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The audio signal obtained by a receiver from a sound source depends on the sound 

environment and the location of the receiver relative to the source. When an audio signal 

is given, it is necessary to find the best location of the receiver to obtain the audio signal. 

This paper presents a sound receiver location estimation method using a convolutional 

neural network. The sound receiver’s location estimation task is comprehended as an im-

age classification problem; in which we aim to classify a given audio signal according to 

the location of the receiver. Rectangular audio rooms are simulated with different dimen-

sions and surface materials. The audio signal obtained by a receiver from a fixed sound 

source in the simulation room is calculated and simulated via impulse response by the 

image source model. Then, the audio signals are transformed into spectrograms, allowing 

the convolutional layers to extract the appropriate features required for classification. After 

datasets are trained and tested, the proposed convolutional neural network model with op-

timal hyperparameters exhibits high audio signal identification accuracies for all the sim-

ulation rooms. Using the proposed model, an experiment testing the receiver’s estimated 

location in an experiment room was conducted, and the results indicate an identification 

accuracy of 97.6%. The research can also be applied to obtain optimal sound quality and 

design of an audio room.      

 

Keywords: sound receiver location estimation, image classification, audio signal process-

sing, image source model, convolution neural network 

 

 

1. INTRODUCTION 
 

The intensity measurement of a fixed sound source depends on the location of the 

receivers. For instance, in the case of an outgoing spherical wave, the sound intensity from 

a sound source will be inversely proportional to the square of the distance if the medium 

is lossless. In addition, when the sound reaches the receiver, the directional sensitivity of 

the receiver and the physical presence of the receiver in the sound field may alter the in-

tensity of the final perceived or recorded sound. Therefore, the estimation of the sound 

receiver’s location is a necessary process that determines the location of the receiver for 

obtaining a given audio signal, which can also be used as a supplement to audio signal 

processing research. 

Important applications of sound signal processing are audio data compression [1], a 
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synthesis of audio effects [2], and audio signal classification. With audio compression be-

coming the most prominent application of digital audio processing, the burgeoning im-

portance of multimedia content management has been experiencing growing applications 

of signal processing in audio signal segmentation [3] and classification. Audio signal clas-

sification is a part of the larger problem of audiovisual data handling. It has a lot of im-

portant applications in digital libraries, professional media production, education, enter-

tainment, and surveillance systems. Classic problems, such as speech and speaker recog-

nition, have been widely considered for decades. There are several studies in the field of 

audio signal classification, such as musical genre classification [4-7], musical instrument 

recognition [8, 9], speaker recognition [10, 11], language recognition [12-14], audio con-

text recognition [15], video segmenting based on audio [16], and sound effects retrieval 

[17]. In addition, audio signal classification can be applied to estimate the relative location 

between a sound source and receiver. Most research has focused on sound source locali-

zation, such as the azimuth aspect only [18-20], the azimuth and elevation aspects only [21, 

22], and the distance aspect only [23]. Studies that investigate the location of the receiver 

are relatively few in number [24, 25]. In fact, many sound systems have fixed sound 

sources. In this case, the obtained audio signal in a sound system depends only on the audio 

environment and the location of the receiver. Therefore, it is necessary to estimate the 

location of the receiver to obtain the desired audio signal, as well as the optimization of 

the sound quality. 

Many studies have been conducted in the past few years regarding the methods and 

techniques applied in audio signal processing. These studies have focused on audio signal 

classification and segmentation using several features and techniques. In 2005, Lin et al. 

[26] implemented a bottom-up support vector machine on acoustic features such as sub-

band power, pitch information, and additional parameters, such as frequency cepstral co-

efficients, to accomplish audio classification and categorization. Audio feature extraction 

and a multigroup classification scheme focusing on identifying discriminatory time-fre-

quency subspaces using the local discriminant bases technique was proposed by Umapathy 

et al. [27] in 2007. Based on the calculated features, such as linear prediction coefficients 

and linear prediction cepstral coefficients, a clustering algorithm was applied to structure 

the music content by Xu et al. [28]. Ajmera et al. [29] provided an approach that uses an 

artificial neural network and hidden Markov model toward high-performance speech/mu-

sic discrimination on realistic tasks related to the automatic transcription of broadcast news. 

A method was proposed for speech/music discrimination based on root mean square and 

zero-crossings, as described in [30]. Another method was proposed by Honda et al. [31] 

for estimating the distance of single-channel audio signals; here, the signal's distance was 

estimated by phase interference between the observed and pseudo-observed signal waves. 

