, so we also compare ‘Aug-
mented+Self-Guided’ to ‘Augmented’. They both use the student-augmented network and 
the difference is that ‘Augmented’ do not have self-taught neurons. Under ‘Augmented’, 
all the 1024 channels in the intermediate student layer are supervised by the knowledge 
from the teacher-augmented network. But under ‘Augmented+Self-Guided’, only 512 
channels in the intermediate student layer are supervised by the knowledge from the teacher 
network. As shown in Table 4, ‘Augmented+Self-Guided’ outperforms ‘Augmented’ in 
most cases. Notably, when using the correlation between channels as the form of know- 
ledge, which is proposed by us, we can achieve the highest performance 69.58%, which is 
higher than 68.68%, the accuracy of the teacher network, by nearly 1%. Note that the stu-
dent (student-augmented network) is only 36% of the size of the teacher (teacher network) 
in this case. The student network inherits the knowledge of the teacher network and adds 
self-taught neurons, which make the student network not only retains the performance of 
the teacher network, but also has more accurate predictions for specialized fields. 

5. CONCLUSION 

Towards student-centric learning, we have proposed two approaches to allow the 
student to have more flexibility during training: correlation-based learning and self-guided 

2 The layer shown in boldface under the column ‘Teacher’ in Table 1. 
3 The layer shown in boldface under the column ‘Student-Augmented’ in Table 1. 
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learning. We validate our proposed approaches with extensive experimental results and 
show that our approaches can train a smaller and shallower student network with only 5 
layers that outperforms a larger and deeper teacher network with 11 layers by nearly 1% 
on CIFAR-100. We believe the idea of student-centric learning and our proposed ap-
proaches will help further advance knowledge transfer from a teacher to a student. 
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