
PROPERTIES AND EMBEDDINGS OF THE HEXCUBE 81

Received March 2, 1998; revised July 9, 1998; accepted August 12, 1998.
Communicated by Jang-Ping Sheu.

JOURNAL  OF  INFORMATION  SCIENCE  AND  ENGINEERING  16, 81-95 (2000)

81

Short Paper

Properties and Embeddings of Interconnection Networks
Based on the Hexcube

JUNG-SING JWO, SHOW-MAY CHEN, CHIN-YUN HSIEH+ AND YU CHIN CHENG+

Department of Computer and Information Sciences
Tunghai University

Taichung, Taiwan 407, R.O.C.
E-mail: jwo@mail.thu.edu.tw

+Department of Electronics Engineering
National Taipei University of Technology

Taipei, Taiwan 106, R.O.C.
E-mail: { hsieh, yccheng} @en.ntut.edu.tw

A new class of interconnection networks called the hexcube is proposed.  The hexcube
is similar to the base-6 generalized hypercube in structure but has a simpler interconnection
scheme.  The present work shows that the hexcube is vertex symmetric and possesses topo-
logical properties similar to those of the hypercube.  This implies that the costs of building
parallel computers using the hexcube and using the binary hypercube are similar, and are
much lower than those incurred using the based-6 generalized hypercube.  A one-port broad-
casting algorithm for the hexcube is proposed. New results for embeddings using the hexcube
as the host topology are also presented.  First, a reflected Gray code-like method for finding
Hamiltonian cycles is developed.  Second, algorithms for all two-dimensional mesh embed-
ding with unit expansion and a dilation of no more than two are developed.  Third, it is
shown that a relatively large binary hypercube can be embedded into a hexcube with a
dilation of no more than three and with almost optimal expansion.

Keywords: interconnection networks, hexcube, hypercube, one-port broadcasting, Hamil-
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1. INTRODUCTION

Rapid advances in microprocessor and network technologies have opened up the
possibility of building high performance, massively parallel multiprocessor systems.  In
such a system, thousands of processors are connected with an interconnection network.
Several topologies have been proposed as interconnection networks for multiprocessor sys-
tems [1-13].  Among them, a class of networks based on the hypercube has received most
attention from researchers [4, 14].  Symmetry, good topological properties, and excellent
embeddability [14, 15] are the main reasons for the hypercube’s popularity.  The main
advantage of the symmetric network is in the development and porting of parallel algo-
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rithms for the host topology.  Specifically, since a symmetric network reveals the same
topology when viewed from any node, parallel algorithms can be developed on any single
node and then ported to the host multiprocessor system.  Topological properties that are
important to an interconnection network include the degree, order, number of edges, diameter,
and the average distance between any two nodes.  The degree and number of edges directly
affect the number of communication ports for each processor and the total number of com-
munication links, respectively, which jointly account for most of the communication hard-
ware cost; the diameter determines the worst case communication delay, and the average
distance directly affects network congestion [16].  Finally, embeddability of one intercon-
nection network into another means that all parallel and distributed algorithms developed
for the former can be readily ported to the latter.  In addition, good embeddability is also a
requirement for economical mapping of the task/data flow graphs of parallel algorithms
into the interconnection topology.

In this paper, a class of interconnection networks called the hexcube is proposed.
The hexcube is similar to the base-6 generalized hypercube in structure but has a simpler
interconnection scheme.  It is shown that the hexcube is vertex symmetric.  Moreover,
hexcubes possess topological properties that are very similar to those of binary hypercubes.
Thus, the costs of hardware and communication and the cost of parallel algorithm develop-
ment for the hexcube are to a large degree comparable to those for the binary hypercube.  In
order to demonstrate the flexibility of the hexcube, we further present several algorithms,
including algorithms for one-port broadcasting and several embeddings.  In one-port
broadcasting, it is shown that the maximum transmission delay is no more than 3n, where n
is the dimension of the hexcube.  New results for embedding using the hexcube are also
presented.  First, a reflected Gray code-like method for finding a Hamiltonian cycle for the
hexcube is developed.  Second, algorithms for all two-dimensional mesh embeddings with
unit expansion for the hexcube are developed.  The dilation of these embeddings is no more
than two.  Third, it is shown that a relatively large binary hypercube can be embedded into
a hexcube with a dilation of no more than three and with almost optimal expansion.  The
embeddability of the binary hypercube into the hexcube is significant because a large in-
ventory of  parallel algorithms for high performance computers based on the binary hypercube
already exists.  From these results, the hexcube can be considered as a viable class of inter-
connection networks for building large scale multiprocessor systems.