Researchers have relied on handcrafted features to estimate sound source distances in 

the previous studies of the relative location between the sound source and the receiver. A 

method for distance perception in rooms that applies the information in the room impulse 

response was proposed by Bronkhorst et al. [32]. Lu et al. [33] suggested a binaural dis-

tance estimation method using the direct-to-reverberant-ratio, which was accomplished by 

first estimating the sound source’s direction and then removing the energy of the sound in 

that region to identify the reverberant signal. Rodemann et al. [34] estimated sound source 

distances using several audio cues, including the interaural intensity difference, the in-

teraural temporal difference, sound amplitude, and spectral characteristics, discovering 
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that in certain circumstances, mean signal amplitude and binaural cues can provide a very 

reliable distance estimation. However, using handcrafted features to estimate distances 

may make the extraction process complicated or faint. In addition, the accuracy of these 

methods is far from perfect and needs to be improved. 

In recent years, deep neural networks have been widely used for sound source locali-

zation methods. Huang et al. [35] successfully determined the range of sound pressure by 

applying deep neural networks. A convolutional recurrent neural network was proposed 

by Yiwere et al. [23] to estimate the sound source distances in known environments. Yalta 

et al. [36] proposed the use of a deep neural network to localize a sound source using an 

array of microphones in a reverberant environment. Takeda et al. [37] solved sound source 

localization based on deep neural networks using discriminative training; the results 

showed the remarkable performance of a deep learning model in audio signal processing 

in general and sound source localization in particular. Through the current literature survey 

of sound source localization, it was found that the challenges in sound source localization 

are how to identify the suitable features of audio signals and improve accuracy. 

In the current study, three rectangular audio rooms were created based on the image 

source model (ISM) [38]. The shape, dimensions, and materials of the audio room surfaces 

are simulated. A single sound source is given a fixed location in the room, and the audio 

signal emitted from this source is recorded by a receiver. The received audio signal has 

then extracted a feature as a spectrogram using Short-time Fourier transform (STFT). A 

convolution neural network (CNN) is applied to estimate the location of the receiver as an 

audio signal classification problem from the input images, which are the spectrograms. 

The transformation of audio signals into the spectrograms eliminates the need for complex 

handcrafted techniques to extract the features of the audio signal, allowing the convolution 

layers to extract the appropriate features automatically for the classification. The results 

show that the classification accuracy is very high, over 97% in simulation and experiment. 

2. METHODOLOGY 

2.1 Main Framework 

The main framework of the sound receiver’s location estimation is divided into two 

phases: the training phase and the test phase, as shown in Fig. 1. In the training phase, the 

data are inserted in the form of signal and label, and then, a segmentation technique is 

applied to the training data, followed by a feature extraction technique based on the spec-

trogram. At last, the CNN model is trained. In the testing phase, the data are inserted as a 

signal. After undergoing segmentation, the prediction results for the location of the re-

ceiver are obtained by the trained CNN model. The accuracy of the prediction model would 

be evaluated using the evaluation parameter. 

2.2 Convolution Neural Network 

A CNN is a deep learning algorithm that by the organization and functionality of the 

visual cortex and is designed to mimic the connectivity pattern of neurons within the hu-

man brain [39]. It can be used to recognize and classify features in computer vision and 

audio recognition. A CNN is a multilayer neural network designed to analyze visual inputs 

and perform tasks such as image classification, segmentation, and object detection, which  
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Fig. 1. The main framework of the sound receiver’s location estimation. 

might be useful for autonomous vehicles. A CNN can also be used for deep learning ap-

plications in acoustic signal processing such as speech recognition and sound classification. 

A CNN consists of two main parts: a convolution layer and a fully connected layer. The 

convolution layer splits various features of the image for the analysis, while the fully con-

nected layer uses the output of the convolution layer to predict the most effective descrip-

tion for the image. 

In the current study, a classification model is designed with reference to the models 

in previous studies [23, 36] and depicted in Fig. 2. The classification model includes two 

convolution layers that consist of a set of learnable filters and one fully-connected layer. 

The first convolution layer contains 16 3×3 pixels size filters; the second convolution layer 

contains 32 3×3 pixels size filters. In a convolution layer, a 2D convolutional layer first 

extracts features from the input image and then preserves the relationship between the pix-

els by learning image features using small squares of an input image. The filter slides ver-

tically and horizontally along the input image-guided by the number of pixels the filter 

moves on at a time called the stride. The ReLU activation function is applied to each con-

volution layer’s output, and the activation maps are max-pooled to reduce their dimensions. 

