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Reversible data hiding is widely used because the host image can be recovered 

without errors after the extraction of hidden data. One of the popular schemes for 
reversibility involves the use of prediction-error expansion (PEE). Scholars often modify 
the basic PEE scheme to hide more secret bits or to improve the quality in stego images. 
Examples include the pairwise PEE, the difference expansion approach, and others. In our 
PEE-based method here, by identifying which parts of a prediction error histogram indicate 
inefficient hiding, we propose increasing the ratio of pixels hiding data to the pixels shifted 
without hiding data, called the efficiency ratio (ER). We used four tests to improve ER and 
hence improve the quality of stego images. The basic concept of our method is to check 
whether an image block or pixel is suitable for embedding data. After deleting the blocks 
or pixels that are likely to yield erroneous predictions, we can reduce the chance of a high 
PE. A high PE not only deteriorates the quality of stego images, but also contributes 
nothing to the embedding capacity. As shown in experiments, our image quality is better 
than that of many other PEE-based algorithms when similar amounts of data are hidden. 

 
Keywords: reversible hiding, prediction-error expansion (PEE) methods, prediction-error 
(PE) histogram, efficiency ratio (ER), selection of embedding area 

1. INTRODUCTION 

The protection of secrets is always an interesting issue. While classical cryptography 
is the concealing of a message’s content, steganography is the concealing of its existence 
[1]. As stated in [2], steganography is an important branch of information hiding. Now- 
adays, steganography is utilized to hide secrets in media such as audio [3], video [4], and 
images [5-7]. 

A very simple approach to image-based hiding is the least-significant-bits (LSB) sub-
stitution method or its modulus-based extension [5], and this approach typically achieves 
good quality-capacity performance. However, after lossless extraction of hidden data, the 
original host image can never be recovered from the stego image using this method. By 
contrast, reversible hiding (RH) allows the recovery of the original image from a stego 
image after the extraction of the hidden content. This reversible individuality is attractive 
in many fields, such as for military, legal, and medical applications [8]. 

Honsinger et al. [9], Thodi and Rodriguez [10], Tian [11], Sachnev [12], and many 
other scholars have proposed reversible methods. One of the popular reversible approaches 
is histogram-based. For instance, the reversible method of Ni et al. [6] uses histogram 
modification to determine the peak point to hide messages; whereas the reversible method 
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of Thodi and Rodriguez [10] expands the difference between the real pixel value and its 
prediction value in order to embed more data. In histogram-related approaches, a his- 
togram with peaks is usually better than a flat histogram, for the former can yield both 
larger embedding capacity (EC) and higher PSNR values for stego images. As stated in 
[8], Prediction-Error Expansion (PEE) methods (for example, [10]) often give more useful 
histograms because the Prediction-Error histograms created by PEE often have peak 
frequency at center, which in turn gives good stego image quality. 

Hereinafter, the term prediction error (PE) is defined as the original pixel value minus 
prediction value of that pixel. In this formula, the prediction value is evaluated using the 
information of some neighboring pixels. In the design of PEE-based reversible hiding, to 
improve quality of stego images, researches usually focus on the design of good predictors, 
because better prediction yields smaller impact to the stego images [12-15]. In this paper, 
we use a new approach: we will focus on the improvement of stego image quality through 
determining the suitability of hiding for different areas of a given host image. More pre- 
cisely, we apply four tests to filter out the portions which are likely to yield bad prediction 
or hiding. Then, we only hide content in the areas that pass the tests. 

The paper is organized as follows: Section 2 briefly introduces PEE. Section 3 gives 
the proposed algorithm, which includes four phases to increase the performance. The 
experimental results, as well as the comparison with previous works, are shown in Section 
4. The technique dealing with large size secrets and the protection of sensitive secrets is in 
Section 5. Alternative versions of the design are discussed in Section 6. Conclusions are 
in Section 7. 

2. BACKGROUND 

This section briefly reviews the idea of reversible hiding using PEE. Fig. 1 (a) shows 
a PE histogram that counts the number of pixels whose prediction error is the value shown 
on the upper horizontal line prior to shifting. The shifting of PE values is required in order 
to hide data, which is represented by the shift in values in the upper horizontal line to 
values in the lower horizontal line of Fig. 1 (a). In Fig. 1 (a), when the PE of a pixel is 0, 
no hiding is performed. However, if the PE of a pixel is 1 or 1, then one bit can be hidden. 
In other words, if the bit to be hidden has a value of 0, then the PE value of the pixel being 
discussed is not modified. Hence, the PE of this pixel is still 1 or 1. However, if the secret 
bit to be hidden is 1, then modify the pixel value of the pixel being discussed so that the 
new PE of the new pixel value is 2 or 2 (see the s in Fig. 1 (a)). By doing this modification, 
the decoder can understand that the hidden secret is 1 rather than 0, when the decoder sees 
that the PE is 2 (rather than 1).  

Regarding decoding after using an encoding system, for Fig. 1 (a), a PE value in the 
range {−2, −1, 0, 1, 2} indicates that the hidden secret is identified as {1, 0, no-secret, 0, 
1}, respectively. All other PE values not in {−2, −1, 0, 1, 2} indicate that no secret is 
hidden in the current stego pixel. Also note that, for Fig. 1 (a), to avoid errors in the 
decoding caused by non-uniqueness, and also for the purpose of reversible recovery of the 
original values, a shift is needed when the original PE value differs by 2 or more. Hence, 
these PE values are shifted to get new PE values, as indicated by the green arrows in Fig. 
1. These green arrows indicate that those pixels contain no secret, and the original PE 
must be shifted by a constant unit (T unit) to avoid errors caused by non-uniqueness. 
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     (a)                                      (b) 
Fig. 1. Adjustment of PE values in conventional PEE. The shift is T = 1 in (a); and T = 2 in (b). 

 
In Fig. 1, s indicates that the hidden secret is 0; s indicates that the hidden secret is 1. 