The organization of this paper is as follows.  In section 2, the definition of the hexcube
and its properties are given.  In section 3, results on average distance and a one-port broad-
casting algorithm are presented.  Section 4 develops the embedding algorithms for the
hexcube, including embeddings for the Hamiltonian cycle, various two-dimensional meshes,
and the binary hypercube.  Section 5 summarizes the results.

2. DEFINITIONS AND PROPERTIES OF THE HEXCUBE

Let  < n > = {0, 1, ◊ ◊ ◊ , n - 1}.   Define the hexcube HCn = (V, E) of dimension n as V
= {  x | x = x1x2 ◊ ◊ ◊ xn, where xi Œ < 6 >}, and E = {(x, y) | x, y Œ V, and there exists 1 £ j £ n
such that yj = (xj ± 1) mod 6, and xi = yi for all 1 £ i π j £ n}.  Examples of HCn for n = 1, 2
are given in Fig. 1.  Clearly, HCn is an undirected graph and can be built recursively by
using six copies of HCn - 1.  Furthermore, it is readily verified that HCn is a regular graph
with a degree of 2n and an order of 6n .
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In developing an interconnection network as the architecture for high performance
computers, investigation of symmetric properties for the underlying graph of the network is
necessary [1-3, 15].  The hexcube is vertex symmetric.  To see this, note that HCn is isomor-
phic to the Cayley graph based on the permutation group with the generator set {(3i - 2 3i
- 1)|1 £ i £ n} » {(3 i - 2 3i)|1 £ i £ n}, where (a b) is the traditional cycle structure
representation for permutation [15].  Examples of the above Cayley graph for n = 1 and n =
2 are given in Fig. 2.  The isomorphism f between the two graphs can be easily seen by
observing the following coding scheme:

Fig. 1. Examples of hexcubes: HC1 and HC2.
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for 1 £ i £ n.  As an example, note that node 12 in Fig. 1 is mapped to node 213564 in Fig.
2.  The fact that the Cayley graph is vertex symmetric [15] establishes the next lemma.

Lemma 2.1. The hexcube is vertex symmetric.

To facilitate subsequent development in this paper, we also need an algorithm for
routing packets between a pair of nodes in HCn.  Let x = x1x2 ◊ ◊ ◊ xn be the source node and
y = y1y2 ◊ ◊ ◊ yn be the destination node.  In deciding the next node x' = x1'x2' ◊ ◊ ◊ xn' in the route,
we find the first i such that xi π yi for some 1 £ i £ n.  The process is then repeated from the
newly reached node, and so on, until the destination node is reached.  The process is sum-
marized in Fig. 3.
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As an example, let x = 0153 and y = 2511. Then, the routing path from x to y is as
follows:

x = 0153 Æ 1153 Æ 2153 Æ 2053 Æ 2553 Æ 2503 Æ 2513 Æ 2512 Æ 2511 = y.

It can be verified that the above routing algorithm generates a shortest path between the
source and destination nodes.  Furthermore, define mi as follows:

m
x y x y

x y x yi
i i i i

i i i i
= − − ≤

− − − >

| |, | | ,

| |, | | ,
if 
if 

3
6 3

(1)

Fig. 3. A shortest path routing algorithm for HCn.

Let x = x1x2...xn be the source node;
Let y = y1y2...yn be the destination node;
i = 1;
while i £ n do

while e = xi – yi π 0 do
if (|e| £ 3) then

if e > 0 then xi = (xi – 1) mod 6;
else xi = (xi + 1) mod 6;

else
if e > 0 then xi = (xi +1) mod 6;
else xi = (xi – 1) mod 6;

end_while; /* xi = yi*/
i = i + 1;

end_while;/* x = y*/

Fig. 2. Examples of Cayley graphs: EHC1 and EHC2.
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for 1 £ i £ n.  Then, the distance d(x, y) between x and y can be calculated as follows:

d x y mi
i

n

( , ) .= ∑
=1

(2)

From equation (1), it is obvious that mi £ 3 for all 1 £ i £ n.  Additionally, it is clear
that the longest distance between any two nodes of HCn is 3n when the difference of the
corresponding pair of digits, say xi and yi, for all 1 £ i £ n, is three.  Table 1 provides a
summary in which comparisons among the hexcube, the binary hypercube and the base-6
generalized hypercube are given.

