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Nowadays, unmanned aerial vehicles, commonly known as drones, are used for many 

different purposes. However, it is still a challenging task to fly a drone, which limits its 
potential for doing more useful things. This paper shows how to design, develop and test 
an ML-Agent simulation environment by using the Unity engine and the deep rein-
forcement learning algorithm. First, the drone model needs to be imported in a simulating 
environment where it should have an ability to fly, and then it should be made to fly using 
deep reinforcement learning. In addition, the drone can learn to perform a certain task to 
elaborate the benefits of this approach. 
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1. INTRODUCTION 
 

Over the last couple of years, UAVs (Unmanned Aerial Vehicle), or drones are used 
in many different areas including scientific research, agriculture, search and rescue, film-
making, and so on [1]. Recent studies have used machine learning techniques to provide 
solutions for the various problems that have already been identified when UAVs are used 
for communication purposes. Applying machine learning to UAVs does not only reduce 
the factor of human error but makes it fly more accurately, efficiently, and safely [2]. 
However, the process of learning requires a lot of trial and errors because the subject needs 
to gain experience, so in case of drones this process could be hard and long lasting in the 
real world. Thus, there is a need to make a simulation in which the problem of learning 
could be solved easier as well as faster.  

In this paper, we have shown a simulation of an environment in which the drone is 
able to learn how to fly. The simulation of the drone’s flight is made in the Unity engine 
[3] with the process of deep reinforcement learning [4]. Our goal was to make the drone 
intelligent enough to fly from one place to another, so we could observe how it performs.  

2. THEORETICAL FRAMEWORK 

Deep reinforcement learning is a combination of artificial neural networks, which 
have the power to represent and comprehend the environment, and reinforcement learning, 
with the ability to act on that understanding [5]. The goal of reinforcement learning is to 
develop a policy that maps agent’s states to probabilities of selecting each possible action, 
and improving it so that is optimal, i.e. maximizes the expected reward [4]. Here, the agent 
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is an entity which takes decisions based on the rewards and punishments directing its 
activity towards achieving goals and is implemented using the ML-Agent Toolkit [3]. 

For the task of teaching a drone to fly, we have chosen a policy-based reinforcement 
learning algorithm [6] by which the agent directly learns the policy and acts based on that 
policy. We have defined a policy as the agent’s strategy, and our model of a policy is a 
neural network which takes observations of the world as an input, an action as an output, 
and whose weights are the policy parameters. This approach for training the network is 
called the policy gradient, where the policy parameters are updated approximately pro- 
portional to the gradient:  


  
   (1) 

where  is the vector of policy parameters,  is the performance of the corresponding 
policy (e.g. an average reward per step), and  is a positive-definite step size [7]. 

More specifically, we have chosen a policy gradient method called Proximal Policy 
Optimization (PPO), which is an improvement of Trust Region Policy Optimization (TRPO) 
in terms of simplicity and computing efficiency [8]. The basic idea of policy gradient 
methods is applying a computed policy gradient estimator to the stochastic gradient ascent 
algorithm. The policy gradient estimator LPG() is defined as follows: 

ˆˆ( ) [log ( | ) ]PG
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where  is the policy, that is, a neural network that has the observations from the environ- 
ment as an input and an action to be taken as an output, Ât is the estimator of the advantage 
function at timestep t and Êt is the expectation. Ât is defined as the difference between the 
discounted sum of rewards and the baseline estimate [9]. The discounted sum of rewards 
can be written as the weighted sum of all the rewards the agent got in the current episode:  

0
.k

tk
r k


  (3) 

