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The current production scheduling models cannot effectively enable the real-time 

interaction between information space and physical space. To dynamically schedule twin 
digital job-shop, this paper attempts to realize the dynamic scheduling of digital twin job-
shop (DTJ) based on edge computing. First, the architecture of the DTJ was established by 
adding the digital twin between the business management layer and the operation 
execution layer of the traditional job-shop. On this basis, the DTJ was fully modelled, and 
the manufacturing process was monitored, analyzed and managed remoted by edge 
computing. To realize dynamic scheduling, a DTJ scheduling model was established 
through data mining. The model consists of two parts: a data collection model and a multi-
scheduling knowledge model. Finally, the proposed DTJ scheduling model was verified 
through simulation on an actual job-shop. The research results shed new light on the 
optimization of manufacturing process in various types of job-shops. 
 
Keywords: digital twin, edge computing, job-shop scheduling, manufacturing process, data 
mining 
 
 

1. INTRODUCTION 
 

In traditional job-shops, the manufacturing process mainly includes operation execu- 
tion, data acquisition/monitoring, production line control and unit control [1]. However, it 
is extremely difficult to schedule the manufacturing process in a flexible manner, due to 
the lack of effective simulation tool, job-shop information model, and independent deci- 
sion-making mechanism. Digital twin technology [2], which can be deeply integrated with 
the said process, offers a viable solution to intelligent job-shop scheduling. 

Digital twin is a simulation technique involving multiple disciplines and scales. This 
technique fully utilizes physical model, sensor, operation logs and various other data, trac- 
king the entire lifecycle of physical products in virtual space. The integration between 
digital twin and job-shop scheduling gives birth to a novel concept: digital twin job-shop 
(DTJ). The DTJ mainly consists of physical job-shop, virtual job-shop, job-shop service 
system and job-shop twin data [3, 4]. 

The physical job-shop is a real job-shop that receives production tasks from the job-
shop service system, and executes the tasks by the strategy optimized through virtual job-
shop simulation. Virtual job-shop, the computer equivalent of physical job-shop, monitors, 
predicts and optimizes the production activities through simulation. Job-shop service 
system refers to all software in the job-shop. The system implements digital twin-driven 
operations, and receives feedbacks of the physical job-shop. The job-shop scheduling 
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model is the key component of the job-shop service system. 
Traditionally, the manufacturing process of the job-shop is usually scheduled based 

on cloud computing. During the scheduling, the data need to be transmitted to the cloud 
computing center for processing. However, cloud computing is not suitable for real-time 
manufacturing systems, for reasons like the high time consumption in data transmission 
and processing. This calls for a solution with good real-time performance at a low cost of 
computing resources.  

In this paper, a dynamic DTJ scheduling model was established based on edge com- 
puting. Specifically, the DTJ architecture was modelled by adding the digital twin to the 
traditional job-shop. The DTJ scheduling model was then set up through data mining. 
Thanks to edge computing, the proposed model can monitor and control the manufacturing 
process remotely, laying the basis for high-quality, efficient and low-cost job-shop schedu- 
ling. 

There are two major contributions of this paper: (1) A new knowledge-based schedu- 
ling model, driven by digital twins, was developed to make up for the lack of the fusion 
between information space and physical space in existing scheduling models; (2) Based on 
random forest, a scheduling rule mining model was established for the dynamic job-shop 
scheduling problem. On this basis, the scheduling of digital twin job-shop was optimized, 
using the simulation technology under the concept of digital twin. 