In the treatment of mesh and hypercube embeddings, we also need the following
definition [17].  Given the graphs G1(V1, E1) and G2(V2, E2), defind their product graph G =
= G1 ¥ G2 such that its vertex set V = {[x, y] | x Œ V1, y Œ V2} and edge set E = {([x, y], [x, y'])
| x Œ V1, (y, y') Œ E2} » {([ x, y], [x', y]) | y Œ V2, (x, x') Œ E1}.

Table 1. Comparisons among the hexcube, the binary hypercube and the base-6
hypercube.

dimension degree order diameter vertex symmetry

hexcube n 2n 6n 3n yes

binary hypercube 2.45n 2.45n 6n 2.45n yes

base-6
generalized n 5n 6n n yes
hypercube

3. AVERAGE DISTANCE AND ONE-PORT BROADCASTING

In this section, the average distance of the hexcube is computed.  A method for one-
port broadcasting, a fundamental communication scheme which is necessary for many par-
allel computing applications, is also proposed.

3.1 Average Distance

The average distance directly determines the communication costs.  Specifically, since
there is only one link between two adjacent nodes, contention occurs when two different
messages compete for that link; moreover, it has been shown that network contention in-
creases proportionally as the average distance increases [16].

Without loss of generality, let T(n) be the total distance between identity vertex I = 0n

= 00 ◊ ◊ ◊ 0 and all the other vertices in HCn.  Let HCn
i  denote the subgraph of HCn with the

nth digit equal to i.  Note that HCn
i  is isomorphic to HCn - 1 and has 6n - 1 vertices.  In HCn

i ,
the total distance from vertex 00 ◊ ◊ ◊ i to all the other vertices is T(n - 1).  It follows that the
total distance from the identity vertex I to all vertices in HCn

i  is T(n - 1) + i ◊ 6n - 1 for  0 £ i
£ 3 and T(n - 1) + (6 - i) ◊ 6n - 1 for 4 £ i £ 5.  Thus, the total distance between I and all the
other vertices in HCn is
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T(n) = T(n - 1) + 2(T(n - 1) + 6n - 1) + 2(T(n - 1) + 2 ◊ 6n - 1) + (T(n - 1) + 3 ◊ 6n - 1).      (3)

From equation (3), it can be verified that T(n) = 9 × 6n - 1n.  Since the hexcube is vertex

symmetric, the average distance of HCn is T n
n

( )
6

, and we have the following lemma.

Lemma 3.1. The average distance of HCn is 1.5n.

Notice that the average distance of the hexcube is one half of its diameter; the same
relationship holds for the binary hypercube.

3.2 One-port Broadcasting

In the rest of this section, a one-port broadcasting algorithm for the hexcube is
proposed.  A broadcasting is said to be a one-port broadcasting if each node of the network
can only send a packet to one of its neighbors in a communication cycle.  Since the hexcube
is vertex symmetric, it suffices to consider the broadcasting algorithm for node I.  For the
other cases, the broadcasting algorithm can be easily achieved by using the corresponding
automorphism.  The broadcasting algorithm is shown in Fig. 4.  Since the transmission
pattern (Fig. 5) that is used in each of the n parallel steps of the broadcasting algorithm has
a  height of three, we have the following lemma.

Let t be the packet to be broadcast from I in HCn;
for i = 1 to n do in parallel

for each node x which has already received t do
sends t  to the five nodes whose ith digit
is different from x using the transmission
pattern given in Fig. 5;

Fig. 4. A one-port broadcasting algorithm for HCn.

Fig. 5. The transmission pattern used by node x1x2 ◊ ◊ ◊ xi - 1 0 ◊ ◊ ◊ 0 in step i of the the one-port
broadcasting algorithm.
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Lemma 3.2. The total delay of one-port broadcasting in HCn is 3n.

Notice that according to the transmission pattern, each node in HCn will receive the
broadcast packet exactly once; Fig. 6 shows the case for HC3, where the nodes that receive
the packet in each parallel step are grouped and marked with i = 1, i = 2, and i = 3, respectively.