Factor , also known as the discount factor, is used for making future rewards less 
valuable because we want our agent to care more about sooner rewards. It is important to 
note that Ât is calculated after the whole episode is done, so all the rewards rt that the agent 
got are known. The baseline estimate is basically a value function that gives an estimated 
sum of rewards from this point onward, it guesses what the final reward is going to be in 
this episode starting from current state. The advantage function estimate is the measure of 
how much better the action was based on the expectation of what would normally happen 
in the state that agent was in. By differentiating the objective function, LPG(),  we get the 
estimator. If the obtained value is positive, which means that sequence of actions the agent 
took resulted in a better than average return, it will increase the probability of selecting it 
again. The problem occurs if we keep running the gradient descent without setting any 
limitations on updating our policy because the advantage function is noisy, and it could 
make too big of an update based on a single batch of collected experience. That would 
destroy our policy, so we need to limit the update and that is what TRPO does [4]. Both 
TRPO and PPO are using constraint on policy update, but the major difference is that PPO 
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includes this extra constraint directly into the objective function while TRPO computes it 
separately. The central objective function of PPO is defined as: 

LCLIP() =  Êt[min(rt()Ât,  clip(rt(),  1   , 1 + )Ât)]   (4) 

where rt() is: 
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When rt() is greater than 1, then the action is more likely than it was in the old policy. 
If it is between 0 and 1, it is less likely than before. The first argument in min() function is 
the policy gradient objective which pushes the policy towards actions that return high 
positive rewards. The second argument is the clip() operator which ensures that the 
probability ratio r is between 1   and 1 +  to limit the effect of the gradient update. Then, 
we take the minimum of both the clipped and the unclipped objective and we get a lower 
(pessimistic) bound on the unclipped objective [9].  

 

 
Fig. 1. Single term in LCLIP() [9]. 

  

From Fig. 1, which depicts a single term plotted in LCLIP(), it can be noted how the 
probability ratio r is clipped at 1    if the advantage function is negative, and at 1 +  if 
is positive. The behaviour of the objective function in the circled region can also be noticed. 
Even though the selected action is more probable, our policy is getting worse because the 
advantage function is negative. That is why we want to undo this action, and that is what 
our objective function allows us to do. The final loss function that is used to train our agent 
is given as follows: 

1 2
ˆ( ) [ ( ) ( ) [ ]( )].PPO CLIP VF

t t t t tL E L c L c S s       (6) 

The first term in the expression is the central objective function that we described. In 
the second term, we are updating the baseline network which is actually our value function 
which tells us how good it is to be in the current state. The third term is called the entropy 
bonus, it tells us how unpredictable this outcome is, and it ensures that the agent is doing 
enough exploration [9]. 
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Fig. 2. PPO algorithm [9]. 
 

Fig. 2 shows how the PPO algorithm works; the piece of code labelled with the red 
rectangle represents the first thread, and the one labelled with the green rectangle 
represents the second thread. In the first thread, each of N (parallel) agents collect T time- 
steps of data based on the current policy, and immediately compute advantage estimates. 
Once they are done, a second thread collects all that experience and runs the gradient 
descent on the policy network using the PPO objective. This process repeats until the 
policy is no longer changing or until we are satisfied with our agent’s behaviour [7]. 

3. IMPLEMENTATION AND RESULTS 

3.1 Experimental Setup 

For creating the environment in which the agent is training, the Unity [3] is used, a 
cross-platform game engine primarily used to develop video games and simulations. For 
the purposes of the training process, the ML-Agents Toolkit is used, an open-source Unity 
plugin that enables games and simulations to serve as environments for training intelligent 
agents, as well as the TensorFlow, an open-source library that serves for performing com- 
putations using deep learning models. 

When using ML-Agents, the focus is on modelling our problem in terms of rewards 
and behaviour of the agent. The ML-Agents workflow has three high-level steps: creating 
our environment, training of the brains in that environment and embedding those trained 
brains back to Unity. In ML-Agents, there are three basic concepts introduced: the agent, 
the brain and the academy. The academy enables everything to work together and it allows 
Unity to communicate with TensorFlow. The brain is a neural network that makes deci- 
sions. The agents take decisions from the brain and act based on them in the environment. 
At any given step of the simulation, each agent observes the world and inputs those 
observations into the brain which tells him what to do next. Each brain can control multiple 
agents and all of them can train the same brain [5].  

