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This paper puts forward a dynamic parallel meshless computing algorithm that effi- 

ciently solves flow fields with largescale motions of movable and deformable boundaries. 
The partition boundary is updated, as the moving boundary moves across the material 
interface. Meanwhile, the point clouds near the moving boundary are reconstructed. Our 
algorithm also solves the workload balance between nodes and information exchange in 
each region of the computational field, using the governing equations in the arbitrary 
Lagrangian-Eulerian (ALE) form. The AUFS scheme is extended to calculate the num- 
erical convective flux. Take the interaction between a helium bubble and a shockwave as 
an example. Our algorithm is applied to compute the flow field with different numbers of 
discrete points (33,044 and 66,089) and partitions (2 and 4). The results show that our 
algorithm achieves an efficiency of over 80%, and captures the interaction between 
shockwaves and the bubble accurately. Hence, our parallel algorithm is suitable for 
solving problems with largescale motions of deformation boundaries. The research re- 
sults shed new light on the calculation speed for similar problems. 
 
Keywords: dynamic parallel algorithm, meshless method, large-Scale movable boundary, 
parallel efficiency, arbitrary Lagrangian-Eulerian (ALE) form 
 
 

1. INTRODUCTION 
 

Computational fluid dynamics (CFD) has provided solutions to complex engineer-
ing problems like the structural reconstruction near movable boundaries, the combustion 
of combustible gases or liquids, and partial differential equations with nonlinear terms 
[1-5]. Meanwhile, there is a growing need for accurate numerical simulation in practical 
cases, arising from computing methods for turbulence, namely, direct numerical simula-
tion (DNS), large eddy simulation (LES), and detached eddy simulation (DES). To real-
ize accurate simulation, it is necessary to employ a large number of grid points, which 
may reach hundreds of millions and even billions. 

Received March 24, 2020; revised May 30, 2020; accepted June 14, 2020.  
Communicated by Mahmoud Abdel-Aty.  
* This work was supported by the National Natural Science Foundation of China (Grant No. 51806095 and No. 

51906100), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20181022 and No. 
BK20191015) and the research fund of Nanjing Institute of Technology (Grant No. YKJ201710 and No. 
ZKJ201702). 



L. WANG, R. XUE, N. CAI, P. CHEN, X. CUI, W. WU, M. NIU, D. ZHANG, Z. ZHANG, X. ZHANG 

 

80

 

Currently, parallel computing, i.e. the simultaneous use of multiple central proces- 
sing units (CPUs), has gained popularity among scholars, due to the limited computing 
power of a single CPU. There are several different forms of parallel computing: problem 
parallelism and algorithm parallelism [6-11]. In parallel computing, the parallel algo-
rithm geometrically decomposes the computational domain into n regions, and each sin-
gle processor takes care of one region [12, 13]. In this way, less time is spent on numeri-
cal calculations, leading to a higher computing efficiency. However, the parallel algo-
rithm increases the processing amount, and thus the computing scale. 

Recent years has seen the proliferation of the meshless method in CFD, thanks to its 
strong ability to discretize the computational domains near complex boundaries [14-19]. 
A noteworthy feature is that the meshless methods does not consider connectivity be-
tween points, since they do not use traditional structured/unstructured mesh topologies 
but employ flexible clouds of points, which are basically composed of a center point and 
several satellites, to discretize the flow domain. But this method faces problems like in-
efficiency and low accuracy. Compared with mesh-based methods, the meshless method 
involves lots of flux calculations per computational unit, ranging from matrix inversions 
to matrix multiplications [20]. In this paper, the meshless method is combined with the 
parallel algorithm to fully display the merits of both approaches. 