Max-pooling takes the largest element from the feature map using a 5×5 pixels window. 

The ReLU activation function and Max-Pooling algorithm are illustrated in Eq. (1) and 

Fig. 3, respectively. After max-pooling, the feature maps from the convolution layer are 

reshaped. Next, the CNN layer’s output is passed to the fully connected layer, containing 

Fig. 2. Description of the proposed CNN architecture. 
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Fig. 3. Max-Pooling algorithm using a 2×2 pixels window and a stride of 2 pixels. 

 

100 neurons. Finally, an activation function is the softmax function that is used to classify 

the outputs. Mathematically, the softmax function is expressed as Eq. (2), where x is the 

input vector, and j(= 1, 2, …, N) denotes the output unit. 

ReLU(s) = max(s, 0)     (1) 

1
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jx     (2) 

The loss function the network used for training is the mean squares error (MSE), the 

average of the squared difference between the true label and prediction labels. The equa-

tion of the loss function is defined as follows: 

21
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true predictN i
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=
= −    (3) 

where N is the number of examples in the dataset and Ytrue(x(i)) and are the true and Ypredict 

(x(i)) prediction labels of example x(i), respectively. 

The CNN model with setting parameters was used to classify audio signals according 

to the receiver’s location in three simulation rooms. A set of appropriate hyperparameters 

was found by experience and used in the training process to ensure a stable training process 

and high accuracy. This model, with the same set of hyperparameters, was also used for 

an experiment room. 

3. SIMULATION 

3.1 Simulation Rooms 

As displayed in Fig. 4, the simulation room is modeled as a three-dimensional space 

bounded by six rectangular faces with dimensions Lx×Ly×Lz. The room also contains a 

sound source and an acoustic receiver. The sound source is located at ps = [xs ys zs]T, and 

the acoustic receiver is located at pr = [xr yr zr]T with direction dr = [ar er]T, where [xs ys zs] 

and [xr yr zr] are the corresponding position coordinates of the source and receiver in the 

room, and [ar er] is the receiver’s azimuth and elevation. 

 

 
Fig. 4. Configuration of the simulation room. 
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In the current study, three rectangular simulation rooms were generated with different 

dimensions and face materials based on ISM; they are denoted as Rooms A, B, and C, res-

pectively. Room A is the largest with dimensions of 20m×10m×5m, like a hall; Room B 

is 6m×5m×4m, like a classroom; Room C is 4m×3m×3m, representing a small discussion 

room. The dimensions, materials, location of the sound source, and receivers of these sim-

ulation rooms are listed in Table 1. 

 
Table 1. Dimensions, face materials, the sound source’s location, and the receiver’s loca-

tion of the simulation rooms. 

Room 

A 

Room di-
mensions 

Lx × Ly × Lz = 20m × 10m × 5m; 1000m3 volume 

Face ma-
terial 

−z −y −x +x +y +z 

Plywood 
Concrete 
block 

Concrete 
block 

Window 
glass 

Concrete 
block 

Plywood 

Source’s 
location 

(xs, ys, zs) = (3.0m, 5.0m, 1.5m) 

Receiver’s 
direction 

(ar, er) = (0, 0) 

Room 

B 

Room di-
mensions 

Lx ×  Ly ×  Lz = 6.0m × 5.0m × 4.0m; 120m3 volume 

Face ma-
terial 

−z −y −x +x +y +z 

Platform 
wood 

Concrete 
block 
painted 

Brick Draperies 
Concrete 
block 
painted 

Plaster 
sprayed 

Source’s 
location 

(xs, ys, zs) = (2.0m, 2.5m, 3.0m) 

Receiver’s 
direction 

(ar, er) = (90, 180) 

Room 

C 

Room di-
mensions 

Lx × Ly × Lz = 4.0m × 3.0m × 3.0m; 36 m3 volume 

Face ma-
terial 

−z −y −x +x +y +z 

Carpet 
on felt 

Plaster 
on lath 

Plaster 
on lath 

Window 
glass 

Plaster 
on lath 

Plaster 
sprayed 

Source lo-
cation 

(xs, ys, zs) = (0.5m, 0.5m, 2.5m) 

Receiver’s 
direction 

(ar, er) = (−90, 90) 

Sample frequency fs = 44,100Hz 

 

The faces are described by frequency-dependent absorption coefficients that can be 

selected from Hall [40]. Table 2 lists the absorption coefficients of the face materials for 

each frequency band. 