The process starts by defining the agent for the problem we are trying to solve, that 
is, making an autonomous tailsitter that should be able to fly to a certain target. Thus, the 
tailsitter is going to be the agent because we want to teach it how to fly and see how it 
performs. After reaching the target, it would get a new target, etc. until the simulation is 
complete. Each new target is actually a new task, so the number of targets does not actually 
affect the performance of the task. The first step would be modelling the environment in 
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which the agent learns and enabling it to do the actions, which will give it the ability of 
flying. Before training the agent, we want to be able to control it manually to make sure 
everything works fine before we start with the training.  

After a 3D model of a tailsitter is made, which is basically an airplane model with 
two rotors and two elevators, the ground limits the agent’s movement and the sphere that 
we use as a target. Then, the colliders are added, and the force is applied based on how 
long the button is pressed. There could be two buttons, one for each rotor, for increasing 
force while the button is pressed and decreasing while the button is released. The rotors 
will have some maximum force and a minimum force of zero. Also, four more buttons are 
needed, two for each elevator, which determine the direction of elevator rotation that 
directly affects the amount of force applied. While force from the rotors is always applied 
upwards (with reference to the tailsitter), the force from the elevators could be applied 
forwards or backwards. After applying this to our model in Unity, it is now capable of 
flying and we need to get it ready for learning.  

Based on our problem, we need to define the observation vector, the action vector and 
the reward system. Since we want to make our agent fly, our objective is flying from target 
to target. The action vector is the same, but instead of taking actions based on pressed 
buttons, our agent’s brain decides which actions to take, which makes our agent autono- 
mous. In our observation vector, we add all the important information that describes the 
current state of our agent in the best way, that is, the distance from the target, the velocity 
and the angular velocity of the agent. Although sufficient for our goal, this is not a complete 
list of parameters that a control policy needs to consider and it depends upon specific goals. 
For example, if we wanted to reduce the battery consumption of the tailsitter, we would 
add a battery that would decrease with respect to the amount of force generated by the 
propellers, thus the battery consumption would be one of the parameters.  

The observation vector is the input to our neural network and the action vector is the 
output. In addition, we are using the reward shaping system that is based on several 
functions. Each of them has a different purpose and meaning. First one is the reward 
function for the distance from the target. In order to make our agent fly to the target, we 
want to punish it more the farther it is from the target. This function is described by the 
following expression: 

f(x) = k  (e-ax  c). (7) 

Here, x is the square distance to the target, a is some positive constant that changes 
the gradient of the reward function, and c is a constant which moves the function up or 
down. The k parameter is the scaling of the reward that depends on other rewards in the 
environment. The smaller the angular velocity is, the agent is more stable, so we use the 
same function as for the distance from the target. The only differences are that here, the x 
parameter is the angular velocity and we choose different values for the a, c and k, but they 
still have the same meaning. It is important to note that there are no exact values for a, c 
and k, as they are problem dependent, but it is possible to pick the wrong values for these 
parameters, which could lead to an unstable training process, and wrong solutions. These 
two functions are executed every step of the training process and their output agent gets as 
a reward. 
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We also want our agent to spend as much time in the air as possible and every time it 
falls on the ground it needs to get punished based on the time spent in air. The function 
used for that purpose is given with the following expression: 

 max( ) (max ).c
Stepg x Step x    (8) 

Here, the x is the number of steps that defines how long the agent has been flying, the 
maxStep is the maximum number of steps before the automatic reset of the environment 
and c is the positive constant used for scaling the reward. This function is executed once 
in the episode and only if the agent hits the ground or goes out of boundaries. That also 
means that it should have a larger absolute value because we want it to be measurable with 
all the rewards we get during the episode. The only thing left is the reward for picking the 
target which is a positive constant. It should be large enough for motivating the agent to 
pick it, because picking it means that the reward is spawned at some random position which 
results in increasing the distance between them. Without this, the agent could, for example, 
stay around the target as close as possible without touching it, which makes it able to avoid 
spawning the target again.  