The blue arrow indicates that there is no shift, and therefore no hiding of a secret, whereas 
a green arrow indicates that there is a shift of PE value, though still without the hiding of 
a secret. To investigate if it is too wasteful that only very few PE values are utilized in Fig. 
1 (a) to hide secret, [8] also tried using larger values such as those shown in Fig. 1 (b). 
While Fig. 1 (b) is similar to Fig. 1 (a), as mentioned in [8], the “shift amount” T, which is 
an integer parameter to control embedding capacity, is T = 2 rather than T = 1. In general, 
as the T value increases, the hiding capacity increases while the visual quality of the stego 
image decreases. T = 1 in Fig. 1 (a), so one bit can be hidden when the original PE of a 
pixel is 1. T = 2 in Fig. 1 (b); thus, one bit can be hidden when the original PE of a pixel 
is 1 or 2. Again, a shift of PE value might be needed. In Fig. 1 (b), after shifting, when 
the new PE value is 1 or 3, then the hidden secret bit is 0; when the new PE value is 2 
or 4, then the hidden secret bit is 1. 

In summary, in Fig. 1 (a), where T is set to 1, a secret is embedded when the original 
PE value is tr1(= 1) or tl1(= −1). Moreover, note that when the original PE is larger than 
tr1(= 1) or smaller than tl1(= −1), the PE value is always forced to shift one unit, because T 
= 1, even though no secret is hidden. Analogously, in Fig. 1 (b), where T is set to 2, a secret 
is embedded when the original PE is equal to tr1(= 1), tr2(= 2), tl1(= −1), or tl2(= −2). Note 
that when the original PE is larger than tr2(= 2) or smaller than tl2(= −2), the PE value is 
always forced to shift two units, because T = 2, even though no secret is hidden. Because 
more host pixels are utilized to hide one bit each, Fig. 1 (b) can hide more secret than Fig. 
1 (a); however, the PSNR using Fig. 1 (b) is worse. If the image quality of a stego image 
is a major concern, then people often use the scheme of Fig. 1 (a). 

3. PROPOSED METHOD 

Our embedding process has four phases (see Fig. 2). The aim of Phase 1, indicated by 
the dashed line rectangle in the left half of Fig. 2, is to find and delete the blocks which are 
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unsuitable for hiding data. Then, for each block which is not deleted in Phase 1, we use 
Phases 2-4 to check the suitability of the pixels in this block. Finally, secrets are embedded 
only in the pixels that pass the tests in these phases. The embedding process is run for two 
iterations of Phases 2-4, as shown in the right half of Fig. 2. The first round deals with 
(predicts) the pixels (i, j) whose i+j is even, and the second round deals with (predicts) the 
pixels (i, j) whose i+j is odd, which are referred to as the “black” pixels and “white” pixels, 
respectively (see Fig. 4). This is because, in Fig. 4, the prediction of white pixels uses the 
values of black pixels, and vice versa. 

 

 
Fig. 2. The embedding process of our algorithm. 

As mentioned in [16], the PE histograms of natural images are often similar to 
Gaussian distribution to a certain extent (see the blue bars in Fig. 3 (a)), with center being 
the point where the PE value is zero. Usually, if a PE histogram is more centralized around 
zero, then the average |PE| is smaller, and the embedding capacity is also larger. Without 
the loss of generality, assume the “shift amount” T is 1, i.e. we use Fig. 1 (a) to illustrate 
the idea. Given that PE values are integer values {…, −4, −3, −2, −1, 0, 1, 2, 3, 4, …}, we 
may partition PE values as a 5-interval union: {PE < tl1}  {PE = tl1}  {tl1 < PE < tr1} 
 {PE = tr1}  {tr1 < PE}. Here we call the central interval {tl1 < PE < tr1} as “central-
bin”. The leftmost interval {PE < tl1} and rightmost interval {tr1 < PE} are called the two 
“side lobes”. PE = tl1 and PE = tr1 are called “expansion-bins” in some published papers 
(e.g., [17]). 

Referring to the earlier explanation of Fig. 1, we know that the side lobes not only 
hide nothing, but also deteriorate the quality of stego images due to shifting. Our method 
tries to reduce the chance using image area which has many pixels in the two side lobes. 
In Fig. 3 (a) and Fig. 3 (b), the blue bars show the original distribution of prediction error. 
In Fig. 3 (b), we use several techniques to reduce the chance of using bad pixels such as 



SELECTION OF EMBEDDING AREA FOR PEE 625

those pixels in the two side lobes. After our examination, the PE distribution of the 
qualified pixels is shown by the distribution of red bars in Fig. 3 (b). The number of poor 
prediction pixels is reduced (see the two side-lobes area enclosed by the two dash 
rectangles in Fig. 3 (b)). As for pixels in central-bin, they are harmless to the quality of 
stego-images. In general, the red bars in Fig. 3 (b) are in good embedding situation if their 
distribution is narrowed down to a few red bars located near the place PE = 0. Section 3.2 
below lists four techniques to form the four phases of Fig. 2, and these four phases provide 
good environment for embedding. In these phases, we need a prediction formula. 

 
tl1   tr1 

      
(a)                          (b) 

Fig. 3. Histogram of PE; (a) Blue bars are original distribution of prediction error; (b) Red bars 
indicate pixels in suitable embedding areas after filtering out and deleting pixels or blocks with large 
PE; The two red rectangles indicate the two side lobes. 