Fig. 6. One-port broadcasting in HCn, where n = 3.
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4. EMBEDDINGS FOR THE HEXCUBE

In this section, we present various embedding algorithms using the hexcube as the
host topology.  By embedding we mean that, given a guest graph G(VG, EG) and a host
graph H(VH, EH), there exists a mapping function a such that a(u) = v where u Œ VG and v Œ
VH.  Two parameters  used in the evaluation of an embedding a are dilation and expansion,

defined, respectively, as max(d(a(s), a(t))) for all s, t Œ VG and 
| |
| |
V
V

H

G
, where d(x, y) is the

distance between vertices x and y.

4.1 Hamiltonian Cycle

The existence of a Hamiltonian cycle in the underlying graph of a given interconnec-
tion network is critical to the implementation of some parallel algorithms [14].  Let G(n)
denote a sequence of all n-digit base-6 words.  Define G(1) = {0, 1, 2, 3, 4, 5} and G(n) =
{ G0(n), G1(n), ◊ ◊ ◊ , G6n - 1(n)}, where Gi(n) is called the encoding of integer i for 0 £ i £ 6n -
1.  With this definition, the sequence G(n + 1) can be derived recursively as follows:

G n G n G n G n

G n G n G n
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n
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where “ | ” denotes concatenation of the words.  It can be easily verified that any two
consecutive words given in equation (4) are adjacent in HCn, including the first and the last
two words.  Thus, we have the following lemma.

Lemma 4.1.1. G(n) sequence is a Hamiltonian cycle for HCn.

An example of G(2) is listed in Table 2.  Note that our definition of G(n) is similar to that for
the reflected Gray code for the hypercubes.

Table 2. A Hamiltonian cycle of HC2.

00 15 20 35 40 55

01 14 21 34 41 54

02 13 22 33 42 53

03 12 23 32 43 52

04 11 24 31 44 51

05 10 25 30 45 50
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4.2 Mesh Embeddings

Meshes form an important class of networks that is useful in  an area like image
processing.  In this subsection, new results for the embedding of all meshes into the hexcube
with unit expansion are presented.  Note that some of these meshes are very difficult to
embed into the binary hypercube.  We begin our discussion with the following lemmas and
corollary.

Lemma 4.2.1. HCt1 ¥ HCt2 = HCt1 + t2
.

Proof: Let [x, y] and [u, v] be two vertices of HCt1 ¥ HCt2
.  It is obvious that x | y and u | v are

two vertices of HCt1 + t2
.  Since [x, y] and [u, v] are adjacent if and only if either x = u and (y,

v) is an edge of HCt2
 or y = v and (x, u) is an edge of HCt1

, it is obvious that (x | y, u | v) is an
edge of HCt1 + t2

.  Following the same argument, it can also be seen that there exists an
isomorphism to map HCt1 + t2

 into HCt1 ¥ HCt2
. ¨

The next corollary is an immediate result of Lemma 4.2.1.

Corollary 4.2.2.  HCn = HCt1 ¥ HCt2
 ¥ ◊ ◊ ◊ ¥ HCtr

 where 1£ r, ti is a positive integer for

1 £ i £ r and n ti
i

r

= ∑
=1

.

The next result shows that power-of-six meshes can be embedded into a correspond-
ing hexcube with unit dilation and unit expansion.

Lemma 4.2.3. A  6k1 ¥ 6k2 mesh can be embedded into HCk1 + k2
 with unit dilation and unit

expansion.

Proof: Label the first dimension and second dimension of the mesh with G(k1) and G(k2)
sequences  as defined in section 4.1, respectively.  Consider any node of the mesh labeled
by (u, v) such that u and v are the coordinates, where u Œ G(k1) and v Œ G(k2).  It is obvious
that u | v is a node of HCk1 + k2

.  Since G(k1) and G(k2) are Hamiltonian cycles of HCk1 
and

HCk2
, respectively, it can be verified easily that for all neighboring nodes of (u, v) in the

mesh, say (u1, v1), (u2, v2), (u3, v3) and (u4, v4), the nodes u1 | v1,  u2 | v2, u3 | v3 and u4 | v4 in
HCk1 + k2

 are adjacent to u | v and hence the lemma. ¨
Fig. 7 gives an example of a 6 ¥ 6 mesh embedding in HC2 accomplished by applying

Lemma 4.2.3.

