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In this paper, a new algorithm incorporating broadening selection strategy in compet-
itive constraint handling paradigm for finding the optimum solution in constrained prob-
lems has been proposed, referred as Broadening Selection Competitive Constraint Handling
(BSCCH). Although, competitive constraint handling approaches have proved to be very
efficient, but they lack faster convergence due to offspring generation from random indi-
viduals. By incorporating selection strategy such as broadening selection in the compet-
itive approach, better results are obtained and convergence rate is improved significantly.
Incorporating said strategy, the BSCCH algorithm has been proposed which is generic in
nature and can be coupled with various evolutionary algorithms. In this study, the BSCCH
algorithm has been coupled with Differential Evolution algorithm as a proof of concept
because it is found to be an efficient algorithm in the literature for constrained optimiza-
tion problems. The proposed algorithm has been evaluated using 24 benchmark functions.
The mean closure performance of the BSCCH algorithm is compared against seven selected
state-of-the-art algorithms, namely Differential Evolution with Adaptive Trial Vector Gener-
ation Strategy and Cluster-replacement-based Feasibility Rule (CACDE), Improved Teach-
ing Learning Based Optimization (ITLBO), Modified Global Best Artificial Bee Colony
(MGABC), Stochastic Ranking Differential Evolution (SRDE), Novel Differential Evolu-
tion (NDE), Partical Swarm Optimization for solving engineering problems – a new con-
straint handling mechanism (CVI-PSO) and Ensemble of Constraint Handling Techniques
(ECHT). The median convergence traces have been compared with two different algorithms
based on differential evolution, i.e. Ensemble of Constraint Handling Techniques (ECHT)
and Stochastic Ranking Differential Evolution (SRDE). ECHT is considered to be a flag-
ship ensemble technique till date for constrained optimization problems, whereas SRDE
employs a parent selection mechanism for constrained optimization. The proposed algo-
rithm is found to provide better solutions and achieve significantly faster convergence in
most of the problems.
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1. INTRODUCTION

Constrained optimization is an essential requirement in various real-world problems
such as energy consumption , antenna design [1] etc. Conventional techniques for solving
optimization problems such as linear programming, quadratic programming, non-linear
programming and dynamic programming find difficulty in solving complex problems in-
volving non-linearities, discontinuous functions and discrete search spaces [2]. Therefore,
researchers have devised evolutionary algorithms (EAs) which are usually derived from
some natural phenomena [3] and are also called Nature-Inspired (NI) algorithms. There
are various popular EAs presented in the literature like Differential Evolution (DE) [4],
Artificial Colony Bee (ABC) [5], Particle Swarm Optimization (PSO) [6] etc. EAs are
inherently developed for unconstrained optimization problems and Constraint Handling
Techniques (CHTs) need to be separately incorporated into them.

Several CHTs have been given in the literature of which some of the efficient CHTs
are Penalty Functions (PF)[7], Decoders[8], Feasibility Rules (FR)[9], Stochastic Ran-
king (SR)[10], ε-Constrained (EC) method [11] and various ensemble methods [13-15].
Besides, there are some of the newly developed techniques present in the literature which
have not been thoroughly tested such as Multiple Constraint Ranking (MCR) [12] etc.

According to the No Free Lunch (NFL) theorem [13], no single EA and CHT is able
to solve different types of problems efficiently. This is the reason for emergence of com-
petitive techniques which combine advantages of multiple EAs and CHTs. In competitive
paradigm, multiple CHTs are used for a constrained optimization problem. The best CHT
of the moment is exploited during evolutionary process in order to get the most out of the
situation. Depending on various parameters such as the fraction of feasible search space
to whole search space, multi-modality, the type of EA and exploration/exploitation, dif-
ferent CHTs are effective during different phases of evolutionary process. Primarily, the
selection criterion is a function of performance during different stages of the optimization
process in a specific problem. In this connection, few researchers have reported competi-
tive techniques which are also referred to as ensemble or integrated techniques. However,
in the competitive algorithms present in the literature, offspring has been generated from
random individuals resulting in the low convergence rate. In this work, broadening se-
lection strategy has been applied in the competitive approach which gives better solution
and improve the convergence rate significantly as evident from the results. The mean clo-
sure value and the median convergence trace of BSCCH algorithm are compared against
selected state-of-the-art algorithms and BSCCH is found to be superior among them.

The rest of paper is organized as follows. In Section 2, Background of the con-
strained optimization problem has been described along with Selection and Competitive
techniques. The proposed BSCCH algorithm details are given along with flow chart and
pseudo code in Section 3. Experimental setup and results are presented as mean closure
values and median convergence traces in Section 4 along with statistical validation. Sec-
tion 5 highlights the conclusion and future work that can be done to improve this work.

2. BACKGROUND

A constrained optimization problem is formulated generally in the form of a non-
linear programming problem as:
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Minimize : f (X),X = (x1,x1, ...,xn) and X ∈ S

Subject to : gi(X)≤ 0, i = 1, ..., p (1)
h j(X) = 0, j = p+1, ...,m

Where f must not be a continuous function, but bounded. S is the entire search space.
p is the number of inequality constraint and the number of equality constraints are (m− p).
At the global optimum solution, if inequality constraints satisfy the condition gi(X) = 0,
then these constraints are called active constraints. So, all the equality constraints are
active constraints. The equality constraints are converted into inequality constraints and
bundled as:

Gi(X) =

{
max(gi(X),0), i = 1, ..., p
max(|h j(X)|−δ ,0), j = p+1, ...,m

(2)

Here δ is subtracted as a tolerance value. An adaptive setting of δ proposed in [14] is
also being used in this work. Since the objective is to find a feasible solution, however if a
feasible solution is not found, then the solution with minimal overall constraint violation
ν given by Eq. (3) is considered as an optimal solution.