3.1 A Simple Prediction Formula and the Definition of the Efficiency Ratio  

Every PEE method needs a prediction rule to predict pixel values. Here we use a very 
simple and common rhombus pattern to predict pixel values (see Fig. 4). A rhombus 
pattern is a chessboard-like matrix [12, 14]. The black and white pixels in Fig. 4 belong to 
two different sets. In this kind of prediction scheme, both decoding and encoding will need 
two rounds which are reflected in the two rounds of Fig. 2. Round 1 manages the black 
pixels (Set 1), and Round 2 manages the white pixels (Set 2). When people run the first 
round, all white pixels are locked so that black pixels can be predicted. When people run 
the second round, all black pixels are kept still so that white pixels can be predicted. To 
illustrate that our four-phased hiding method can work even if the prediction rule is not of 
very high precision, we only use a very ordinary prediction equation to predict values, de-  

 

 
Fig. 4. The very simple prediction pattern used in this study. 
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fined as Eq. (1). Let Vi,j represent the true value of a pixel. Its prediction value V'i,j can be 
computed by averaging its four surrounding pixels {Vi,j1, Vi1,j} as below: 

V'i,j = (Vi,j-1 + Vi+1,j + Vi,j1, Vi,j+1 + Vi-1,j)/4. (1) 

Our PEE method also needs an evaluation tool called Efficiency Ratio (ER) to judge 
the goodness of an image or a block. For an image (or the union of some pixels of an 
image), its ER is defined as 

Number of pixels which really embed some secret data
Number of pixels which are shifted without hiding any secret

ER    (2) 

A larger ER value indicates not only better hiding ratio, but also better PSNR value 
because the denominator counts the number of “garbage pixels” which are distorted, yet 
are unsuitable for hiding. The PE of the pixels belonging to the denominator must be in 
two side lobes, and hence satisfy PE > tr1 = 1 or PE < tl1 = −1 if T = 1 (or, PE > tr2 = 2 or 
PE < tl2 = −2 if the parameter T is T = 2, as in Fig. 1 (b)). For example, those pixels in the 
edge area or texture area often lead to poor prediction, and hence also lead to high distortion 
in the summation terms of mean square error (MSE) equation defined as Eq. (3). We use 
Eqs. (1) and (2) to produce Table 1. As expected, smooth images have higher ER values. 
In this paper, we try to produce high ER value by erasing bad blocks or bad pixels whose 
PEs are in the two side lobes. Among the four proposed phases, Phase 1 is for the deletion 
of blocks, whereas Phases 2-4 are for the deletion of pixels. 

 
Table 1. ER values for some 512  512 images (assuming T = 1, as in Fig. 1 (a)). 

Images Lena Baboon Airplane Elaine Lake Boat Barbara 

ER 0.463 0.093 0.623 0.164 0.182 0.191 0.237 

 

To evaluate the stego image quality, we may use PSNR. When a host image I of size 
M  N pixels is modified and becomes stego image I, the definition of PSNR is  

22
1 1

( ( , ) ( , ))255
10 log ;  and .

M N

i j
I i j I i j

PSNR MSE
MSE M N

 
            

    (3) 

3.2 The Main Process 

Firstly, divide the host image into non-overlapping blocks. Then, as shown in Fig. 2, 
use Phase 1 to delete non-suitable blocks. Then, for each suitable block, run Phases 2-4 to 
find good pixels for embedding data. The details of the four phases are as follows. 

3.2.1 Phase 1: Deletion of bad blocks 

The more complex the image, the worse the prediction. Taking Lena and Baboon for 
example, if we use PEE to hide secrets, we can often embed more secrets in Lena than in 
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Baboon. The published methods showed that the PSNR of Lena is higher than the PSNR 
of Baboon when the former hides 20,000 bits and the latter merely hides 10,000 bits [8, 
21]. This is because the pixel values are more uniform in Lena than in Baboon, and this 
feature makes the prediction in Lena more precise. In fact, even in the same image, some 
blocks are more useful than others. Fig. 5 takes Lake and Lena as examples, and shows 
that the ER varies a lot between blocks and also between images. If the secret file is not 
large in size, then we should avoid hiding secrets in blocks with high |PE|, for these blocks 
always have low ER values. Therefore, we introduce Phase 1, a rough inspection to delete 
bad blocks. In Phase 1, we delete blocks in which too many pixels have poor prediction 
(|PE| > TPhase1), where TPhase1 is a threshold selected by user. Notably, Phase 1 lets us avoid 
blocks with poor prediction, and hence can improve ER, which in turns can improve the 
stego image quality by improving the PSNR value. Table 2 in Section 4 will show the ER 
improvement caused by deleting the worst blocks. Although the ER improvement is not as 
impressive as other phases, Phase 1 is still needed for the reason explained in the con-
clusion section. 

 

               

(a)                                (b) 
Fig. 5. ER values for each 128  128 block of the 512  512 image Lake (or Lena). Assuming T = 1. 

3.2.2 Phase 2: Deleting a pixel (i, j) which is surrounded by some edge pixels 

Here we use the neighborhood gray value variation [18] for edge detection. If a pixel 
(i, j) has too many neighbors which are in edges themselves, then pixel (i, j) cannot get 
good prediction. Phase 2 checks whether the neighbors are edge pixels, whereas Phase 3 
checks whether the pixel (i, j) itself is in an edge. 

We will use a simple function to detect edge. Because of our prediction scheme, we 
need to carefully define the edge detection function. The Canny algorithm [19] used several 
filters to detect edges. The Canny 3  3 convolution mask is shown in Fig. 6 (a). Here we 
must modify the mask because our coding sequence is top to bottom and left to right, and 
also because we have two rounds to predict black pixels and white pixels separately. If we 
handle the middle pixel in Fig. 6, the two pixels on the left top and right top are already 
changed to new values. If we include these two values in mask, encoding and decoding 
will not get the same value. Hence, our mask is Fig. 6 (b) rather than conventional Fig. 6 
(a). 
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         Gx               Gy                  Gx              Gy 
(a)                                    (b) 

Fig. 6. Modifying the conventional mask (a) to get mask (b) for edge detection. 
 

  E1   

 E2  E8  

E3   Vi,j  E7 

 E4  E6  

  E5   

Fig. 7. The eight same-polarity (black vs. white) neighbors {E1 to E8} used in Phase 2 for a pixel (i, 
j) whose gray value is Vi,j; Notably, pixels {E1 to E8} are at positions (i1, j1), (i, j2), (i2, j). 
 