2. LITERATURE REVIEW 

Digital twin technology was extended by Githens [5] from information mirroring 
model. Tao et al. [6] proposed the concept and reference architecture of the DTJ, and dis- 
cussed the virtual-physical integration of the DTJ from five dimensions: physical entities, 
virtual entities, services, twin data, and component connectivity. Sun et al. [7] established 
a series of DTJ models based on physical data, including physical model, ontology-based 
digital model and simulation model, and identified the relationship between physical and 
digital models. From the perspective of digital twin, Huang et al. [8] explored the pro- 
duction management, control framework and key techniques of aircraft assembly job-shop. 
Schleich et al. [9] studied the realization methods of product digital twin in terms of 
product design and manufacturing service, and constructed a real-time visual monitoring 
system for complex product assembly job-shop. Leng et al. [10] put forward a four-layer 
DTJ framework consisting of job-shop management layer, station monitoring layer, 
operation execution layer and data support layer, and examined the job-shop scheduling 
under the visual application. Zheng et al. [11] collected and processed real-time data to 
build a digital twin production system, and expounded the feasibility of digital twin in 
realizing cyber-physical production (CPP) systems. Zhuang et al. [12] suggested setting 
up visual digital twin models by web service and augmented reinforcement (AR). Focusing 
on cloud-based machine maintenance, Coronado et al. [13] relied on the cloud infrastruc- 
ture in DTJ model to realize the interaction between software services and physical entities. 
Based on digital twin, Liu et al. [14] developed a strategy for lifecycle management and 
optimization of Industrial Internet of Things (IIoT). 

Uncertain disturbances are common to production systems, especially complex pro- 
duction systems like the flexible job-shop. In the event of emergencies (e.g. machine 
failure and human error), sudden disturbances may occur in the job-shop, causing job-shop 
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scheduling to fluctuate. To solve the problem, many scholars have probed deep into the 
job-shop manufacturing process. Rohaninejad et al. [15] designed an intelligent static 
scheduling method for flexible job-shop, with the aid of the separation graph model. 
Yahouni et al. [16] put forward multiple job-shop scheduling strategies based on artificial 
immune system (AIS) algorithm. Oyekan et al. [17] measured the global impact of 
disturbance factors, and created the dynamic scheduling strategy for the affected jobs. Xu 
et al. [18] applied digital twin in the manufacturing process of structural parts job-shop. 
Cao et al. [19] reused and evaluated process knowledge with digital twin, and thus reduced 
the cost and time of the manufacturing process. Lv and Qiao [20] associated the data of 
operation execution system with the data of machines, and set up a TDJ to optimize the 
manufacturing process. Zhuang et al. [21] combined digital twin, enterprise information 
system and information technology to design and implement a job-shop management and 
control system. 

3. DTJ ARCHITECTURE 

Digital twin provides an effective tool for the interaction and fusion of physical and 
virtual space [22]. This emerging technique is of great significance to job-shop scheduling. 
Here, the DTJ architecture (Fig. 1) is established to facilitate the monitoring and control of 
the manufacturing process.  
 

 
Fig. 1. The architecture of the DTJ. 

 
The physical job-shop is the collection of all physical entities in the real job-shop, 

while the virtual job-shop is the projection of the physical job-shop in the virtual space. 
The virtual job-shop contains the elements, data, models and spatial information of the 
physical job-shop. These components are described by models on three levels: elements, 
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behaviors and rules.  
On the element level, the virtual job-shop details the geometry and physical features 

of production elements (e.g. operators, machines, objects and environment) by 3D software 
and finite-element method. 

On the behavior level, the virtual job-shop models the behavior and response me- 
chanism of job-shop elements through 3D simulation, and provides the virtual models of 
operator behaviors, machine operations and material transportation. 

On the rule level, the virtual job-shop constructs models for association rules, job-
shop operations and evolution rules through data mining, such that the DTJ operations match 
the actual situation (behavior, state, operation and evolution) of the physical job-shop. 

 
3.1 Composition of DTJ 

 
As shown in Fig. 2, the DTJ is mainly composed of data exchange interface, simu- 

lation analytical model and job-shop information model. The data exchange interface 
passes any simulation request from the external system to the simulation analytical model, 
which receives basic data from the job-shop information model. The simulation results are 
fed back to the external system via the data exchange interface. Both simulation analytical 
model and job-shop information model are continuously improved by digital twin, which 
boasts excellent self-learning ability. 
 

 
Fig. 2. The composition of DTJ. 