From the modeled simulation rooms with the location of the given sound source and re-

ceiver, the binaural room impulse responses (BRIRs) and audio signal can be obtained. Fig. 

5 illustrates the BRIR results of the receiver at three different locations in Rooms A, B, and C. 

Fig. 5 indicates that in the same room, the received audio signal depends on the re-

ceiver’s location. For example, in Room A, three received audio signals corresponding to 

the distance from the receiver to the source are 12.04m, 8.08m, and 5.10m, and their am-

plitudes are different. When the location of the receiver is far from the source, the ampli-

tude of the obtained sound is smaller. This is because the sound travels farther. In addition, 

the sound intensity is also reduced because of the absorption of air and its impinging sur- 
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faces. However, the reverberation time of the audio signal remains the same. The sound 

intensity and propagation time also depend on the room’s size. The larger the room, the 

smaller the amplitude of sound and the longer the reverberation time. Among the three 

simulation rooms, in the largest, Room A, the amplitude of the obtained sound is the small-

est, and the reverberation time is the longest. On the other hand, the smallest one, Room 

C, has the largest sound amplitude and the shortest reverberation time. 

Table 2. Absorption coefficients of face materials depend on the frequency band. 

Frequency band (Hz) 125 250 500 1000 2000 4000 

Absorption coefficient 

Ply-wood 0.60 0.30 0.10 0.10 0.10 0.10 

Platform wood 0.40 0.30 0.20 0.20 0.15 0.10 

Concrete block 0.40 0.40 0.30 0.30 0.40 0.30 

Concrete block painted 0.10 0.05 0.06 0.07 0.10 0.10 

Plaster sprayed 0.50 0.70 0.60 0.70 0.70 0.50 

Plaster on lath 0.20 0.15 0.10 0.05 0.04 0.05 

Window glass 0.30 0.20 0.20 0.10 0.07 0.04 

Brick 0.03 0.03 0.03 0.04 0.05 0.07 

Draperies 0.07 0.30 0.50 0.70 0.70 0.60 

Carpet on felt 0.10 0.30 0.40 0.50 0.60 0.70 

(a) Room A 

(b) Room B 

(c) Room C 

 Fig. 5. BRIRs results of the receiver at the three different locations. 
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3.2 Data Collection 

Fig. 6 demonstrates that the simulation rooms were divided into m× n× k smaller rec-

tangulars as the classes of the receiver’s location in the room. Fifty files of audio signals 

in wav format are collected in each class corresponding to 50 random receiver’s locations. 

Therefore, the dataset of each simulation room is 50× m× n× k audio signals. Table 3 shows 

the number of classes and audio signals corresponding to the three simulation rooms. 

Fig. 6. Receiver’s location division classes in the simulation rooms. 

Table 3. The number of classes and audio signals for each simulation room. 

Simulation room Number of classes Number of audio signals 

Room A 5×4×3=60 3,000 
Room B 4×3×3=36 1,800 
Room C 3×3×3=27 1,350 

3.3 Feature Extraction 

The audio signals were divided into ten segments of 5-second signal with 50% over-

lap and categorized the corresponding labels, then analyzed using STFT [41]. The STFT 

of a discrete-time signal x(n) with angular frequency  is defined as 

( , ) ( ) ( ) j n

w n
X mL x n w mL n e 

 −

=−
= −     (4) 

where the subscript w in Xw(mL, ) denotes the analysis window w(n). The parameter L is 

an integer that denotes the separation in time between adjacent short-time sections. For a 

fixed value of m, Xw(mL, ) represents the Fourier transform with respect to n of the short-

time section fm(n) = x(n)w(mL − n).  

The number of frequency points is used to calculate the discrete Fourier transforms (DFT) 

is equal to the larger of 256 or the next power of two greater than the segment length. The visual 

representation of the STFT is a spectrogram. The spectrogram of the STFT is expressed as 

5

( , )

10 2 10
( ( )) 20log /100.wX mL

s x n



=  (5) 

The feature extraction is done by setting a threshold and delete the data below the 

threshold to derive more outstanding features from the spectrogram. The threshold setting 

eliminates small-amplitude values that may cause interference while filtering the noise, 
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highlighting the signal’s features. Assuming the simulation rooms and the experiment 

room are similar to office conditions, the noise’s amplitude ranges from 40dB to 60 dB 

[42]; we tested some threshold values such as 40dB and 50 60dB. It was resulting in a 

50dB value for high and stable accuracy. Therefore, it is selected as the threshold value in 

this study. The thresholding algorithm is expressed as 

0,     

0,     otherwise

s s s
s


= 


(6) 

where s is computed as the amplitude and s0 = 50dB is the threshold value. 