ν(X) =
∑

m
i=1 wi(Gi(X))

∑
m
i=1 wi

(3)

Here Gi(X) are the bundled inequality constraints and wi = 1/Gmaxi is the weight
parameter. Gmaxi is the maximum violation of the constraint obtained so far.

To validate BSCCH algorithm, a set of 24 benchmark functions [15] have been used.
A summary of constrained benchmark functions used in this work is given in Table 1.
Details of benchmark functions specification are given in [15]. Furthermore, DE has been
selected as the candidate EA for constrained optimization as it has been found to be a very
popular nature-inspired meta-heuristic tool for constrained optimization problems. It is
evident from literature that different variants of DE has been efficiently utilized numerous
times by researchers for solving constrained optimization problems [16]. DE is a simple
and efficient heuristic for global optimization. It is a stochastic search method. The idea
behind DE algorithm is to introduce as much randomness as possible and then retain the
best possible solution. In DE, there are basically three stages namely mutation, crossover
and selection.

In the mutation stage, new vectors are generated through the addition of weighted
difference between two population vectors with a third vector.

In the crossover stage, mutant vectors are mixed with parameters of target vector
to yield trial vector. The crossover operation results in increasing diversity of parameter
vectors.

In the selection stage, decision is taken that trial would be a member of the new
generation or not. The trial vector is compared with target vector using greedy criterion.
In this work, selection of parents has been done in the mutation stage whereas target
vector decision is taken in the selection stage. The crossover is performed as usual.
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Table 1. Summary of the 24 benchmark
functions.

The columns show name of the function
(Function No.), optimal values ( f (x∗)),
number of variables (N), Function Type, LI is
number of linear inequality constraints, NLI
is number of nonlinear inequality constraints,
LE is number of linear equality constraints
and NLE is number of nonlinear equality
constraints.

Function No. Optimal Value( f (x∗)) N Function Type LI NLI LE NLE
F1 -15.000 13 Quadratic 9 0 0 0
F2 -0.80361910412559 20 Nonlinear 0 2 0 0
F3 -1.00050010001000 10 Polynomial 0 0 0 1
F4 -30,665.5386717834 5 Quadratic 0 6 0 0
F5 5126.4967140071 4 Cubic 2 0 0 3
F6 -6961.81387558015 2 Cubic 0 2 0 0
F7 24.30620906818 10 Quadratic 3 5 0 0
F8 -0.0958250414180359 2 Nonlinear 0 2 0 0
F9 680.630057374402 7 Polynomial 0 4 0 0
F10 7049.24802052867 8 Linear 3 3 0 0
F11 0.7499 2 Quadratic 0 0 0 1
F12 -1.000 3 Quadratic 0 1 0 0
F13 0.053941514041898 5 Nonlinear 0 0 0 3
F14 -47.7648884594915 10 Nonlinear 0 0 3 0
F15 961.715022289961 3 Quadratic 0 0 1 1
F16 -1.90515525853479 5 Nonlinear 4 34 0 0
F17 8853.53967480648 6 Nonlinear 0 0 0 4
F18 -0.866025403784439 9 Quadratic 0 12 0 0
F19 32.6555929502463 15 Nonlinear 0 5 0 0
F20 - 24 Linear 0 6 2 12
F21 193.724510070035 7 Linear 0 1 0 5
F22 236.430975504001 22 Linear 0 1 8 11
F23 -400.055099999999584 9 Linear 0 2 3 1
F24 -5.50801327159536 2 Linear 0 2 0 0

2.1 Selection Strategies

Individual selection is a very vital process in EAs as it directs evolutionary pro-
cess efficiently towards goal. There are two stages in which selection of individuals is
involved—Parent Selection and Survivor Selection. Parent selection is usually a ran-
dom process which select individuals to produce offspring. Survival selection involves
selection of population from current set of parent and offspring based on fitness and con-
straint violation values according to rules of CHT in constrained optimization algorithm.
Survivor selection is an integral part of an EA. However, there are only few algorithms
emphasizing selection of good parents for reproduction [17]. The importance of parent
selection in EAs has recently been highlighted through design and analysis in [17] by
exploring use of different parent selection mechanisms for evolutionary multi-objective
optimization. Through selection of individuals which have greater chance to produce
effective offspring generation, much accelerated performance towards optimal solution
has been achieved for an optimization problem. In [18], a multi-objective evolutionary
algorithm with parent selection using prospect indicator is used to effectively provide
solutions in multi-objective optimization problem. The prospect indicator looks for the
potential of an individual to generate offspring that dominates itself. Furthermore, a prob-
abilistic parent selection mechanism in mutation stage of DE algorithm is presented in
[19] for directing search effectively towards the goal.

2.2 Competitive Techniques

Competitive techniques have proved to be very efficient in solving constrained op-
timization problems [20]. Some of the ensemble approaches presented in literature can
also be classified as competitive techniques as different methods compete with each other
in these ensemble paradigms during the course of optimization process. In [20], a com-
prehensive survey of ensemble approaches for evolutionary algorithms is presented, in
which different ensemble approaches present in literature have been classified based upon
the technique applied to perform the ensemble. One of the flag-ship work for solving con-
strained problems regarding the ensemble paradigm has been presented in [21] named as
Ensemble of Constraint Handling Techniques (ECHT). In ECHT, a competition of four
CHTs had been performed during the course of EA. ECHT had been developed in such a
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way that each of the four CHT was used to evolve a specific sub-population closely com-
municating with each other. Based on experiments, it was concluded that ECHT performs
better than each of the four CHTs used by ECHT algorithm. In [22], an ensemble using
DE algorithm is presented with three CHTs i.e. feasibility rules, adaptive penalty func-
tions and ε-constrained method used during different stages of the algorithm. In [23],
DE based algorithm has been applied with four DE-mutations, two DE-recombination
and two CHTs i.e. feasibility rules and ε-constrained method so that it generates sixteen
variants. Each variant has been assigned to an individual in a single population algorithm.