Steps in Phase 2 (to check whether a pixel (i, j) is surrounded by some edge pixels): 
As shown in Fig. 7, let {E1 to E8} be the eight black pixels in these specified 

positions surrounding pixel (i, j). Let V denote the gray value. Then define: 
e(Ek) = |V(left white neighbor of Ek)  V(right white neighbor of Ek)|  

|V(upper white neighbor of Ek)  V(lower white neighbor of Ek)|. 
If e(Ek) > threshold Te then we consider Ek to be an edge pixel. 

Count how many of the 8 points in {E1, E2, …, E8} are edge pixels. 
If the count is less than the threshold Nt, then let pixel (i, j) pass Phase 2. 
Else, consider pixel (i, j) to be in busy area and hence judge pixel (i, j) as “disqualified” 

for hiding, and go to check the next pixel. 
–END of Phase 2– 

 
The ER value improvements caused by Phase 2 will be shown later in Table 3 of 

Section 4. In Phase 2, Te is a threshold value used to define edge pixels, and Nt is a positive 
integer threshold less than 8. 

 
3.2.3 Phase 3: Deleting a pixel which is an edge pixel itself 

 
This Phase tests if pixel (i, j) itself is an edge pixel. The ER value improvements 

caused by Phase 3 will be shown in Table 4. For the steps below, recall that V denotes gray 
value. 

 
Steps in Phase 3 (to check whether a pixel (i, j) itself is an edge pixel): 

If |Vi,j-1  Vi,j+1|  |Vi-1,j  Vi+1,j| > threshold (Tse), then pixel (i, j) is an edge pixel, so 
judge pixel (i, j) as “disqualified” for hiding, and check the next pixel. 

Else, let pixel (i, j) pass Phase 3.  
–END of Phase 3– 

 −1 0 1  1 2 1  0 0 0  0 2 0 

 −2 0 2  0 0 0  −2 0 2  0 0 0 

 −1 0 1  −1 −2 −1  0 0 0  0 −2 0 
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3.2.4 Phase 4: Deleting a pixel which has many neighbors with bad prediction 
 
Like Phase 2, this phase also evaluates the characteristics of neighbor pixels. Because 

we always choose the pixels with small |PE| to hide secrets, here we use the PE of sur-
rounding pixels to forecast whether the pixel (i, j) currently being examined can get good 
prediction. In Fig. 8, pixel (i, j) has 4 surrounding pixels {A, B, C, D}. Each is a black 
pixel and hence each can be roughly predicted by the 4 white pixels nearest to this black 
pixel. When handling pixel (i, j), the four pixels {A, B, C, D} are still the original values 
in the encoding procedure, or were already recovered back to original values in the 
decoding procedure. However, the four pixels {A, B, C, D} are modified values regard-
less of whether the procedure is encoding or decoding. For better judgement, we do not 
use the four unreliable pixels {A, B, C, D} as our reference pixels when dealing with 
pixel (i, j) in Phase 4. There are two thresholds in Phase 4. GNt is a threshold of whether 
the number of good neighbors (GN, defined as the neighbor pixels with |PE|  Tpe) is 
enough, and Tpe is a threshold to limit |PE|. The ER value improvements caused by Phase 
4 are in Table 5. 

 

  C   

 B  D  

A  Vi,j  A 

 B  D  

  C   

Fig. 8. The 8  4 = 4 neighbors {A, B, C, D} for Phase 4. (Do not use {A, B, C, D}, for the reason 
explained in text.) 
 

Steps of Phase 4 (to check whether a pixel (i, j) is surrounded by some good-prediction 
pixels): 

Define the prediction quality bit QA of the neighbor pixel A as QA = 1 iff the 
Prediction Error (PE) of pixel A satisfies (|PE|)A  Tpe. (Hence, QA = 0 if (|PE|)A > 
Tpe.) Define QB, QC, and QD likewise. 

For pixel (i, j), if (QA + QB + QC + QD)  GNt, then let pixel (i, j) pass the test, 
for pixel (i, j) is in a good prediction region.  

Else, judge pixel (i, j) as “disqualified” for hiding, then go to check the next 
pixel. 

3.2.5 Hiding data using prediction-error expansion 

According to Fig. 2, the pixels that pass all of the phases will enter the hiding step. 
Because Phases 1-4 already filter out the pixels that might not be suitable to hide secret by 
using PEE, our algorithm can just use the original PEE method without further modi-
fication. Eq. (4) describes the encoding rules. Here, m is a to-be-embedded bit (0 or 1) 
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described in Fig. 1. To get stego images with low distortion, we use T = 1 and ei,j is the 
original PE (ei,j = Vi,j – V'i,j ). Each PE can be expanded (i.e. shifted) as e'i,j. Let tl1 = 1 and 
tr1 = 1 for the two expansion bins. 

, , 1

, , 1

1 , 1, ,

, 1,

, 1
,

1 if

if

if

if

if1

i j i j l

i j i j l

l i j ri j i j

i j ri j

i j r
i j

e e t

e m e t

t e te e

e te m
e te

  


 
   
 

 

  (4) 

We then get stego pixel value V''i,j = e'i,j  V'i,j to replace the original pixel value Vi,j 
of input image. In decoding, any pixel that fails to pass the four phases means that there is 
no secret embedded in it. Otherwise, we can use Eq. (5) to get the embedded secret bit m 
and also recover the original pixel value. In detail, the first step is to get the prediction 
value V'i,j using the same prediction formula that we used in encoding. Then, we can get 
e'i,j by the equation e'i,j = V''i,j  V'i,j. The secret bit value m and original pixel value Vi,j  
ei,j  V'i,j can then be revealed using Eq. (5) below. 