Fig. 7 depicts the spectrogram of three simulation rooms with and without a threshold. 

The figure shows that the spectrograms applying the thresholding algorithm have better 

performance. This will lead to an improvement in accuracy for the CNN model. 

(a) 

(b) 

(c) 

Fig. 7. Spectrogram without and with the threshold in the feature extraction of an audio signal in (a) 

Room A; (b) Room B; (c) Room C. 
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(a) Room A (b) Room B 

Fig. 8. Accuracy and loss curves of training progress. 

3.4 Simulation Results and Discussion 

Input images of a dataset with a resolution of 224×224×3 pixels were split into a 

training set and a testing set. The training set contains 75% of the whole dataset, and the 

testing set contains 25% of the whole dataset. The optimizer is the adaptive moment esti-

mation (Adam). Some training tests were performed to find the set of appropriate hyperpa-

rameters that ensure high accuracy and a stable training process. As a result, a set of ap-

propriate hyperparameters was found. Specifically, the learning rate is 10-6, the number of 

epochs is 50, and the batch size is 100. The CNNs were programmed, implemented on 

MATLAB R2019b software using an Intel Core i9-9000K 3.6GHz CPU on a computer 

equipped with NVIDIA GTX 1080Ti GPU. 

For each simulation room, the input dataset includes 500× m× n× k images divided into 

m× n× k classes corresponding to the receiver’s location. The name of these classes is de-

noted by the corresponding location index, from "1-1-1" to "m-n-k" in Room x, Room y, 

and Room z directions. The number of input images, the number of classes, and the training 

progresses and results of the simulation rooms are shown in Fig. 8 and Table 4. This result 

shows that the audio signal identification accuracies are 99.9%, 99.9%, and 99.4%, respec-

tively, for Rooms A, B, and C. The accuracy and loss curves show the stability of the 

training process in these three rooms. This stability is also reflected in the confusion matrix 

of Room C, as shown in Fig. 9. This figure demonstrates the confusion matrix for each 

classification task with the highest accuracy. In the confusion matrix, each row represents 

the instances in a true class and each column represents the instances in a predicted class. 

The correctly predicted instances are shown in the diagonal of the matrix, while the values 

outside the diagonal show the incorrectly predicted instances. For Room C, the average 

accuracy is 99.4%, and the accuracy for each class is very close. Among the 27 classes, 21 

classes have an accuracy of 100%, and the lowest accuracy is 95.2% of the 2-2-2 classes. 

Furthermore, the adjacent classes are also more closely related. For example, there are four 

confusion samples among 125 samples in class 1-2-3, all of which were confused into an 

adjacent class is 1-2-2. Similarly, there are four confusion samples in class 2-2-2, in which, 

two samples were confused into class 2-1-2 and the remaining two samples were confused 

into class 2-2-1. This is because, at the receiver's locations close to each other, the received 

audio signals are also close. 
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(c) Room C 

Fig. 8. (Cont’d) Accuracy and loss curves of training progress. 

Table 4. Accuracy and training time of the simulation rooms. 

Simulation room Number of input images Number of classes Accuracy (%) Training time 

Room A 30000 60 99.9 103 min 29 sec 

Room B 18000 36 99.9 60 min 28 sec 

Room C 13500 27 99.4 50 min 12 sec 

Fig. 9. Confusion matrix of Room C. 

Regarding the training time, because having the largest amount of input data and clas-

ses, the training time for Room A is the longest, totaling 103 minutes 29 seconds. The 

value for Room C is the fastest, taking 50 minutes 12 seconds. This shows that our model 

with the set of appropriate hyperparameters achieves almost perfect stability and accuracy 

when estimating the receiver locations in all three simulation rooms. Next, the model will 

be used in experiments. 
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4. EXPERIMENT 

4.1 Experiment Setup 

The experiment was conducted in a facility at Feng Chia University, Taiwan. The 

sound source is a loudspeaker, and the receiver is a Zoom H6 handy recorder using an XY 

microphone with rotating mics of 120. Fig. 10 shows the experiment room with the sound 

source and receiver. The dimensions and face materials of the experiment room, as well as 

the location of the sound source and receiver, are described in Table 5. The audio signals 

from the source were recorded and divided into 18 classes corresponding to the receiver’s 

locations defined as class 1-1-1 to class 3-3-2. 
 