Out of various competitive approaches present in literature [20], all of them have a
lack of selection mechanism regarding the constrained optimization problem, instead they
generate offspring from random individuals resulting in the low convergence rate.

3. THE PROPOSED BSCCH ALGORITHM

As concluded in the previous section, although, competitive approaches have proved
to be very efficient in solving constrained optimization problem, there is no parent se-
lection mechanism present in them. This work is about developing an algorithm which
broadens the selection of individuals based on fitness and penalty values to generate off-
spring in the competitive paradigm, resulting in better solutions together with significantly
improved convergence rate.

3.1 Broadening Selection

The broadening selection strategy means that selection is two-pronged i.e. in both
parent and survivor selection stages. For parent selection, individuals are sorted based on
fitness or penalty value of each individual. To broaden the selection, BSCCH algorithm
employs probabilistic crossover (Pc) value for ranking based on fitness and penalty value.
Sorting of individuals is performed based on these two factors and best performing indi-
viduals are selected to generate offspring. For survivor selection, the best penalty value is
also selected and kept along with fitness through competition, according to rules of each
CHT. The selected penalty value later is used in the next generation by sorting mecha-
nism. Broadening Selection strategy has been summarized pictorially in Fig. 1 where as
its details are given in Section 3.3.1.

The penalty value p(X) given by Eq. (4) is adopted from [24]. p(X) is computed
such that all constraints are normalized so that each constraint has the same contribution.

p(X) =
n

∑
i=1

Ci(X)

Cmaxi

(4)

Here Ci(X) is the ith constraint violation, i.e. Ci(X) = max(gi(X),0) for inequality con-
straints and Ci(X) = max(|hi(X)|−δ ,0) for equality constraints. Cmaxi is maximum vio-
lation of ith constraint found yet during the evolutionary process. The tolerance value δ

for equality constraints has been set to 10−4 as given in benchmark specifications [15].

3.2 Competitive Constraint Handling

In this work, four modern CHTs, namely Superiority of Feasibility Solutions (SF)
[9], Self-Adaptive Penalty (SP) [25], Stochastic Ranking (SR) [10], ε-Constrained (EC)
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Fig. 1. Pictorial representation of broadening selection strategy.

method [11] have been used. In SF, simple rules are used to guide search towards the
feasible region. This technique is very popular for constrained optimization due to its
simplicity and flexibility, which makes it very suitable to be coupled with any sort of al-
gorithm relatively easy without introducing new parameters, however, the main drawback
is its affinity towards premature convergence. In SP, penalty value is tuned and added to
infeasible individuals by using information from search process. SP is easy to implement
and do not need to define parameters by the user. The SR technique is designed to deal
with over and under penalization that occurs in penalty functions. SR has been applied
to various EAs, but it is found to be deficient in generality, this is primarily because it
requires tailoring according to the particular EA. EC technique transforms a constrained
numerical optimization problem into an unconstrained numerical optimization problem.
In EC, constraints are relaxed through the use of ε parameter. This technique is specif-
ically effective for problems having equality constraints, but need careful tuning of ε

parameter. These four selected CHTs have proved to be very efficient as evident from
literature and their ensemble has marked breakthrough in constrained optimization [21].
As stated, each of the four CHTs has its own advantages and disadvantages, so they have
been blended in the competitive paradigm in order to exploit the most out of the situation
during the course of evolutionary process. The implementation and significance details of
competitive constraint handling is given in Section 3.3.2.

3.3 Algorithm Details

Fig. 2 shows the proposed algorithm in the form of flowchart highlighting main con-
tributions that have been performed in parent and survivor selection stages whereas Al-
gorithm 1 list steps for BSCCH algorithm in the form of pseudo-code. The algorithm
starts with random initialization of four populations corresponding to each CHT within
the search space using bound constraints. Fitness and Penalty values of each popula-
tion are then evaluated. In conventional DE algorithm, there is a random selection of
individuals to generate offspring in the mutation stage. The broadened selection strat-
egy employs the selection of individuals in both parent and survivor selection stages. In
parent selection stage, selection of parents for offspring generation in DE algorithm is
based on two factors, namely fitness and penalty. Individuals with the best fitness and
penalty value are selected to generate offspring. To broaden parent selection, the algo-
rithm employs probabilistic crossover (Pc) value for sorting individuals as given in Step
4 of Algorithm 1. Fitness and penalty value of each population along with its offspring
are then evaluated. In survivor selection stage, competitive constraint handling has been
performed in two phases as given in Step 6 of Algorithm 1. In Phase-I , offspring in one
population is compared with the nearest neighbor in all other offspring populations to de-
termine if it is better according to the rules of corresponding CHT. The nearest neighbor
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is determined by calculating euclidean distance between an individual in one offspring
and all individuals of other offspring. The reason for choice of minimum distance is
based on findings that it indicates both solutions are nearly similar. In other words, it
actually does the operation of a crossover in DE, hence imparting more diversity [4].
In Phase-II, a population is compared with its offspring and updated accordingly. The
updated penalty value is also selected and kept under competitive paradigm in survivor
selection step, since it would be used in the next generation for broadening selection. The
optimal value is selected from four populations based on minimum fitness if constraint
violation is zero, otherwise minimal constraint violation is used to select optimal value.