 
The data exchange interface supports a variety of data exchange modes. It is managed 

by an extensible data exchange interface adapter. The simulation analytical model enables 
the digital twin to make analysis and decisions, and exists as the digital twin of the 
simulation object (i.e. defining all the information and behaviors of the object). The job-
shop information model provides the basic data of the DTJ and the digital mapping of 
physical job-shop. In this model, logical expressions are available for dynamic data on 
production activities and static data on machines and infrastructure. 
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3.2 Information Integration Architecture 
 

As shown in Fig. 3, the information integration architecture of the DTJ is made up of 
enterprises external services, physical job-shop, digital twin and simulation analysis sys- 
tem. Among them, simulation analysis system and digital twin are two separated modules 
that work together through information integration. The simulation analysis system only 
simulates product design and production system, because this research focuses on the 
application of digital twin in dynamic job-shop scheduling. 

According to the ANSI/ISA-95 standard, manufacturing enterprises are divided into 
five levels: Level 0 executes the production operations; Level 1 measures and controls the 
manufacturing process; Level 2 detects, monitors and automatically controls the manu- 
facturing process; Level 3 controls the workflow and process of production; Level 4 
prepares the plans for production, material demand, product delivery and shipment.  

The manufacturing process of the DTJ spans from Level 0 to Level 2. Based on the 
demand of information integration, the digital twin covers all five levels of manufacturing 
enterprises. Product design and production system of the simulation analysis system 
respectively cover Levels 3-4 and Levels 0-3, respectively. 

 

 
Note: SCADA: Supervisory control and data acquisition; WMS: Warehouse management system;  
CAX: Computer-aided X; MOM: Material on machine; PCS: Process control system 

Fig. 3. Information integration architecture. 

 
The data collection and feedback mechanism will intervene, if the real-time schedu- 

ling data of the physical job-shop deviate from the preset value. On the one hand, the 
scheduling activities of the two job-shops will be accurately depicted; on the other hand, 
the scheduling of the two job-shops will be iteratively optimized.  
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Fig. 4. The structure of edge computing in the physical job-shop. 

4. DTJ SCHEDULING MODEL 

The job-shop scheduling is essential to the management and control of manufacturing 
process. Once the job-shop is disturbed, the production plan will be immediately affected. 
Our DTJ scheduling model aims to mine the scheduling knowledge embed in all elements, 
processes and services, and thus iteratively optimize the scheduling decision. 

Intelligent manufacturing directly hinges on the intelligent interaction between physi- 
cal space and information space. The interaction helps to enhance the autonomy, intelli- 
gence, and predictability of scheduling. However, none of the existing schedulers support 
the real-time interaction between the two spaces. To solve the problem, this paper attempts 
to design a dynamic scheduling model of digital twin job-shop. 

In our model, the real-time scheduling data collected from the physical job-shop are 
mapped to the corresponding model in virtual job-shop, forming a collaborative optimiza- 
tion network. When the real-time scheduling data deviate from the preset values, the model 
in virtual job-shop will detect the anomalies, revise the abnormal range, and decide wither 
to make a response. 

Considering the interoperability and scalability of real-time edge computing, a cell-
level data twin system must have state awareness, support data computing/processing, and 
control physical entities. Edge computing adopts an architecture that extends computing, 
network, and storage functions from cloud to edge. Under this architecture, the data are 
analyzed in edge nodes, making it possible to perceive, calculate and control objects. Here, 
the physical devices and network parts of manufacturing resources are fused into a cell-
level digital twin system. The system functions include real-time processing of perceived 
data, data buffering, real-time data control, actuator monitoring, fault diagnosis, extraction 
of health features, fault processing, and safe shutdown. 

If it is necessary to respond to anomalies, the DTJ scheduling model will use the 
knowledge models provided by edge computing to optimize the results and select the op- 
timal decision-making scheme. The final scheme will be converted into control commands 
and issued to the physical job-shop through edge computing. 

In the physical job-shop, there are lots of data on the edges, and many local appli-
cation systems. Considering the strong real-time requirements, it is necessary to enhance 
the ability to execute tasks and analyze data on network edges. Hence, the edge cloud, i.e. 
the small-scale cloud data center on network edge, was adopted to process data and make 
decisions in real time. The structure of edge computing in the physical job-shop is 
presented in Fig. 4. 
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Data mining and edge computing were introduced to guide job-shop scheduling, aim- 
ing to make quick responses to the changing environment. There are many data mining 
algorithms, such as decision tree (DT) [23] and deep neural network (DNN) [24]. Each 
algorithm has its unique features. No single algorithm can achieve the best performance in 
all job-shop scheduling problems (JSPs). 