Fig. 7. An example of embedding 6 ¥ 6 mesh into HC2.
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Let G = G1 ¥ G2 ¥  ◊ ◊ ◊ ¥ Gr,  H = H1 ¥ H2 ¥ ◊ ◊ ◊ ¥ Hr, and li be the dilation of embedding
Gi into Hi for 1 £ i £ r.  The following lemma is due to [17].

Lemma 4.2.4. Product graph G can be embedded into H with dilation l, where

l = max{l i | 1 £ i £ r}.

Using the techniques of mesh decomposition given in [17], we can come up with the
lemma shown below.

Lemma 4.2.5. A (l11 ◊ l12 ◊ ◊ ◊ l1k) ¥ (l21 ◊ l22 ◊ ◊ ◊ l2k) mesh is a subgraph of Ml11 ◊ l21
 ¥ Ml12 ◊ l22

¥◊ ◊ ◊¥ Ml1k ◊ l2k 
, where Mi◊j is an i ¥ j mesh.

One of the fundamental results of this section is given in the following lemma.

Lemma 4.2.6. A 2k ¥ 3k mesh can be embedded into HCk with a dilation of two and unit
expansion.

Proof: By observing Fig. 7, it is obvious that a 2 ¥ 3 mesh can be embedded into HC1 with
a dilation of two.  Following Lemma 4.2.5, the 2k ¥ 3k mesh is a subgraph of M1 ¥ M2 ¥ ◊ ◊ ◊¥
Mk, where Mi is a 2 ¥ 3 mesh for 1 £ i £ k.  By applying Corollary 4.2.2 and Lemma 4.2.4,
M1 ¥ M2 ¥ ◊ ◊ ◊ Mk can be embedded into the product graph of k copies of HC1 with a dilation
of two. ¨

Fig. 8 gives an example of a 4 ¥  9 mesh embedded in HC2 by applying Lemma 4.2.6.
The following theorem is an immediate result of the above lemmas and corollary.

Theorem 4.2.7. Let t1, t2, t3, and t4 be any four positive integers.  A (2t1
 ◊ 3t2) ¥ (2n - t1

 ◊ 3n - t2)
mesh M can be embedded into HCn with a dilation of two and unit expansion.

Proof: Without loss of generality, let t1 < t2.  Mesh M can be viewed as a (6t1 ◊ 3t2 - t1) ¥
(6n - t2

 ◊ 2t2 - t1) mesh.  By Lemma 4.2.5, mesh M is a subgraph of the product of the two
meshes (6t1 ¥ 6n - t2) and (3t2 - t1 ¥ 2t2 - t1).  By Lemmas 4.2.3, 4.2.4 and 4.2.6, mesh (6t1 ¥ 6n - t2)
and mesh (3t2 - t1 ¥ 2t2 - t1) can be embedded into HCn + t1 - t2 and HC t2 - t1 with a dilation of one
and two, respectively.  Thus, the theorem follows from Lemmas 4.2.1 and 4.2.4.     ¨

Note that since 2 and 3 are the only prime factors of the number 6n, Theorem 4.2.7 has
covered all the possible unit expansion mesh embedding.  Fig. 9 shows an embedding of a
12 ¥ 18 mesh into HC3.

Fig. 8. An example of embedding a 4 ¥ 9 mesh into HC2.

00 01 02 12 11 10 20 21 22

05 03 04 14 13 15 25 23 24

55 53 54 34 33 35 45 43 44

50 51 52 32 31 30 40 41 42
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4.3 Binary Hypercube Embeddings

In this section, following the same idea used in the graph decomposition approach
proposed previously, we shall investigate embeddings of the binary hypercube in the hexcube.
To begin with, we give a well-known result due to [17].

Lemma 4.3.1. Let r = r1 + r2 + ◊ ◊ ◊ rk, where ri is a positive integer for 1 £ i £ k.  Then, the
r-dimensional hypercube Qr is isomorphic to the product graph of the hypercubes Qri for all
1 £ i £ k.

Since the orders of the binary hypercube and the hexcube are different, we consider
only the expansion optimal embeddings.  An embedding is said to be expansion optimal if
we can find a smallest hexcube into which the given binary hypercube can be embedded.
The possible expansion optimal embeddings for Q1, Q2, Q3, Q4, and Q5 are listed in Table 3.
Note that the dilation of these embeddings is at most three.  For a given n dimensional

hypercube Qn, we first decompose it into Q Q Qn

n

n= × 
5

5
5(mod ) 

, where Q
n

5
5   represents the

product of  n
5





  copies of Q5.  Since each Q5 can be embedded into HC2 with a dilation of

three and Qn (mod 5) can be embedded into either HC1 or HC2 from Corollary 4.2.2 and Lemma
4.2.4, we obtain the following theorem.