Algorithm 1: Pseudo-code of BSCCH Algorithm
Input: Fitness( f (X)), Constraints(gi(X),hi(X)), Bound Constraints(Xmin,Xmax)
Output: Optimal Solution O(X)

1: Randomly initialize each population Xi i.e. Xmin ≤ Xi ≤ Xmax, where i = 1,2,3,4
2: Evaluate f (X),ν(X), p(X) for each Xi using Eqs. (1), (3) and (4) respectively
3: Set gen to 1 and repeat Steps 4 to 8 until gen < Max Fes
4: Sort population and generate offspring

if p(Xi) == 0 OR rand[0,1]< Pc then
sort Xi using f (Xi)

else
sort Xi using p(Xi)

ri1 = sort(1),ri2 = sort(2),ri3 = sort(3) and OSi = ri1+F(ri2− ri3)
Apply crossover for conventional DE and use bound constraints as in Step 1

5: Evaluate f (X),ν(X), p(X) for each Xi and OSi as in Step 2
6: Competitive constraint handling is performed

dmin = min(d jk) where d jk = ||d j−dk||, j 6= k and j,k = 1,2,3,4
if OSdmin is better than OSi according to CHTi then

OSi = OSdmin

if OSi is better than Xi according to CHTi then
Xi = OSi

7: Optimal value selection
f (Xmin) = min( f (Xi)),νmin(X) = min(νi)
if νmin(X) == 0 then

O(X) = f (Xmin)

else
O(X) = f (Xνmin)

8: gen = gen+1

3.3.1 Implementation and significance of broadening selection

In Fig. 3, sorting mechanism adopted in broadening selection has been depicted. The
mechanism has been illustrated by taking a low dimensional population of five individu-
als. Fig. 3 shows sorting of five individuals with respect to fitness, penalty and broaden-
ing selection. Individuals sorted according to fitness and penalty are as 1f,2f,3f,4f,5f and
1p,2p,3p,4p,5p respectively. However the broadening selection strategy sort the individu-
als according to the following criteria:
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Halt

Max_Fes
Reached

Yes

No

Evaluate fitness and penalty value for each Xi

Broadening Selection based on fitness and penalty value for each Xi

selecting three individuals and generate offspring OSi based on these 
parents using crossover and mutation operation of DE

Evaluate fitness and penalty value for each Xi and OSi

Competitive Constraint Handling is performed for each Xi with all 
offspring according to the rules of each CHT. The best penalty value is 

also selected and kept along with fitness to be used later in selection 
broadening. 

Randomly initialize population Xi in search space on bound constraints 
and evaluate fitness and penalty value of each individual in Xi

Parent 
Selection 
Strategy

Survivor 
Selection 
Strategy

Fig. 2. Flowchart of the BSCCH algorithm.

if (p(Xi) == 0 or rand[0,1]< Pc)
sort Xi using f (Xi)

else
sort Xi using p(Xi)

Therefore, broadening selection sorting becomes 1f,1p,2f,3f,2p. The broadening selection
sorting in Fig. 3 clearly illustrates that there are more individuals (three yellow) from
fitness ranking than individuals (two red) from penalty sorting. The reason for selection
pressure being slighlty towards fitness sorting is the value of Pc, which has been explained
in detail in Section 4.1.1.

Fig. 3. Broadening selection sorting.

A pictorial representation of offspring generation through broadening selection is
illustrated in Fig. 4. The mutation operation in DE algorithm is given by the following
equation:

OSi = ri1+F(ri2− ri3)

Here, ri1,ri2,ri3 are selected to be 1f,1p,2f respectively as per broadening selec-
tion sorting criteria. The selection of ri1,ri2,ri3 is critical to exploit the trade-off between
global exploration and local exploitation, since better selection leads faster towards the
global optimum solution. In Fig. 4, it has been shown that the best individual i.e. ri1
which is closest to the global optimum has been selected to generate offspring OSi.
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Among the other two best particles, ri2 has been selected from the infeasible region.
The reason for selection of this infeasible individual is the broadening selection strategy
which allows probabilistic best particle selection as illustrated in Fig. 3. The selection of
ri2 also ensures global exploration i.e. infeasible particles close to the optimum remain
in the population. Thus, population diversity is maintained which may help in achieving
the solution faster while avoiding premature convergence as shown in Fig. 4. The third
particle ri3 has also been selected from the feasible region. Thus ri1,ri3 helps in local
exploitation resulting in faster convergence i.e. the generated offspring move very fast
towards the global optimum. Therefore, BSCCH algorithm contain a balance between
diversity and convergence when selecting individuals to generate offspring avoiding pre-
mature convergence as evident from the results in Section 4.

xr1
ri3

ri2

ri1

ri2-r
i 3

r
i 1+F(ri 2-r

i3)

xi

f(xi)

Infeasible Individual

Feasible Individual

Global Optimum

Infeasible Region

Feasible Region

Generated Offspring

Fig. 4. Importance of broadening selection.

3.3.2 Implementation and significance of competitive constraint handling

The implementation and significance of competitive constraint handling in BSCCH
algorithm is illustrated in Fig. 5. The importance of survivor selection through competi-
tive constraint handling has been depicted in Fig. 5 by taking example for population X1
corresponding to Constraint Handling Technique one (CHT1). The same thread is run-
ning independently for other three populations i.e. X2,X3 and X4. The survivor selection
is performed in two phases, In Phase-I, an offspring is compared with other offsprings,
where as in Phase-II, the corresponding offspring is compared with its parent. In Fig.
5, horizontal axis represent phases along which the algorithm proceeds whereas vertical
axis represents selection criteria of an individual according to the rules of corresponding
Constraint Handling Technique (CHT1 Criteria).

In Phase-I, the euclidean distance between offspring OS1 and other three populations
i.e. OS2,OS3 and OS4 is calculated by using the following equation.

d jk = ||d j−dk||, j 6= k and j,k = 1,2,3,4
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Here, j = 1 for offspring OS1. Therefore, three distances calculated by the preceding
equation from offspring OS1 to OS2,OS3,OS4 are d12,d13,d14 respectively as illustrated
in Phase-I of Fig. 5. Among these distances the minimum distance dmin as evident from
the Fig. 5 is d13, so offspring OS3 is selected for comparison with OS1 according to
CHT1 Criteria to see if is better. As evident from Phase-I of Fig. 5, OS3 is better than OS1
according to CHT1 Criteria, hence offspring OS1 is replaced by offspring OS3 i.e. OS3
becomes OS1, as shown in the Phase-II.