 
Fig. 10. Experiment room with the sound source and receiver. 

 

Table 5. Parameters of the experiment room. 

Room dimensions Lx ×  Ly ×  Lz = 7.0m × 5.0m × 2.8m; 98 m3 volume 

Face material 

−z −y −x +x +y +z 

Felt lining 

Plywood 

Window 

glass 

Felt lining 

Concrete 

Platform 

wood 

Window 

glass 

Ply-

wood 

Source’s location (xs, ys, zs) = (2.5m, 2.5m, 0.7m) 

Receiver’s 

direction 
(ar, er) = (180, 0) 

4.2 Experiment Results and Discussion 

The input dataset includes 5,148 segments of 5-second audio divided into 18 (3×3×2) 

classes corresponding to the receiver’s locations from classes 1-1-1 to 3-3-2. The audio 

signal x(i) received in a room has a sampling frequency of 44,100 Hz. The spectrogram is 

used for feature extraction for classification. The spectrograms of an audio signal with and 

without a threshold are shown in Fig. 11. 

The proposed CNN model was used for training. The training set accounts for 75% 

of the entire dataset, and the testing set accounts for 25% of the whole dataset. Fig. 12 

shows the training trend, the accuracy curve, and the loss curve during training progress 

before adjusting the hyperparameters.  
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(a) Without threshold.                         (b) With threshold. 

Fig. 11. Spectrogram of an audio signal of the experiment room. 

 

 
Fig. 12. Accuracy and loss curves of the training progress of the experiment room. 

 

Fig. 12 shows the audio signal identification accuracy is 97.6%, and the accuracy and 

loss curves are smooth, indicating the stability of the training process. From the confusion 

matrix in Fig. 13, we can see that the accuracy of each class is relatively close to each other. 

There are nine classes among 18 with 100% accuracy, while the lowest accuracy is 97.2%. 

Similar to the simulation rooms, the adjacent classes are also more closely related. For 

example, there are two confusion samples among 71 in class 2-1-1, all of which were con-

fused into an adjacent class is 3-1-1; in class 2-2-2, there is one confusion sample, this was 

confused into class 2-2-1. 
Compare this result with a previous study, reported by Takeda et al. [37]; both studies 

used deep neural networks and STFT in estimating the relative location between the sound 
source and the receiver; our method gave significantly higher accuracy, 97.6% vs. 89.3%.  
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Fig. 13. Confusion matrix of the experiment room. 

 

This result once again verifies that the proposed CNN model with the adjusted hyperpa-
rameters is a suitable model for classifying sound with the feature extraction as the spec-
trogram of the audio signal. Therefore, the receiver’s location in the audio room was esti-
mated with high accuracy. 

5. CONCLUSION 

In the current research, a method was proposed to estimate the location of a receiver 

in an audio room by using the designed CNN. Three rectangular audio simulation rooms 

were created according to the ISM, each with different sizes and different surface materials. 

In the simulation rooms, the audio signal emitted from a fixed sound source was recorded 

by the receiver at different locations. Then, the CNN model with hyperparameters that was 

chosen by our experience was applied to estimate the location of the receiver in the audio 

room. The CNN model consists of two convolution layers: a fully connected layer and an 

output layer. The class identification performance under the three simulation setups with 

60, 36, and 27 classes, can achieve audio signal identification accuracy of 99.9%, 99.99%, 

and 99.4%, respectively. In addition, the experiment was conducted in a room, and the 

receiver’s location was divided into 18 classes. Using the designed CNN model, the results 

of the experiment also achieved a very high identification accuracy of 97.6%. 

The following phenomena are also observed: (a) In an audio room, the received audio 

signals at different receiver locations are different. A signal that is further from the source 

has a smaller amplitude than a signal that is nearer to the source. However, the reverbera-

tion time remains the same. Based on the differences, these audio signals can be classified 

according to the receiver’s location; (b) Using a CNN to estimate the location of the re-

ceiver in an audio room with the feature extraction of the audio signal is a spectrogram that 

gives very high accuracy. 
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The results could be helpful for estimating a sound receiver’s location in an audio 

system, thereby optimizing sound system design. Future research will focus on estimating 

the location of the receiver in more complex sound environments (such as multisource, 

multiroom) with the help of other deep learning techniques such as a recurrent neural net-

work (RNN). 
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