In our DTJ scheduling model, the optimal scheduling schemes are obtained under the 
guidance of various knowledge models, according to the predicted disturbances and track- 
ed behavior of job-shop elements. In the meantime, the simulation results of each optimal 
scheduling scheme are converted into training examples for the update of knowledge 
models. 
 
4.1 Data Collection Model 
 

For DTJ scheduling, it is important to build a scheduling data source, which serves as 
the sole integration and sharing platform of scheduling data. The scheduling data (Fig. 5) 
collected from the physical and virtual job-shops were divided into two parts: those for the 
mining of scheduling rules and those for the application of scheduling rules. 

Besides, the collected scheduling dataset DH was also split into three parts d1, d2 and 
d3. Among them, d1 is the real-time state of scheduling elements, d2 is the scheduling 
process, and d3 is the plan of scheduling activities. Because the DTJ scheduling aims to 
select the suitable machine for each job and eliminate idle machines in disturbed en- 
vironment. 

As shown in Fig. 5, the scheduling dataset contains both offline data and real-time 
data from physical and virtual job-shops. These data must be collected efficiently and 
reasonably, such as to speed up the interaction between physical and virtual spaces and the 
mining of scheduling rules.  

 

 
Fig. 5. The scheduling dataset. 
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This paper adopts an adaptive data acquisition strategy [25], in which the sampling 
frequency of the sensors is adjusted dynamically by edge computing. The dynamic adjust- 
ment was conducted according to the variance between the sensor data in several cycles.  

The Bartlett’s test [26] was carried out to test whether the datasets collected in several 
cycles are from the population with equal variances. If the datasets collected by a sensor 
have the same variance in several cycles, the sampling frequency will be reduced; other- 
wise, the sampling frequency will be increased. 

Suppose a sensor collects T datasets in T cycles. Then, the Bartlett’s test for the data- 
sets can be implemented in the following steps: 
Step 1: Calculate the following statistics: 
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where P is the total data amount of Q datasets; t
2 is the population variance of all datasets; 

pq is the data volume of the qth dataset; q
2 is the population variance of the qth dataset. 

 
Step 2: Judge whether the population variances of Q datasets are equal. Compare the 
calculated statistic 2 with the threshold of chi-square distribution 2

a(Q-1), where a is the 
significance level and Q  1 is the degree of freedom. If 2 > 2

a(Q-1), the population vari- 
ances of Q datasets are significantly different under the significance level of a; if 2

 > 2
a(Q-1), 

the population variances of Q datasets are the same under the significance level of a. 
The scheduling dataset DH contains numerous features of the scheduling environment 

and an abundance of scheduling knowledge. However, there are also many useless or 
incorrect rules or patterns. To improve the data quality, this paper constructs a multi-index 
screening mechanism to process the scheduling dataset. Three indices were selected as the 
bases for screening, namely, the maximum makespan, the total delay, and the total machine 
load. The data that satisfy the thresholds for the three indices were inputted to the rule 
mining algorithm. 

 
4.2 Multi-Scheduling Knowledge Model 
 

The DTJ scheduling model needs to fully utilize the scheduling knowledge from the 
digital twin data source. Therefore, a multi-scheduling knowledge model was proposed 
based on digital twin. Three algorithms were selected to mine the scheduling rules, namely, 
decision tree (DT), random forest (RT) and radial basis function neural network (RBFNN). 
The three algorithms were integrated by random forest, an algorithm that fuses multiple 
trees through integrated learning. Random forest trains and predicts samples with multiple 
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decision trees. The output category of the forest depends on the output categories of in- 
dividual trees. Based on the three algorithms, the mining and utilization of scheduling rules 
were derived for dynamic DTJ scheduling. The framework of multi-scheduling knowledge 
model is displayed in Fig. 6. 

 

 
Fig. 6. The framework of multi-scheduling knowledge model. 