In Phase-II, the replaced offspring i.e. OS1 is compared with parent population i.e.
X1 to see if it is better according to CHT1 Criteria. Since it has been shown in Fig. 5 that
OS3 is better than X1 , therefore, X1 is replaced by OS3 i.e. OS3 becomes X1, as depicted
in Phase-II result.

OS1

OS4

OS2

OS3

d13

d12

d14

1 

OS1 X1

X1

Fig. 5. Illustration of competitive constraint handling phases.

It is worth mentioning here that in BSCCH algorithm, apart from keeping the se-
lected individuals and their fitness, penalty values are also selected and kept in survivor
selection stage through competitive constraint handling. Other competitive techniques in
the literature such as ECHT [21] do not keep the selected penalty values as opposed to
BSCCH algorithm. The reason for keeping the selected penalty values is that, they are
being used in next iteration for sorting individuals by broadening selection strategy.

Furthermore, as BSCCH algorithm involves sorting and competitive constraint han-
dling stages. The complexity of BSCCH algorithm is driven by the competitive technique
(O(N3)) because it has higher complexity as compared to sorting (O(N2)). Competitive
approach involves comparison of each corresponding CHT population with its nearest
neighbour, therefore this result in the computational complexity of O(N3).

3.3.3 Demonstration of BSCCH algorithm convergence compared with other
strategies

A demonstration of selection strategies in BSCCH algorithm has been presented in
Fig. 6 with the help of two problems from benchmark functions [15] i.e. Function#2 and
Function#23 having high dimensionality i.e. 20 and 22 respectively. Function#2 is a non-
linear function having non-linear inequality constraints whereas Function#23 is a linear
function having non-linear inequality, linear equality and non-linear equality constraints.
These two functions show remarkable improvement in the convergence towards solution
when solved by BSCCH algorithm. In Fig. 6, five convergence traces have been plotted
against no. of generations namely ECHT, SRDE, BSCCH, Competitive Constraint Han-
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dling with Parent Selection only (CCH-PS) and Competitive Constraint Handling with
Parent Selection incorporating Fitness based ranking only (CCH-PS-FIT). These experi-
ments have been setup based on parameters described in Section 4.3. A brief description
of the four methods is given below:

1. In ECHT [21], a combination of the four CHTs has been done with no parent selec-
tion mechanism. ECHT has better convergence rate as compared with SRDE [19]
but results in slow convergence rate when compared with BSCCH due to absence
of selection strategy.

2. In SRDE [19], a single CHT named SF is used along with parent selection strategy
to demonstrate the effectiveness of selection strategy but it lacks both closure and
convergence.

3. In CCH-PS, competitive constraint handling incorporating parent selection mecha-
nism has been performed. There is no penalty selection in survivor selection stage.
Therefore, the convergence gets badly effected and it falls even below ECHT be-
cause best penalty individuals are ignored. This highlights the significance of em-
ploying Broadening Selection Strategy which incorporate selection into both parent
and survivor stages.

4. In CCH-PS-FIT, only fitness is used for ranking in parent selection. Therefore,
this technique show oscillatory behavior due to juggling of the population between
feasible and infeasible individuals.

5. In BSCCH algorithm, both parent and survivor selection is employed in CCH re-
sulting in better closure value together with significantly improved convergence
rate.
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Fig. 6. Demonstration of BSCCH algorithm convergence.

4. EXPERIMENTAL SETUP AND RESULTS

In order to evaluate the effectiveness and performance of the proposed algorithm,
two separate experiments have been performed, namely mean closure value comparison
and median convergence trace comparison. The experiments have been setup based on be-
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nchmark specifications [15]. The maximum number of function evaluations (Max Fes)
have been set to 240000, since this value is being used by most of the researchers with
which comparison has been performed.

4.1 Parameter Settings

4.1.1 Probabilistic crossover value (Pc)

The selection pressure can be adjusted by changing the value of Pc. If Pc = 0, the
ranking is completely based on penalty value and results in over-penalization because in-
feasible individuals are given preference over feasible individuals. If Pc = 1, the ranking
is under-penalized such that infeasible individuals get higher rank than feasible individu-
als. Since the objective is to found a feasible solution, a value of less than 0.5 should be
selected to increase the selection pressure against infeasible individuals. The crossover
value Pc = 0.45 (or probability crossover value) for BSCCH has been selected based on
the results in [10]. This value is optimal to strike the balance between feasible and infea-
sible individuals.

4.1.2 Population size (N)

In case of population size for the base DE algorithm, most of the researchers have
used a population size of 50 [21, 26]. Increasing the population size significantly increases
the computational complexity of the algorithm. Therefore, we have also chosen 50 as the
population size for BSCCH algorithm.

4.2 Mean Closure Value Comparison

Here, BSCCH algorithm has been run 25 times on selected benchmark functions.
The algorithm has successfully found a feasible solution for all the problems except func-
tions F20 and F22. Other algorithms included in comparison have also been unable to
find a feasible solution in functions F20 and F22, therefore these two functions are not
included in comparison.The mean closure value of BSCCH is compared against seven
selected state-of-the-art algorithms i.e. CACDE [27], ITLBO [28], MGABC [29], SRDE
[19], NDE [26], CVI-PSO [30] and ECHT [21]. The parameters i.e. population size (N),
number of independent runs (runs) and Max Fes for all algorithms have been given in
Table 2 (n is dimension of the problem).

Table 2. Parameters setting of the competing algorithms.