With the development of computer technology, parallel meshless algorithms have 
become a research hotspot [21-24]. For instance, Yagaw et al. [25] and Fujisawa [26] 
integrated parallel computing with free mesh methods (FMM) for fluid flow analysis 
with largescale calculations. Nonetheless, this integrated approach is not completely 
meshless and limited in application scope. Danielson [27] was the first to establish a par-
allel meshless regenerative kernel particle algorithm for fluid dynamics. Singh [28] 
adopted the parallel element-free Galerkin method to solve the fluid flow equations, but 
did not specify the whole solving process. Zeng et al. [29] combined the Galerkin meth-
od and the Petrov-Galerkin method with parallel algorithms into a novel parallel mesh-
less method, and employed the method to compute the relevant problems in elastic dy-
namics. Based on the least squares (LS) meshless method, Zhou et al. [30] established a 
parallel computing system by connecting several CPUs through high-speed network, 
which greatly improves the computing efficiency for the muzzle flow field induced by a 
projectile. On modern high-performance graphic processing units (GPUs), Ma et al. [22] 
proposed a meshless dynamic cloud method to carry out the simulation of steady com-
pressible flows unsteady flows past oscillatory aerofoils. But the moving boundaries 
have relatively little displacements. 

In fluid mechanics, there are two dominant parallel computing environments, name- 
ly, parallel virtual machine (PVM) and message passing interface (MPI). Both environ-
ments provide the standard language required for parallel communication, and support 
multiple programs. The distributed CPU cluster model offers a convenient strategy of pa- 
rallel computing. Under this model, multiple CPUs transfer information through high- 
speed and universal networks. Hence, the resources of each CPU are fully utilized, which 
greatly enhances the efficiency of parallel computing. The distributed CPU cluster model 
is easier to build and adjust than market-specific servers with multiprocessors [28, 31]. 

This paper develops a parallel meshless method based on distributed CPU cluster 
model and the MPI environment. The proposed method is suitable to the simulation of 
largescale boundary motions, and extends the applicable scope of meshless methods in 
the CFD field. 
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2. GOVERNING EQUATIONS 

This paper adopts the governing equations in the arbitrary Lagrangian-Eulerian (ALE) 
form [22]: 

0
t x y

  
  

  
U F G                       (1) 

U = (  u  v  E)T                   (2) 

F = (u  uu+p  vu  Eu+pu)T              (3) 

G = (v  uv  vv+p  Ev+pv)T                 (4) 

where,  is density; p is pressure; E is the total energy per unit mass; u and v are the x- 
axis and y-axis components of fluid motion velocity, respectively; u = u  uw (uw is the 
velocity of grid point along the x-axis); v = v  vw (vw is the velocity of grid point along 
the y-axis). 

The above governing equations are constrained by the following state equation [30]: 

p = (  1) (E  p)  p       (5) 

where,  and p∞ are the specific heat ratio and pressure expansion coefficient of gas/liq- 
uid, respectively. If the material is air,  = 1.4 and p∞ = 0; if the material is water,  = 7.0 
and p∞ = 3.03975×108 Pa. 

3. SOLVING PROCEDURE 

The local LS fitting is adopted to approximate the spatial derivatives of each point 
based on its own points cloud.  

Several meshless simulation methods are available for deriving the inviscid convec-
tive flux, including advection upstream splitting method (AUSM+-up) [32], artificially 
upstream flux vector splitting scheme (AUFS) [33] and Harten-Lax-van Leer-contact 
(HLLC) [34]. Among them, the AUFS is a simple, robust and accurate upwind approach 
proposed by Sun et al. [33] to solve the Euler equations. In this paper, the AUFS is mod-
ified to solve the inviscid convective flux of the ALE equations: 

F = (u  u2 + p  uv  Eu + pu)T  uwU,        (6) 

G = (v  uv  v2 + p  Eu + pv)T  vwU.       (7) 

The following relationship can be obtained from the research of Sun et al. [33]: 

nxF + nyG = T-1F(TU)  (nxuw + nyvw)U = T-1[F(TU)  T(nxuw + nyvw)U]       (8) 
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where, T is the transformation matrix; 
2 2 ;x ij ij ijn b b c  2 2 .y ij ij ijn c b c    

From the above formula, the initial intermediate flux WA
ij

UFS between central point i 
and its neighboring point j can be derived as: 

WA
ij

UFS = (1  M)W1 + MW2    (10)
 