3.2 Parameter Estimation 

For a simulation, a set of hyperparameters for the training process needs to be adjusted. 
The lower the  parameter is, which is the discount factor for future rewards, the agent 
cares less about the rewards it gets in the future. Typical range of this parameter is between 
0.8 and 0.995. By lowering the  parameter, which is used as a clipping boundary, the 
training process is slower but more stable. The   is usually between 0.9 and 0.95. We can 
think of the  parameter as how much the agent relies on its current value estimate when 
calculating an updated value estimate. When the value of  is low, it means that it relies 
more on current value estimate, and when it is high, it relies more on actual received 
rewards. It should be between 0.1 and 0.3. The buffer size parameter corresponds to the 
number of experiences that should be collected before doing any update of the model. A 
large buffer size parameter can lead to more stable, but also slower, training updates. 
Similarly, the batch size parameter represents the number of experiences used for one 
iteration of the gradient descent update. The buffer size should be multiple of the batch 
size, and its typical range is between 2,048 and 409,600, while the batch size parameter in 
continuous action space should be between 512 and 5,120. The learning rate parameter is 
the size of each gradient descent step. The larger this value is, the training process is faster, 
but if this value is too large it could lead to unstable training. The typical range of the 
learning rate is between 0.00001 and 0.001. The  parameter makes the agent properly 
explore the action space by making the policy more random, with typical range between 
0.0001 and 0.01.  

3.3 Simulation Results 

The training process has been run a few hundred times with various combinations of 
different hyperparameters and reward function parameters, so only the most successful 
results are shown here. The training is run on multiple agents at once and all of them are 
training the same brain, so the graphs show the average values.  
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The graph in Fig. 3 shows the environment cumulative reward, which is the main 
indicator of our agent’s success, provided that the reward system has been set properly. 
This graph plots the mean episode reward over all the agents through time. It can be noted 
that in the following graphs, time is always shown in steps, where a step is defined as one 
cycle of the episode. 

 

 
Fig. 3. Environment/Cumulative reward with respect to number of control steps (up to 500,000). 

 

Our agent’s goal is to maximize the reward it gets, so accordingly, the reward in- 
creases while learning and it tends to stabilize. It can be observed from Fig. 3 that the 
reward value after 500,000 steps increased from 100 to 300. This value would keep 
growing if the training was continued, and we could not know exactly how long it would 
last until it completely stabilizes. The graph in Fig. 4 shows the same training process after 
5 million steps. It can be noted that after 5 million steps, the reward is still increasing, 
which means that our agent is still able to learn.  

 

 
Fig. 4. Environment/Cumulative reward with respect to number of control steps (up to 5 million). 

 

The graph in Fig. 5 shows the episode length through time (until 500,000 steps), 
which tells us how long on average the agent was ‘alive’ before it went to the terminal 
state. This graph should increase or decrease while the agent is learning, which depends 
on how our problem is defined. In our case, we want our agent to fly as long as possible, 
so the episode length should increase. 
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Fig. 5. Environment/Episode length with respect to number of control steps. 

 

The next two graphs give us the information on how our policy is doing through the 
training process. The first of them (Fig. 6) is the policy entropy which shows us how the 
entropy of the policy changes through time (until 500,000 steps). At the beginning, the 
agent takes random actions. While the agent is learning, this randomness should slowly 
decrease, which means that the agent takes more actions based on its policy.  

 

 
Fig. 6. Policy/Entropy with respect to number of control steps. 

 

 
Fig. 7. Losses/Policy loss with respect to number of control steps. 

 

Then, the graph in Fig. 7 depicts the mean magnitude of the policy loss function (after 
500,000 steps). This corresponds to how much the policy is changing, so during the 
successful training process the magnitude of this graph should decrease. It should decrease 
because that would indicate our policy is doing more stable updates as the training passes. 
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These results tell us that the training process is being successful, and by looking at 
the simulation, we could see that the tailsitter is now able to fly very quickly and accurately 
from target to target. It is important to notice that some changes in the training process 
would change the flight behaviour in some way, but it would still probably be a good 
solution as well. For example, we could make the tailsitter flight more realistic by con-
straining how its rotor power changes. Before this modification, our rotor power could 
change from zero to maximum in just one step what is impossible in the real world. Instead, 
we can limit the change of the rotor in one step with some constant what will make the 
whole flight more realistic. Thus, Figs. 8-11 show the graphs generated by training a more 
realistic model (that better represents real-world conditions, that is achieved by changing 
the environmental model in addition to the change of the rotor) in comparison to the above 
graphs. The red line in the figures indicates instantaneous change in rotor angular velocity 
(instantaneous) and the grey line indicates delayed change in rotor angular velocity 
(delayed). It can be noted that the new (more realistic) model is learning much slower, but 
also more stable because, in every step, the agent has less possible moves than before, so 
it is easier to pick the right action. As expected, the new model is slower and less accurate, 
so it gets less rewarded comparing to the old, less realistic model.  