Parameter
Algorithm

BSCCH CACDE ITLBO MGABC SRDE NDE CVI-PSO ECHT

N 50 N =


50,0 < n≤ 5

80,5 < n≤ 10

100,10 < n≤ 30

50 100 100 200 50 50

runs 25 25 25 30 31 30 20 25
Max Fes 240,000 240,000 240,000 240,000 250,000 240,000 25,000 240,000
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Table 3. Best, mean and standard deviation performances for F1-F12 benchmark func-
tions. Entries marked as * are not available in the literature.

Algorithm F1 F2
Best Mean SD. Best Mean SD.

BSCCH -15.0000 -15.0000 0.00E+00 -0.80362 -0.80238 3.44E-02
CACDE -15.0000 -15.0000 0.00E+00 -0.8036 -0.8036 7.99E-08
ITLBO * -15.0000 0.00E+00 * -0.80226 3.26E-03

MGABC -15.0000 -13.55354 16.36E-01 -0.8036108 -0.7890629 1.19E-02
SRDE -15.0000 -15.0000 0.00E+00 -0.80362 -0.796772 9.50E-03
NDE -15.0000 -15.0000 0.00E+00 -0.80348 -0.801809 5.10E-04

CVI-PSO -15.0000 -15.0000 0.00E+00 -0.800097 -0.790875 1.09E-02
ECHT -15.0000 -15.0000 4.00E-14 -0.80362 -0.80114 4.52E-03

F3 F4
Best Mean SD. Best Mean SD.

BSCCH -1.0005 -1.0005 9.39E-16 -30665.5387 -30665.5387 7.43E-12
CACDE -1.0005 -1.0005 2.32E-09 -30665.5387 -30665.5387 3.71E-12
ITLBO * -1.0005 2.58E-09 * -30665.539 3.71E-12

MGABC -1.0004 -1.0003 4.10E-05 -30665.54 -30665.54 1.04E-11
SRDE -1.0005 -1.0005 1.70E-07 -30665.5387 -30665.5387 0.00E+00
NDE -1.0005 -1.0005 2.32E-09 -30665.539 -30665.539 0.00E+00

CVI-PSO -1.0000 -1.0000 3.70E-16 -30665.8217 -30665.8210 3.39E-03
ECHT -1.0005 -1.0005 2.48E-16 -30665.5387 -30665.5387 5.04E-12

F5 F6
Best Mean SD. Best Mean SD.

BSCCH 5126.4967 5126.4967 2.78E-12 -6961.8139 -6961.8139 3.71E-12
CACDE 5126.4967 5126.4967 2.66E-12 -6961.8139 -6961.8139 0.00E+00
ITLBO * 5126.4967 2.78E-12 * -6961.8139 0.00E+00

MGABC 5126.497 5467.7560 3.30E+02 -6961.803 -6959.4890 1.17E+00
SRDE 5126.4967 5143.9610 4.13E+01 -6961.8139 -6961.8139 0.00E+00
NDE 5126.4967 5126.4967 0.00E+00 -6961.8139 -6961.8139 0.00E+00

CVI-PSO 5127.2776 5127.2776 0.00E+00 -6961.8139 -6961.8139 0.00E+00
ECHT 5126.4967 5126.4967 2.78E-12 -6961.8139 -6961.8139 3.71E-12

F7 F8
Best Mean SD. Best Mean SD.

BSCCH 24.3062 24.3062 3.58E-05 -0.09582504 -0.09582504 8.95E-18
CACDE 24.3062 24.3062 7.64E-15 -0.09582504 -0.09582483 3.59E-07
ITLBO * 24.3062 1.51E-05 * -0.095825 1.42E-17

MGABC 24.4056 24.6639 1.25E-01 -0.095825 -0.095825 0.00E+00
SRDE 24.3062 24.3062 3.10E-06 -0.095825 -0.095825 0.00E+00
NDE 24.3062 24.3062 1.35E-14 -0.095825 -0.095825 0.00E+00

CVI-PSO 24.4738 26.5612 1.64E+00 -0.10545951 -0.105459505 0.00E+00
ECHT 24.3062 24.3062 7.06E-15 -0.09582504 -0.09582504 1.32E-17

F9 F10
Best Mean SD. Best Mean SD.

BSCCH 680.630057 680.630057 2.30E-13 7049.2480 7049.2480 4.60E-04
CACDE 680.630057 680.630057 3.60E-13 7049.2480 7049.2480 2.72E-12
ITLBO * 680.63 3.36E-13 * 7049.249 4.29E-05

MGABC 680.6302 680.6309 5.12E-04 7104.006 7357.461 1.21E+02
SRDE 680.630057 680.630057 0.00E+00 7049.2480 7049.2480 5.60E-04
NDE 680.630057 680.630057 0.00E+00 7049.2480 7049.2480 3.41E-09

CVI-PSO 680.635400 680.7557052 7.92E-02 7049.2765 7053.2143 1.06E+01
ECHT 680.630057 680.630057 2.53E-13 7049.2480 7049.2480 2.91E-12

F11 F12
Best Mean SD. Best Mean SD.

BSCCH 0.7499 0.7499 1.13E-16 -1.000 -1.000 0.00E+00
CACDE 0.7499 0.749914912 7.46E-05 -1.000 -1.000 0.00E+00
ITLBO * 0.7499 1.13E-16 * -1.000 0.00E+00

MGABC 0.749995 0.750025 3.40E-04 -1.000 -1.000 0.00E+00
SRDE 0.7499 0.7499 0.00E+00 -1.000 -1.000 0.00E+00
NDE 0.749999 0.749999 0.00E+00 -1.000 -1.000 0.00E+00

CVI-PSO 0.750000 0.7500000 0.00E+00 -1.000 -1.000 0.00E+00
ECHT 0.7499 0.7499 1.13E-16 -1.000 -1.000 0.00E+00
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Table 4. Best, mean and standard deviation performances for F13-F24 benchmark func-
tions. Entries marked as * are not available in the literature.