Theorem 4.3.2. Qn can be embedded into

(1) HC n2
5

 with dilation three and expansion 2 6
2
5n
n

/  if n (mod  5) = 0;

(2)  HC n2
5

1 +
 with dilation three and expansion 2 6

2
5

1n
n

/  +
 if n (mod 5) = 1 or 2; or

(3) HC n2
5

2 +
 with dilation three and expansion 2 6

2
5

2n
n

/  +
 if n (mod 5) = 3 or 4.

Fig. 9. An example of embedding a 12 ¥ 18 mesh into HC3.

500 501 502 512 511 510 520 521 522 532 531 530 540 541 542 552 551 550

505 503 504 514 513 515 525 523 524 534 533 535 545 543 544 554 553 555

405 403 404 414 413 415 425 423 424 434 433 435 445 443 444 454 453 455

400 401 402 412 411 410 420 421 422 432 431 430 440 441 442 452 451 450

300 301 302 312 311 310 320 321 322 332 331 330 340 341 342 352 351 350

305 303 304 314 313 315 325 323 324 334 333 335 345 343 344 354 353 355

205 203 204 214 213 215 225 223 224 234 233 235 245 243 244 254 253 255

200 201 202 212 211 210 220 221 222 232 231 230 240 241 242 252 251 250

100 101 102 112 111 110 120 121 122 132 131 130 140 141 142 152 151 150

105 103 104 114 113 115 125 123 124 134 133 135 145 143 144 154 153 155

005 003 004 014 013 015 025 023 024 034 033 035 045 043 044 054 053 055

000 001 002 012 011 010 020 021 022 032 031 030 040 041 042 052 051 050
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Table 3. The possible expansion optimal embeddings for Q1, Q2, Q3, Q4, and Q5.
(a) Embedding Q1 in HC1 with dilation one.

(b) Embedding Q2 in HC1 with dilation three.

(c) Embedding Q3 in HC2 with dilation two.

(d) Embedding Q4 in HC2 with dilation two.

(e) Embedding Q5 in HC2 with dilation three.

Q1 HC1

0 0

1 1

Q2 HC1

00 1

01 2

10 5

11 4

Q3 HC2 Q3 HC2

000 01 100 11

001 02 101 12

010 05 110 15

011 04 111 14

Q4 HC2 Q4 HC2 Q4 HC2 Q4 HC2

0000 01 0100 11 1000 51 1100 31

0001 02 0101 12 1001 52 1101 32

0010 05 0110 15 1010 55 1110 35

0011 04 0111 14 1011 54 1111 34

Q5 HC2 Q5 HC2 Q5 HC2 Q5 HC2

00000 01 01000 21 10000 51 11000 10

00001 02 01001 22 10001 52 11001 13

00010 05 01010 25 10010 55 11010 00

00011 04 01011 24 10011 54 11011 03

000100 11 01100 41 10100 31 11100 30

00101 12 01101 42 10101 32 11101 33

00110 15 01110 45 10110 35 11110 40

00111 14 01111 44 10111 34 11111 43
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By means of simple calculations, it can be seen that except for n = 18, 23 and 28, the
proposed embedding is almost expansion optimal and has a dilation of three when n £ 30.

5. CONCLUSIONS

The hexcube is similar to the base-6 hypercube in structure but has a simpler intercon-
nection scheme.  In this paper, we have shown that the hexcube is vertex symmetric and
possesses topological properties similar to those of the binary hypercubes.  For embeddings,
first, a reflected Gray-code like method for producing a Hamiltonian cycle for the hexcube
has been developed.  Second, algorithms for all two-dimensional mesh embeddings with
unit expansion for the hexcube have been developed.  The dilation of these embeddings is
no more than two.  Third, it has been shown that a relatively large binary hypercube can be
embedded into a hexcube with a dilation of no more than three and almost optimal expansion.
From these results, the hexcube can be considered to be a viable type of interconnection
network for building large scale multiprocessor systems.

Theoretically, the idea of the hexcube can be extended to base-n structures.  We are
currently working on some possible extensions.
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