 

Fig. 8. Environment/Cumulative reward with respect to number of control steps. 
 

 
Fig. 9. Environment/Episode length with respect to number of control steps. 
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Fig. 10. Policy/Entropy with respect to number of control steps. 

 

 
Fig. 11. Losses/Policy loss with respect to number of control steps. 

3.4 Discussion 

Enabling a drone to autonomously fly through highly unstructured environments re- 
presents a challenging task [10]. Current methods based on deep learning have made a 
progress in this direction, but still many technical and theoretical questions remain open 
[11]. The difficulty and feasibility of the learning process depends mostly on the goals we 
want to achieve, and once we define a model, the goal functions will vary depending on 
the vehicle. More specifically, the target functions determine the rewards and penalties for 
the agent, and we used the penalty for distance to the target, penalty for the angular velocity, 
penalty/reward for the time spent in the air, and reward for collecting target. For this 
specific task, these functions would be almost the same for any type of aircraft (airplane, 
helicopter, quadcopter, etc.), and what might be different is the observation vector and the 
action vector because the vehicles differ in the way they move and steer. If we wanted to 
do the same thing for another type of vehicle, for example, a car, in addition to the ob- 
servation vector and the action vector, we would have to change the functions of the target 
because those are specific to aircraft. 

Most tailsitter control approaches rely on a mathematical model of the tailsitter and 
its dynamics, which are nonlinear and may carry inaccuracies due to the impossibility of 
modelling all aspects of the vehicle’s dynamics [6]. An alternative to these control tech- 
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niques can be obtained with intelligent controllers, developed through machine learning 
and optimization methods, such as state-of-the-art reinforcement learning, applied in con-
tinuous tasks [12].  

Although deterministic policy gradients have certain advantages over stochastic po-
licy gradients, such as value/advantage estimations with lower variance, they require a 
good exploration strategy to explore its state space efficiently [7]. Hence, stochastic policy 
gradients can present a better sample efficiency, which has a direct impact on the number 
of timesteps or episodes needed for control policy convergence [13]. 

The choice of observation vector that describes the current state of our agent proved 
to be significant for its rate of improvement during training and its final performance [7]. 
Therefore, other possible combinations of these observations can also be investigated to 
describe the current state of the agent in the best way. Another way the designer can in- 
fluence and direct the behaviour of the agent is the choice of the reward function. However, 
analysing different choices of the reward function was not given much focus here as the 
original choice gave satisfying results. 

It should be noted that the whole training, experiments and reward structures can be 
designed to facilitate learning of more advanced behavior, tighter control or better ro-
bustness. 

4. CONCLUSIONS 

This paper has shown how the tailsitter flies by using deep reinforcement learning, 
based on the proximal policy optimization method. A simulation of the tailsitter in the 
Unity Engine is explained and, the model in trained to learn to fly from target to target, by 
using the ML-Agents Toolkit. The obtained results demonstrated that the model was 
successfully trained, and it was able to solve the problem well. Although this is a 
simplification of the actual physics behind the tailsitter flight, it can be assumed that it is 
applicable to the real tailsitter by making a simulation more realistic, until the gap between 
the simulation and the real world is so small that we could transfer it directly to the real 
world. After the transition to the real word, the tailsitter would need to be trained in these 
new conditions, and after some adjustments, we would have the intelligent drone. The 
machine learning could not only be used in controlling the drone’s flight, but also in mak- 
ing it capable of solving some more difficult problems. 
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