, , 1

, , 1 , 1

1 , 1, ,

, 1 , 1,

,

1 ( 1)if

( 0 )or if 1( 1 )if
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( 0 ) or if 1( 1 )if

if1

i j i j l

i j i j l i j l
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i j r i j ri j

i j

e' e' t No secret

e' m e' t m secret e' t m secret

t e' t No secrete e'

e' t m secret e' t m secrete' m
ee'

   


       
   
       
  , 1( 1)i j r' t No secret 

  (5) 

3.3 Auxiliary Information to Be Carried 

For reversible methods, certain auxiliary information should also be embedded in the 
cover image as a part of the payload for extraction and restoration. For the phases of our 
method, the following auxiliary information are required: 

 
For PEE: Left bin (3 bits) and right bin (3 bits), as their absolute values are less than 8. 
For Phase 1: A string to record which blocks are bypassed. Hence, for all 16 blocks 

of the image combined, we used a 16-bit string. The ith bit is 0 iff ith 
block is bypassed without hiding. 

For Phase 2: Te (5 bits) and Nt (3 bits) 
For Phase 3: Tse (5 bits) 
For Phase 4: Tpe (3 bits) and GNt (2 bits) 

 
As a summary, at least 3+3+16+5+3+5+3+2 = 40 bits are needed. The extra information 
can be embedded into the least significant bits (LSBs) of the first 40 pixels and put the real 
LSBs into the secret so that we can recover original host image after decoding. 
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3.4 An Example Illustrating the Embedding Process 

Assume we need to store 10,000 bits in Lake image. Fig. 9 demonstrates an example 
of our proposed method. Note that Tables 2-5 are for each phase being used “alone”, 
whereas Fig. 9 is for the four phases being stacked together. Typical initial trying parameter 
values are as follows (assuming capacity is 10,000 bits). 

 
Phase 2: Te = 8, Nt = 4 
Phase 3: Tse = 30 
Phase 4: Tpe = 4, GNt = 3 

 
 
 
Input image: Lake and 10,000 
bits secret data  

Phase 1 
(1) Using expansion-bins = 1, 

T = 1 to get ER value for ev- 
ery image block. 
(Each pair of red numbers 
means the ER and capacity 
of that block.) 

 
(2) Since the required capacity is 

10,000 bits, we delete the bl-
ocks one by one, starting from 
the block with lowest 𝐸𝑅. Af-
ter deleting 12 blocks, we still 
can hide 14,509 (3,411+3,256 
+3,852+3,990) bits. 

 
   

 

 Parameters setting for Phase 2-Phase 4:  
 

 
 

Phase 2 
(1) Te = 8, Nt = 4  
Capacity = 13,246 bits, Average 
ER = 0.438 
(2) Te = 7, Nt = 4   
Capacity = 13,012 bits, Average 
ER = 0.452 
(3) Te = 6, Nt = 4 
Capacity = 12,466 bits, Average 
ER = 0.470 
 

Since 12,466 bits are already close 
to 10,000 bits, stop Phase 2 here 
and let Te = 6 and Nt = 4. This is 
because Phase 3 and Phase 4 will 
cut down capacity further. 

Phase 3 
(Using the final parameter values 
Te = 6, Nt = 4 of Phase 2) 
(1) Tse = 30   
Capacity = 12,382 bits, Average ER 
= 0.480 
(2) Tse = 25  
Capacity = 12,368 bits, Average 
ER = 0.483 
 

Stop Phase 3 here because no 
obvious change of ER. 

Phase 4 
(Using the final parameter values 
Te = 6, Nt = 4 of Phase 2.  
Tse = 25 of Phase 3) 
(1) Tpe = 4, GNt = 3  
Capacity = 12,057 bits, Average 
ER = 0.504 
(2) Tpe = 3, GNt = 3  
Capacity = 11,612 bits, Average 
ER = 0.529 
(3) Tpe = 2, GNt = 3 
Capacity = 10,486 bits, Average 
ER = 0.578 

 
Stop Phase 4 here because capaci-
ty is already very close to secret 
data size (10,000 bits). So the final 
paremeter values are:  
Te = 6, Nt = 4, 
Tse = 25, 
Tpe = 2, GNt = 3. 

 Then use the determined parmeters to run Phase 2, then run Phase 3, then run Phase 4.  

Fig. 9. An example illustrating the embedding process. (Capacity: 10,000 bits) 
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Finally, a systematic way to determine the threshold values is according to the re-
quired embedding capacity and the content of the host image. For smooth images (ER  
0.3) or for lower capacity (capacity  10,000 bits), we use values smaller than typical 
values as the initial test threshold values. On the contrary, for texture images or larger size 
secret, we use larger values as initial test values of the thresholds. 

3.5 Extraction 

The extraction and recovery procedure use the inverse of the steps of the encoding 
procedure. The first step of extracting is getting the auxiliary information from the LSBs 
of the first 40 pixels. As shown in Fig. 10, the decoding sequence (to process pixels) is of 
the opposite direction of the encoding sequence. Given that our encoding procedure 
encoded the black pixels prior to the white pixels, our decoding procedure should decode 
all white pixels first. 

 

 
(a) Encoding sequence.             (b) Decoding sequence. 

Fig. 10. The encoding sequence and decoding sequence of our algorithm. 

4. EXPERIMENTAL RESULTS 

In this section, we conduct several experiments to demonstrate the performance of 
our method. Standard 512 × 512 gray-scale images including Lena, Baboon, Airplane, 
Elaine, Lake, Boat, and Barbara are utilized in our experiments. Tables 2-5 show the ER 
value improvements caused by each individual phase, whereas Tables 6-8 list the in-
tegrated results of using all four phases. Table 3 shows that after the filtering of Phase 2, 
the ER values increase more than two times on average. In Phase 2, as shown in Table 3, 
to get larger ER values we usually use a smaller Te value and a smaller Nt value. Of course, 
the Te value still cannot be too small, or it will become impractical. For example, if Te = 0, 
then Counti,j = 8, so all pixels are in a busy area, and hence no pixels can pass the test. This 
makes the entire host have no qualified pixels in which to hide secrets. Likewise, if Nt = 0, 
then all pixels are in a busy area, and no pixel can pass the test. In Tables 4 and 5, to get 
larger ER values, we usually use a smaller Tse value, a smaller Tpe value, and a larger GNt 
value. 