W1 = 0.5(Pi + Pj) + U, W2 = U(ũ  ũw  s2) + P       (11) 

where M = s1/(s1 + s2), ũ = nxu + nyv, ũw
 = nxuw + nyvw. 
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where, q2 = u2 + v2. Intermediate sound speedc and wave speed s1 are simply set to be 
their algebraic averages: 

s1 = (ui + uj)/2,c = (ci + cj)/2       (14) 

and s2 can be computed from, 
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The exact solution for the speed u* and the sound speed c* between two isentropic 
waves can be found: 
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In addition, the fourth-order Runge-Kutta method is applied to march the governing 
equations in time. For compressible multi-material flows, the ghost fluid method (GFM) 
[35] is adopted to process the interface points and set up ghost fluid points. On the inter-
face, the flow parameters of both interface points and ghost fluid points are corrected by 
the solver of the local Riemann problem. 
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Point movement strategy is one of the challenging issues in unsteady movable and 
deformable boundaries problems. In this paper, the displacement of point clouds caused 
by the interface deformation is solved by local reconstruction [30].  

4. PARALLEL COMPUTING 

In parallel computing, each CPU is treated as a computing node or process, each of 
which is responsible for processing a region of the computational domain of the engi-
neering problem. Each region must have a suitable workload. Several computing nodes 
are connected in series through other devices. Many parallel computing methods adopt 
the explicit solution. The computing nodes do not interfere with each other except for 
transferring a small amount of information near the partition boundaries. 

For simplicity, our parallel computing model (Fig. 1) was constructed by the single 
program, multi data (SPMD) method, which is widely used for numerical calculation of 
complex engineering fluid flows. 

When a boundary moves from one region to another, the movable boundary will 
move towards, intersect and then move away from the partition boundary. Therefore, our 
parallel meshless method should be able to transfer the information on the movable 
boundary between the adjacent regions, and judge whether the movable boundary inter-
sects the partition boundary during the movement. If an intersection is possible, the par-
tition boundary changed by point cloud reconstruction should be transferred, together 
with the location and flow field of the deleted and added nodes. In addition, the commu-
nication between computing nodes must be controlled to ensure the efficiency of parallel 
computing. 

 

 
Fig. 1. Our parallel computing model. 

4.1 Partitioning Method 

Load balancing is the key difficulty of parallel computing. Because of the movable 
and deformable boundary, the area of point cloud reconstruction will be changed in our 
research, pushing up the computing load. This calls for a dynamic load balancing pro-
gram that adjusts the workload of each computing node by changing the partition boun- 
daries. 
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Through the analysis, our parallel computing program should cover three parts: 
flow field calculation in each partition; deletion of deformed point clouds and addition of 
new point clouds; transfer of computational communication between computing nodes. 
The second part directly bears on the workloads. 

The computational domain is mainly partitioned based on geometric structure or 
graph theory. The geometry-based method, which is simple and easy-to-understand, di-
vides the domain by point coordinates, argument angles, etc. Meanwhile, the graph the-
ory-based method meshes the domain based on the graph of points and edges. The latter 
method can achieve a good quality, but requires a long time. 

The geometry-based method is selected for our research. The point cloud of each 
region is pre-refined to clarify the features of the flow field. During the application of the 
said method, the workload of each computing node is controlled at the same level. Sup-
pose the flow field contains a total of Ntotal points at time t = 0, and m parallel computing 
nodes are employed. The portioning strategy can be implemented in the following steps: 

Step 1: Read the information of all points in each computing node of the flow field, and 
set up the interval [a, b] of a coordinate of the computing domain (set up the interval of 
the statistical angle, if the partitioning criterion is the argument angle). 

Step 2: Let  (≥ 1, generally equals 1) be the calculation coefficient of each point, and  
[1, 6] be the empirical interval of the coefficient. Then, total workload of the flow field  

can be quantified as 

total

total
1

N

i
i

W 


  . Hence, the mean workload assigned to each computing  

node is Wave=Wtotal/m. If the point falls on the material interface,  equals 5.0; if the point 
falls on the moving boundary,  equals 2.5. 

Step 3: According to the geometric features of the flow field and coordinate interval [a  , 
b+], divide the computational domain into m regions. Note that  is a small positive number. 