 

 

Once the real-time scheduling data of the physical job-shop deviate from the preset 
value, the multi-scheduling knowledge model in the virtual job-shop will actively perceive 
the abnormality, quickly identify the range of the abnormality, and determine the necessity 
of making any response. If it is necessary to optimize the scheduling, the DT, RF and 
RFBNN will be called to compute the scheduling optimization results, respectively. Finally, 
the optimization results will be evaluated, and the final scheduling scheme will be pro- 
duced. Based on the digital twin, the three types of scheduling knowledge can be effective- 
ly integrated, achieving better performance than a single type of scheduling knowledge. 

5. SIMULATION AND RESULTS ANALYSIS 

To verify its effectiveness, the proposed DTJ model was subjected to contrastive 
simulation on the software Witness. The simulation analysis system was integrated with 
digital twin through service bus. The system feeds back the results of simulation analysis 
to the digital twin, which then issues the production plan and simulation strategy to the 
operation execution system. In return, the manufacturing execution system continuously 
feeds back the real-time production data to the digital twin. Based on the data, the digital 
twin improves the simulation analytical model, and outputs the execution result of the 
production plan. 

Fig. 7 presents the physical production line of operation execution system. It can be 
seen that the production line consists of a 3D warehouse, a loading robot, an automatic 
guided vehicle (AGV), an assembly robot, a service robot, etc. 
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Fig. 7. Physical production line of operation execution system. 

 

 
Fig. 8. The DTJ. 

 
Fig. 8 shows the DTJ corresponding to the physical production line. The DTJ mainly 

includes the production line information model, single machine information model, real-
time animation of production line, real-time machine state, job flow information, etc. 

The simulation object is a flexible job-shop with 7 machines. Eight types of jobs need 
to be processed in batches (batch size: 10). Each type of jobs has a fixed operation sequence. 
During the simulation of dynamic DTJ scheduling, the real-time states of jobs and ma- 
chines were collected. The sampling frequency was initialized as 0.001 per unit time. The 
scheduling data in the past 60 days were collected and stored in the database, in addition 
to the information on system disturbance.  

Before comparing our model with other scheduling methods, it is necessary to unify 
the dimensions of all indices, and combined them into a single index. The single perfor- 
mance index can be constructed by: 
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( ) ( ) ( ) ( ) ( ) ( )
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where 0.5, 0.3 and 0.2 are the weights of three indicators, respectively; M(best) is the maxi- 
mum makespan of different scheduling methods; D(worst) is the maximum total delay; 
L(best) is the maximum total machine load. 

The proposed DTJ was compared with DT, RF, RBF and traditional flexible job-shop 
scheduling algorithm. The performance of each algorithm was measured by maximum 
makespan, total delay and total machine load. The results of the four contrastive scheduling 
methods are compared in Table 1. 

As shown in Table 1, our model was not as good as other algorithms, as judged by a 
single index. However, our model, DT, RT and RBFNN all outperformed the traditional 
flexible job-shop scheduling algorithm in the three evaluation indices. Overall, our model 
achieved the best scheduling effect among the contrastive methods. In addition, our model 
exhibited very good real-time performance, owing to the edge computing. Therefore, our 
model is suitable for actual scheduling environments, which are complex and dynamic.  
 

Table 1. Comparison of different scheduling methods. 
Scheduling methods Evaluation indices

 
Maximum 
makespan

Total 
delay

Total machine 
load 

Our model 25.1 1.5 105.6 
DT 27.3 8.6 108.2 
RT 24.9 6.5 102.3 

RBFNN 25.7 8.1 99.8 
Traditional flexible job-shop scheduling 

algorithm 
30.6 12.7 96.7 

 

 
6. CONCLUSIONS 

This paper proposes a dynamic DTJ scheduling model capable of intelligent dynamic 
control of the manufacturing process. The model was constructed with the aid of edge 
computing, virtual simulation, and data analysis. Simulation results show that our model 
can approximate the optimal scheduling scheme for multi-objective screening, and out- 
shine the common heuristic scheduling rules. The research results provide important re- 
ference for the application of digital twin in the field of job-shop scheduling. 
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