Because of our policy of deleting low ER regions, our good performance over that of 
other methods is more obvious in dealing with secrets of small size. The following table 
shows our result when compared with [12, 14] when the secret has only 7,000 bits. On 
average, our 62.3804 dB PSNR is better than the 59.1453 dB PSNR of [12] and the 59.8855 
dB PSNR of [14]. Other references did not list experiments of 7,000 bits, and hence are  
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Table 2. ER values after applying Phase 1 alone to the host images (when T=1, as in Fig. 1 (a)). 
 Lena Baboon Airplane Elaine Lake Boat Barbara 

Original ER in Table 1 0.463 0.093 0.623 0.164 0.182 0.191 0.237 

After deleting two 128 
128 blocks of smallest 
ER 

0.503 0.103 0.701 0.175 0.192 0.200 0.259 

After deleting Four 128 
128 blocks of smallest 
ER 

0.530 0.115 0.801 0.181 0.204 0.209 0.283 

 

Table 3. ER values after applying Phase 2 alone to the host images (when T=1, as in Fig. 1 (a)). 
 Lena Baboon Airplane Elaine Lake Boat Barbara 
Original ER in Table 1 0.463 0.093 0.623 0.164 0.182 0.191 0.237 
ER (if Te = 7, Nt = 4) 0.624 0.208 1.091 0.254 0.296 0.270 0.591 
ER (if Te = 6, Nt = 4) 0.645 0.213 1.166 0.281 0.319 0.285 0.634 
ER (if Te = 7, Nt = 3) 0.684 0.242 1.300 0.361 0.363 0.323 0.732 
ER (if Te = 6, Nt = 3) 0.705 0.243 1.398 0.421 0.406 0.350 0.802 

 

Table 4. ER values after applying Phase 3 alone to the host images (when T=1, as in Fig. 1 (a)). 
 Lena Baboon Airplane Elaine Lake Boat Barbara 
Original ER in Table 1 0.463 0.093 0.623 0.164 0.182 0.191 0.237 
ER (if Tse = 10) 0.617 0.191 1.181 0.232 0.286 0.259 0.583 
ER (if Tse = 5) 0.669 0.212 1.492 0.307 0.356 0.306 0.748 

 

Table 5. ER values after applying Phase 4 alone to the host images (when T=1, as in Fig. 1 (a)). 
 Lena Baboon Airplane Elaine Lake Boat Barbara 
Original ER in Table 1 0.463 0.093 0.623 0.164 0.182 0.191 0.237 
ER (if Tpe = 5, GNt = 1) 0.498 0.148 0.712 0.187 0.210 0.214 0.375 
ER (if Tpe = 3, GNt = 1) 0.534 0.167 0.793 0.215 0.240 0.235 0.431 
ER (if Tpe = 5, GNt = 2) 0.544 0.191 0.821 0.233 0.258 0.245 0.452 
ER (if Tpe = 3, GNt = 2) 0.602 0.215 0.967 0.312 0.335 0.295 0.550 

 

Table 6. Comparison of PSNR (in dB) between the proposed method and other published 
methods, assuming 10,000 bits are to be hidden. 

Images [12] [16] [20] [21] [8] [22] 

Our method 

16 
blocks 

64 
blocks 

256 
blocks 

Lena 58.19 57.94 60.28 59.78 59.75 59.64 61.49 61.60 61.79 

Baboon 54.16 51.44 55.49 53.96 55.21 55.63 55.75 55.81 55.97 

Airplane 60.38 59.79 63.19 63.18 63.76 61.83 63.96 64.08 64.19 

Elaine 56.14 54.62 56.72 57.39 58.06 57.13 57.92 58.08 58.40 

Lake 56.66 54.85 57.57 58.08 58.72 57.48 59.24 59.36 59.46 

Boat 56.15 55.22 57.49 57.42 57.55 57.23 57.68 57.90 58.19 

Average 56.95 55.64 58.46 58.30 58.84 58.16 59.34 59.47 59.66 
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not in Table 7. In Table 8, the secret has 20,000 bits. We combine the experimental results 
listed in [8, 25] and others, comparing them with our result, and ours are still found to be 
competitive. Fig. 11 gives the capacity to PSNR curves for our method and the five 
methods listed in Fig. 7 of [8], which used Lena and Airplane as test images. It can be seen 
that our method, indicated by black triangles in Fig. 11, has very competitive performance. 
 

Table 7. Comparison of PSNR (in dB) between the proposed method and other published 
methods, assuming 7,000 bits are to be hidden. 

Images [12] [14] 
Our method 

16 blocks 64 blocks 256 blocks 
Lena 60.2253 60.8096 63.1738 63.2206 63.2853 

Airplane 62.2648 64.2273 65.5621 65.9463 66.0262 
Baboon 56.5411 56.9626 58.0952 58.3084 58.3924 

Lake 58.3248 59.2485 61.6466 61.8450 62.0211 
Boat 57.8449 58.2169 59.7608 59.9579 60.1508 

Barbara 59.6711 59.8480 63.7182 64.2051 64.4063 
Average 59.1453 59.8855 61.9928 62.2472 62.3804 

 

Table 8. Comparison of PSNR (in dB) between the proposed method and other published 
methods, assuming 20,000 bits are to be hidden. 

Images [12] [24] [26] [27] [25] [8] 
Our method 

16 
blocks 

64 
blocks 

256 
blocks 

Lena 55.03 54.82 54.92 54.97 56.15 56.29 57.95 57.96 58.04 
Airplane 57.34 56.84 58.58 59.67 59.45 60.20 60.23 60.36 60.41 

Boat 52.65 52.43 52.26 52.37 53.12 53.34 53.32 53.39 53.50 
Barbara 55.04 55.29 54.89 55.18 56.24 56.27 57.02 57.12 57.29 
Average 55.02 54.85 55.16 55.55 56.24 56.53 57.13 57.21 57.31 

 

Fig. 11. The capacity to PSNR curves for ours and other methods. 
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Since the differences between the stego pixel values and the original pixel values are 
at most 1, human eyes cannot distinguish the differences (see Fig. 12). As for the re-
covered images, they are identical with the host images. 