Step 4: Let (xi-1, xi] be the coordinate space of each region. Perform the following judge- 
ment from the first region to the last region: 

i ave

ave

W W

W
 
     (17) 

where Wi is the workload of the ith partition. If  ≥ 0, reduce the value of xi; otherwise, 
increase the value of xi. In general, 0 = 3% is relatively good. 

Step 5: Through the above steps, the information on the point clouds of the region cor-
responding to the computing node is saved, and the number of points of each process is 
obtained as Wtotal/m. 

Step 6: Point cloud is the basic calculation unit of the meshless method. If the center 
point of a point cloud falls on the material interface, some neighboring points must be-
long to the adjacent process. Therefore, the points on the material interface should be 
taken as communication points, in addition to saving the information of points in the 
current region. As shown in Fig. 2, the node information is sent from blue points 1-11 on 
the left side to the corresponding nodes and the red points 12-23 on the right side. 
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Fig. 2. Partition boundary in parallel computing. 

4.2 Steps of Our Parallel Algorithm 

Our parallel algorithm was designed to simulate the largescale motions of deforma- 
tion boundary. The specific steps of our algorithm are as follows: 
 
Step 1: Initialize the nodes required for parallel computing. 
Step 2: Judge whether to calculate the flow field from zero moment or breakpoint. If the 
calculation starts from zero moment, the program reads the information on point clouds 
from the original mesh file, divides the computational domain, and establishes the mate-
rial interface. If the calculation continues from a breakpoint, the program reads the pa-
rameter information of the entire flow field. 
Step 3: Perform flow field calculation separately for each partition. Then, judge whether 
the point cloud structure near the movable boundary is abnormal. If yes, reconstruct the 
point cloud structure. After that, judge whether the deleted and added points are in the 
link list of communication points. If yes, the program reconstructs a new communication 
link. Note that only point clouds on the same side are constructed at a time, aiming to 
avoid confusion in the communication between adjacent regions. 
Step 4: The adjacent regions transmit flow field information to each other, including the 
points and parameters in the link list, the movable boundary, and the point position. 
Step 5: Re-determine the partition attributes of each point, and delete the points that do 
not belong to in the current region.  
Step 6: The program outputs the data of the flow field, and then terminates all processes. 
Otherwise, execute Steps 3-6 again. 

 
The parallel based meshless solver for unsteady flows was exclusively coded in 

Fortran 90. 

5. VERIFICATION OF PARALLEL EFFICIENCY 

This section attempts to verify the efficiency of our parallel algorithm. For this pur- 
pose, a cylindrical helium bubble was placed in a rectangular channel. On the right side 
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of the channel, a planar shockwave was generated, which propagates to the left. Once hit 
by the shockwave, the bubble acquires the speed of traveling to the left, and subjects to 
force on the right side. The moving speed on the right side is faster than that on the left 
side. The speed difference induces shape change to the bubble. The interaction between 
the shockwave and the bubble is illustrated in Fig. 3, where the computational domain is 
325 × 89 in size, the bubble diameter is 50, the bubble center falls on the axis of sym-
metry, the distance between the bubble and the right side is 150, and the distance be-
tween the shockwave propagating to the left and the right side is 25. As shown in Fig. 3, 
the computational domain consists of three parts. The parameters are as follows: 

 
Ⅰ:  = 1, u = 0.0, v = 0.0, p = 1,  = 1.4, P = 0.0. 
Ⅱ: = 0.138, u = 0.0, v = 0.0, p = 1.0,  = 1.67, P = 0.0. 
Ⅲ:  = 1.3764, u = 0.394, v = 0.0, p = 1.5698,  = 1.4, P = 0.0. 
 

 
Fig. 3. The interaction between the shockwave and the bubble. 

The boundary conditions are configured as follows: 
The upper and lower boundaries are assumed as impermeable, the left inlet bound-

ary as a free-stream boundary, and the right outlet boundary as a nonreflecting boundary 
based on Riemann invariants.  