Algorithm F13 F14
Best Mean SD. Best Mean SD.

BSCCH 0.053941514 0.053941514 2.61E-17 -47.7649 -47.7649 2.01E-04
CACDE 0.053941514 0.053941514 3.98E-12 -47.7649 -47.7649 2.24E-14
ITLBO * 0.054008 0.00E+00 * -47.7649 3.80E-05

MGABC 0.05394861 0.171074 1.74E-01 -47.675860 -47.246220 2.85E-01
SRDE 0.053942 0.260159 2.10E-01 -47.764888 -47.764671 5.90E-04
NDE 0.05394151514 0.053941514 0.00E+00 -47.7649 -47.7649 0.00E+00

CVI-PSO 0.0555558210 0.065590744 1.02E-02 -47.4530 -44.4246 1.41E+00
ECHT 0.053941514 0.146308176 1.67E-01 -47.7649 -47.7649 2.21E-14

F15 F16
Best Mean SD. Best Mean SD.

BSCCH 961.7150222 961.7150222 5.80E-13 -1.905155 -1.905155 8.88E-16
CACDE 961.7150223 961.7150223 3.42E-11 -1.905155 -1.905155 4.53E-16
ITLBO * 961.72 5.80E-13 * -1.9052 4.53E-16

MGABC 961.715100 962.173700 7.77E-01 -1.905155 -1.905155 0.00E+00
SRDE 961.715022 961.715022 0.00E+00 -1.905155 -1.905155 0.00E+00
NDE 961.7150223 961.7150223 0.00E+00 -1.905155 -1.905155 0.00E+00

CVI-PSO 961.71570715 961.7185955 6.87E-04 -1.905155 -1.905155 8.52E-15
ECHT 961.7150222 961.7150222 5.80E-13 -1.905155 -1.905155 4.53E-16

F17 F18
Best Mean SD. Best Mean SD.

BSCCH 8853.53967 8853.53967 5.56E-12 -0.866025404 -0.866025404 2.26E-17
CACDE 8853.533875 8853.533965 3.14E-04 -0.866025404 -0.866025404 4.53E-17
ITLBO * 8959.8 3.77E+01 * -0.866025 1.68E-05

MGABC 8853.53 8915.998 7.08E+01 -0.8660253 -0.8657735 2.99E-04
SRDE 8853.820571 8924.71736 2.88E+01 -0.866025 -0.85369 4.70E-02
NDE 8853.533874 8853.533874 0.00E+00 -0.8660254 -0.8660254 0.00E+00

CVI-PSO 8853.539891 8853.539891 3.70E-12 -0.8646313 -0.809109259 6.27E-02
ECHT 8853.53967 8853.53967 5.56E-12 -0.866025404 -0.866025404 5.49E-16

F19 F21
Best Mean SD. Best Mean SD.

BSCCH 32.655703 32.73189 1.08E-01 193.7245100 193.7245100 3.40E-11
CACDE 32.65559 32.65559 5.79E-10 193.7245101 193.7245101 3.31E-11
ITLBO * 32.662 1.06E-02 * 222.22 4.84E+01

MGABC * * * * * *
SRDE 32.655594 32.728826 1.70E-01 193.72451 210.62308 2.75E+01
NDE 632.65559 32.65562 3.73E-05 193.7245101 193.7245101 6.26E-11

CVI-PSO 32.82702 35.06733 2.28E+00 193.7869252 193.7869352 3.38E-05
ECHT 32.65559 32.65559 2.08E-07 193.7245100 193.7245100 1.95E-11

F23 F24
Best Mean SD. Best Mean SD.

BSCCH -400.0551 -400.0551 1.85E-07 -5.508013272 -5.508013272 2.71E-15
CACDE -400.0551 -399.992164 3.15E-01 -5.508013272 -5.508013272 9.06E-16
ITLBO * -256.4 1.42E+02 * -5.508013 9.06E-16

MGABC * * * -5.508013 -5.508013 1.77E-15
SRDE -400.0551 -383.525923 2.26E+01 -5.508013 -5.508013 0.00E+00
NDE -400.0551 -400.0551 0.00E+00 -5.50801327 -5.50801327 0.00E+00

CVI-PSO -400.0000 -400.000000 0.00E+00 -5.508013272 -5.508013272 9.46E-15
ECHT -400.0551 -400.0551 3.26E-06 -5.508013272 -5.508013272 2.71E-15

Table 5. Statistical validation test for mean closure ranks.
Fstat(9.39)> Fcrit(2.07) with CD = 1.06

Algorithm
CACDE ITLBO MGABC SRDE NDE CVI-PSO ECHT

Mean Rank Diff. w.r.t. BSCCH 0.16 1.68 3.02 1.87 0.82 2.37 0.09

Table 6. Statistical validation test for median convergence trace ranks.

Fstat(10.21)> Fcrit(3.21) with CD = 0.45
Algorithm

SRDE ECHT
Mean Rank Diff. w.r.t. BSCCH 1.00 0.70
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Fig. 7. Convergence graphs of the median run for functions F1-F10.
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Fig. 8. Convergence graphs of the median run for functions F11-F21.
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Fig. 9. Convergence graphs of the median run for functions F23-F24.