 

Host images 

Stego images 

Recovered images 
Fig. 12. Comparison among the host images, the stego images and the recovered images after hiding 
and extracting 10,000 bits each (Images are Lena, Lake, Elaine and Boat). 

5. APPLICATIONS TO THE PROTECTION OF LARGE-
SIZED, SENSITIVE SECRETS 

In the above, the reversible methods (including our method) listed in Tables 6-8 and 
Fig. 11 deal with secret data whose size is not large. Section 5 discusses the protection of 
large-sized secrets. A large secret might be closely related to the given host image or totally 
independent of that image. 

An application example is for the concealment of medical or legal information. For 
instance, for a given x-ray image, the corresponding patient’s name, age, gender, and 
medical history are very sensitive and must be protected if this information is to be attached 
to the image for the convenience use of hospital’s treatment team. To avoid being charged 
by the patient, no doctor of the treatment team should be allowed to see any personally 
identifiable information of the patient (except the lung image), unless the whole treatment 
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team (or a sufficient number of the members of the team) agree to simultaneously unveil 
the hidden information S in the treatment meeting. 

We can use the sharing technique (see Thien and Lin [28]) to create n shares from the 
secret S such that any t of the n shares can cooperate to recover S, whereas less than t shares 
cannot. Here, the value of the positive integer n is arbitrary, whereas the threshold t must 
satisfy t  n. According to [28], the size of each share is t times smaller than that of S. 
Hence, it is easy to hide a share in the host image. Therefore, we can duplicate n copies of 
the host image, then in each copy we use reversible hiding to hide a share. The created n 
host images have very high PSNR because each share is t times smaller than original secret 
S. The protection of the secret S is that: 
 
1) Information security against betrayer: less than t of the n stego images reveal nothing 

about the secret S. 
2) Missing tolerance: up to n  t stego images can be lost or absent in the disclosure meeting. 

 
The protection in 2) is particularly useful if people cannot guarantee that the n holders 

of the n stego images are loyal to the company for their entire lives, or that the n computers 
storing the n stego images are always on-line and functional. It also avoids the dilemma of 
using single stego image. Without sharing, the crash of the single media, which stores the 
single stego image, will make the secret S lost forever with no way to recover it. Besides 
erasing the secret forever, this event also deletes the host image (such as Fig. 13 (a)) forever. 

Fig. 13 gives an example of this kind of application. Fig. 13 (a) is the original 512  
512 lung x-ray image of a patient. Fig. 13 (b1) and Fig. 13 (b2) show two of the n created  

 

            (a)                       (b1)                      (b2) 
Patient's name: D. M. Chung; Chart number: 7356-435-556. Blood type: A; Birth: 1960. Weight: 85 
Kg. Height: 182 cm. Male, Married. Allergic to medicine: no. Surgery history: no. Smoking: (1 bag 
per day) for last 16 years. Occupation: working in a road construction company (for last ten years). 
Patient's parents: Father had cancer (lung and brain), mother is healthy. Observation: cancer was 
seen on chest radiographs and computed tomography (CT) scans. ……………Reminder for analysis 
or for other teammates of the treatment team: more than 80% of lung cancer cases are caused by 
smoking in a long period. Especially notice his working condition (air pollution) and smoking history; 
for this doubled his factors of getting cancer. Also needs to know that the patient was not cooperative 
(did not take medicine according to schedule or quit smoking completely)…………….. 

(c) 
Fig. 13. An application example; (a) The original 512  512 lung x-ray image of a patient; (b1-b2) 
Two of the n created 512  512 stego images (each looks like (a)); (c) Any t of the n stego images 
can be used together to extract S (i.e., medical history) in amounts of 40,000  t bits which equals t 
 5,000 bytes; Each stego image can recover (a) without errors. 
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512  512 stego images (as each stego image looks like Fig. 13 (a)). Any t of the n stego 
images can be used together to extract S (the patient’s name and medical history shown in 
Fig. 13 (c)). Each stego image can recover image Fig. 13 (a) without errors because the 
hiding is reversible. Notably, the size of each share is t times smaller than that of S, hence 
if a single stego image can hide, say, 40,000 bits without heavily distorting the image, then 
the secret S (Fig. 13 (c)) can be as large as 40,000  t bits. In the example shown in Fig. 
13, the PSNRs of the stego images in Fig. 13 (b) are about 53.71 dB if the secret S (Fig. 
13 (c)) has 40,000  t bits, or 55.33 dB if S has 30,000  t bits. Note that 40,000  t bits is 
5,000  t Kilobytes; enough to store a very long medical history of a patient. 

6. ALTERNATIVE VERSIONS OF DESIGN 

This paper is to illustrate how to use ER to delete improper areas so that PSNR can 
be improved. The readers can use this idea to design his own methods, by using the 
alternatives of each component of PEE-based hiding. The replacement of components 
includes the use of other prediction formulas, the use of other kinds of adjustment of PE 
values in PEE, etc. For example, the adjustment of PE in Fig. 1 (a) can be replaced by Fig. 
14 below. In Fig. 14, there is no central-bin (this kind of PE adjustment was called as C-
PEE method in [16]). Table 9 shows the ER and PSNR values using Fig. 1 (a) and Fig. 14. 
We can see that using Fig. 14 does not mean better ER or PSNR can be obtained, as 
compared with using Fig. 1 (a). 

 

 
Fig. 14. One of many alternatives for the adjustment of PE values in PEE (assuming T = 1). 