In this paper, the numerical calculation of the interaction process is carried out by 
using four CPUs. As shown in Fig. 4, the material interface deformed in motions lies 
across the second and the third regions, and intersects the movable parallel computing 
interfaces. The distribution of point clouds at the intersection is provided in the enlarged 
subgraph. The total number of points was initially 33,044. 

Fig. 5 presents the calculation results of our parallel algorithm based on the AUFS 
scheme. It can be showed that the bubble intersects the horizontal axis of symmetry of 
the rectangular channel at two points. 

   
Fig. 4. Four-CPU parallel partitioning. Fig. 5. Pressure contour obtained by our algorithm. 
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Fig. 6 compares the numerical results on the distance l between the two intersec-
tions obtained by our algorithm based on the AUFS scheme and Reference [34] with 
experimental results [36]. Within the tolerance range, the numerical results agree well 
with the experimental results. In this paper, the following calculations are calculated us-
ing the AUFS scheme. The shape and position of the bubble and its surrounding flow 
field changes constantly with the motion of the shockwave, which is consistent with the 
experimental phenomena. Firstly, the shock wave travels to the right side of the bubble, 
forcing the latter to deform and move to the left. The interaction creates a reflected 
shockwave and a transmitted shockwave. The internal and external shockwaves have a 
speed difference, which turns the bubble into a blow. The transmitted shockwave passes 
through the right side of the bubble, producing two reflected shockwaves at the upper 
and lower boundaries. The reflected shockwaves act on the bubble again, causing further 
shape changes to the bubble. Finally, the bubble assumes the shape of a broad bean and 
eventually ruptures. 

 

 
Fig. 6. Comparison of experimental and numerical 
results. 

Fig. 7. Change of point cloud distribution ob- 
tained by our algorithm. 

 
Fig. 7 records the point cloud distribution of the bubble from the initial moment to 

the moment when the entire bubble just enters the third region. It can be seen that our 
parallel algorithm captures the crossing of movable boundary over the partition boundary. 
The position and shape of the partition boundary changed with those of the moving 
boundary. Our algorithm fully demonstrated the change of complex shockwaves and the 
deformations of the material interface. The results show that our algorithm is feasible to 
solve the flow problems with largescale motions of deformable boundary. 

To further verify its computing efficiency, our parallel algorithm is applied to simu-
late the flow field with 33,044 and 66,089 discrete points, respectively. Two computing 
nodes are used in parallel, and then four. The simulated results and speedup data are 
listed in Table 1. We define the calculation efficiency as: 

1

2

t

t m
 


                      (18) 

 
where  is the calculation efficiency, t1 the calculation time of single computer node, and 
t2 is the parallel computing time, and m is the number of computing nodes. 
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Table 1. Speedup and efficiency of our algorithm. 
Discrete nodes Number of computing nodes Speedup  

33,044 2 1.728 86.4%
33,044 4 3.092 77.3%
66,089 2 1.780 89.0%
66,089 4 3.248 81.2%

It can be seen that our parallel algorithm is workable but not highly efficient. The 
efficiency is just over 80% on adopting four nodes. Under the same computing nodes, 
the parallel efficiency of the meshless method in Reference [30] is above 90%. The lack 
of efficiency is attributable to the following facts: (1) The moveable boundary intersects 
the material interface, making it difficult to balance the workload of each node; (2) The 
amount of information exchange between adjacent partitions is relatively large, including 
the information of neighboring points, the reconstruction of point clouds, repartition, etc. 

6. CONCLUSIONS 

In real-world scenarios, engineering problems are very complicated, especially 
when the boundaries are movable and deformable. It often takes a long time to numeri- 
cally simulate such problems with a single CPU. This paper proposes a dynamic parallel 
meshless computing algorithm that fully displays the merits of meshless method in 
solving flow fields with movable and deformable boundaries. The parallel computing 
strategy and partitioning strategy are explained in detail. Take the interaction between a 
helium bubble and a shockwave as an example. Our algorithm is applied to compute the 
flow field with different numbers of discrete points and partitions. The results show that 
our algorithm achieves an efficiency of over 80%, an evidence of the feasibility of our 
solution. This paper provides a new method to improve the calculation speed for similar 
problems. 
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