Table 7. Rank based analysis of mean closure performances.
Algorithm Mean Ranking of Benchmark Functions Rank Sum Rank Avg. Rank

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F21 F23 F24
BSCCH 1 2 1 2 1 1 1 2 2 1 1 1 1 1 2 1 3 1 7 1 1 1 35 1.59 1
CACDE 1 1 1 2 1 1 1 4 2 1 5 1 1 1 4 1 2 1 1 4 6 1 43 1.95 3
ITLBO 1 3 1 7 1 1 1 5 1 6 1 1 4 1 7 8 6 5 5 8 8 6 87 3.95 6

MGABC 8 8 7 6 8 8 7 5 7 8 8 1 7 7 8 1 8 6 1 1 1 6 12 5.77 8
SRDE 1 6 1 2 7 1 1 5 2 1 1 1 8 6 1 1 7 7 6 7 7 6 85 3.86 5
NDE 1 4 1 7 1 1 1 5 2 1 6 1 1 1 5 1 1 4 4 5 1 5 59 2.86 4

CVI-PSO 1 7 8 1 6 1 8 1 8 7 7 1 5 8 6 1 5 8 8 6 5 1 10 4.95 7
ECHT 1 5 1 2 1 1 1 2 2 1 1 1 6 1 2 1 3 1 1 1 1 1 37 1.68 2

Table 8. Rank based analysis of median convergence graphs.
Algorithm Convergence Rate Ranking of Benchmark Functions Rank Sum Rank Avg. Rank

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F21 F23 F24
BSCCH 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 1 25 1.14 1
SRDE 2 3 3 1 3 1 3 1 3 3 1 2 3 3 3 1 2 2 3 3 3 1 50 2.27 3
ECHT 3 1 1 3 1 3 1 1 2 2 3 3 1 1 1 3 3 3 1 2 2 1 42 1.91 2

The final mean value of all runs for each algorithm have been listed in Tables 3 and
4. The best values of benchmark functions for ITLBO algorithm are not available in liter-
ature. However, these results do not contribute significantly as ranking of algorithms have
been performance based on mean values. Similarly, values for MGABC algorithm are not
available for functions F19, F21 and F23 (they are assigned best rank, i.e. 1 for statistical
comparison). The ranking has been performed based on mean value for all algorithms and
average rank of each algorithm is calculated to give a clear picture of top performing al-
gorithms. The ranking in Table 7 shows that BSCCH algorithm achieves the best rank i.e.
1.55 among eight algorithms. To statistically validate significance of BSCCH algorithm,
non-parametric Friedman test has been performed for null hypothesis. Furthermore, pair-
wise post-hoc Bonferroni test has also been performed. For both tests, 95% confidence
interval is used. The computed F-statistic value (Fstat ) is greater than critical value (Fcrit ),
so null hypothesis is rejected. The difference in mean ranks of BSCCH algorithm with
ITLBO, MGABC, SRDE and CVI-PSO algorithms are greater than the critical difference
(CD) which proves that BSCCH is significantly better than these algorithms as given in
Table 5. For other three algorithms i.e. CACDE, NDE, ECHT, although, mean difference
is less than CD but positive, so BSCCH performance is comparable to them also.
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4.3 Median Convergence Trace Comparison

Here, the second top performing algorithm, i.e. ECHT with rank 1.68 and another al-
gorithm i.e. SRDE have been reproduced. Both these algorithms are DE based. SRDE has
been selected because it employs a selection strategy in parent selection stage, therefore
convergence rate comparison is performed with an algorithm employing parent selection
strategy. The algorithms have been exhausted 25 times for each function. The population
size has been set to 50 for all algorithms to have a fair comparison. The maximum num-
ber of function evaluations (Max Fes) have been set to 240,000 for each algorithm. Figs.
7-9 show convergence graphs for 22 benchmark functions (functions F20 and F22 have
been omitted from comparison and ranking due to infeasible solution findings in all three
algorithms). Convergence graphs have been plotted for the median run of each function,
i.e. single run of algorithm trace has been selected based on median closure value and
its log10( f (x)− f (x∗)) is plotted against number of generations. The convergence graph
ranking has been performed in Table 8, which shows that BSCCH algorithm has signifi-
cantly improved performance (rank is 1.09) over other two algorithms. The convergence
ranking has been done based upon the fact that how quickly an algorithm settles at min-
imum error (log10( f (x)− f (x∗))) value, i.e. an algorithm stabilized at minimum error
value first is ranked 1. Only Function F12 converges so fast that it has been displayed for
a very small number of generations. The BSCCH algorithm reaches top convergence rank
in all problems except functions F11,F14 and F19, although, BSCCH algorithm is not even
degraded to worst in these functions and is ranked 2. This shows the effectiveness in the
convergence rate of BSCCH algorithm. To statistically validate significance of BSCCH
algorithm, non-parametric Friedman test has been performed for null hypothesis. Further-
more, pair-wise post-hoc Bonferroni test has also been performed. For both tests, 95%
confidence interval is used. The computed F-statistic value (Fstat ) is greater than critical
value (Fcrit ), so null hypothesis is rejected. The difference in mean ranks of BSCCH algo-
rithm with selected two algorithms are greater than critical difference (CD) which proves
that BSCCH is significantly better than these algorithms as given in Table 6.

5. CONCLUSION AND FUTURE WORK

In this paper, a new algorithm has been introduced for solving constrained opti-
mization problems, named as Broadening Selection Competitive Constraint Handling
(BSCCH). In BSCCH algorithm, selection of individuals have been performed by
broadening selection strategy in parent and survivor selection stages of the competitive
paradigm. Although, competitive techniques are very efficient for solving constrained
optimization problems, they lack faster convergence due to inadequate selection mech-
anism. By incorporating efficient selection mechanism in competitive approach, better
feasible solution is obtained and convergence rate is improved significantly compared to
the selected state-of-the-art algorithms. The proposed algorithm has been tested through a
set of 24 benchmark functions by comparing mean closure value and median convergence
trace. The statistical comparative analysis clearly validates that the proposed algorithm
has comparable mean closure performance. Furthermore, in median convergence rate,
the proposed algorithm outperforms the selected algorithms significantly. One of the
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main shortcomings of BSCCH algorithm is added complexity due to existence of both
broadening selection and competitive techniques. In this regard, a merger of broadening
selection and competitive techniques efficiently is required to reduce complexity of the
algorithm.
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