 

Table 9. Comparison of ER and PSNR (in dB) between using two different expansion-bin 
systems (Fig. 1 (a) vs. Fig. 14). 

 
ER 

PSNR  
(assuming 10,000 bits are to be hidden.) 

 
Using Fig. 1 (a), i.e. 

expansion-bins=1 &1 
Using Fig. 14, i.e. 

expansion-bins=1 &0 
Using Fig. 1 (a), i.e. 

expansion-bins=1 &1 
Using Fig. 14, i.e. 

expansion-bins=1 &0 
Boat 0.191 0.176 57.68 57.08 

Lake 0.182 0.167 59.24 58.14 

 

Finally, even the ER formula itself can be replaced by other finite-range formulas. 
One such formula is: 

 
Number of pixels which really embed some secret data

[Total Number of pixels] (Number of pixels which are shifted without hiding any secret)
.ER


   

 (6) 
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The value of ER is in the range 0 to 1; whereas the range of ER is 0 to . This new 
finite-range definition might let some readers have more intuitive feeling about judging 
how good an image (or a block) is for embedding data. Table 10 is an example comparing 
the ER and ER for different images. We can see that smaller ER almost always implies 
smaller ER, and vice versa. Finally, since there are so many possible alternatives, it makes 
the hackers harder to steal the hidden secret. 
 

Table 10. The ER and ER values after applying Phase 1 alone to the host images (when T 
= 1, Fig. 1 (a) vs. Fig. 14). 

  Lena Baboon Airplane Elaine Lake Boat Barbara 
The whole image  
(i.e. before doing 
any deletion)  

ER 0.463 0.093 0.623 0.164 0.182 0.191 0.237 

ER 0.170 0.0437 0.206 0.0718 0.0799 0.0836 0.0998 

After deleting two 
128  128 blocks of 
smallest ER (ER) 

ER 0.503 0.103 0.701 0.175 0.192 0.200 0.259 

ER 0.180 0.0480 0.222 0.0759 0.0836 0.0868 0.107 

After deleting Four 
128  128 blocks of 
smallest ER (ER) 

ER 0.530 0.115 0.801 0.181 0.204 0.209 0.283 

ER 0.188 0.0523 0.240 0.0795 0.0885 0.0898 0.116 

7. CONCLUSION AND REMARKS 

By identifying which parts of a PE histogram are very wasteful in hiding, we propose 
the idea of increasing the so-called efficiency ratio (ER). We propose four phases as four 
tests to increase ER values. Phase 1 is run to avoid using low ER blocks. Phases 2-4 are 
run to avoid using unsuitable pixels. Details of the implementation are provided. 
Experiments are done using several standard images. Tables 6-8 and Fig. 11 show that our 
PSNR is superior to that of many other PEE-based methods such as [8, 12-13, 24-27]. 
When similar amounts of data are hidden using each method, our resulting stego image 
quality is often better than that of other methods. 

In general, just like many other prediction-based methods, our performance for 
smooth images such as Lena surpasses that for texture images such as Baboon. This can 
be seen from Tables 6 and 7, in which Baboon is also the most unsuitable image for all 
methods. To explain this, note that the hair of Baboon has extremely noisy texture rather 
than smooth area; hence it is hard to predict pixel values using neighboring pixels. 

As for the number of blocks used in our methods, although using finer blocks seems 
result in better PSNR, note that the overhead also increases because hiding a binary string 
is required to indicate the used and bypassed blocks. This string becomes longer when we 
increase the number of blocks, and this overhead will eventually reduce the hiding capacity. 
Therefore, we usually partition each 512  512 image into 256 blocks. Its PSNR perf-
ormance is slightly better than that of using 64 or 16 blocks, but the extra hiding space 
provided does not increase overhead to a point that reduces the hiding capacity.  

Some users might wonder why Phase 1 is needed. If we do not have Phase 1, then in 
an experiment using 512  512 image Lake as host, after doing Phases 2-4, the sixteen 128 
 128 blocks can embed, respectively, (“32”, “1,695”, “1,695”, “86”); (“37”, “1,924”, 
“2,394”, “142”); (“96”, “57”, “79”, “53”); and (“275”, “157”, “315”, “378”) bits. Here, 
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(“32”, “1,695”, “1,695”, “86”) are for the top four 128  128 blocks in Row 1. Likewise, 
(“275”, “157”, “315”, “378”) are for the bottom four blocks in Row 4. We can see that the 
best four blocks together can embed 1,695 + 1,695 + 1,924 + 2,394 = 7,708 bits. These 
four blocks are the four blocks in Fig. 5 (a) with ER  0.28. Likewise, the best eight blocks 
together embed 1,695 + 1,695 + 1,924 + 2,394 + 378 + 315 + 275 + 157 = 8,833 bits. By 
contrast, the worst eight blocks together embed only 32 + 86 + 37 + 142 + 96 + 57 + 79 + 
53 = 582 bits. The hiding amount in these eight worst blocks together is less than that of a 
single good block, and the best single block can embed 2,394 bits. Also note that these 
blocks with poor hiding capacity, if they are used, will have many pixels being value-
shifted, thus causing greater distortion. Therefore, it is better to skip these poor-capacity 
and yet larger-distortion blocks. Given that Phase 1 is faster than each of the remaining 
three phases, we suggest using Phase 1 to remove the less suitable blocks before running 
Phases 2-4, as Phases 2-4 are more time-consuming. In summary, using Phase 1 can save 
time and improve PSNR without significantly reducing hiding capacity. In the above case, 
even if we delete 8/16 = 50% of the sixteen blocks of Lake, the reduction of data size is 
only 582/(582 + 8,833) = 582/9,415 = 6%. 

Section 5 discusses the protection of large-sized secrets. We use sharing so that large-
sized secrets can still be embedded; besides the benefits of missing tolerance and the pro-
tection against betrayers. Typical applications include the medical and legal information 
for hospitals and law offices. Fig. 13 gives an example. Section 6 also gives some alter-
natives for the design. 
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