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This paper presents a solution to secret key sharing protocol problem that establishes
cryptographically secured communication between two entities. We propose a new sym-
metric cryptographic key exchange scenario based on the specific properties of Catalan
numbers and the Lattice Path combinatorics. Our scenario consists of three phases: gener-
ating Catalan values, defining the Lattice Path movement space and defining the key equal-
ization rules. In the experimental part of this study, we have merged our scenario with the
Maurer’s protocol, while in the information-theoretical approach to the key exchange we
have presented how a partially split bit sequence can become the secret key that both par-
ties in communication can use. Maurer’s satellite scenario model for the exchange of the
Catalan key is discussed in detail and its application is proposed. Security analysis of the
protocol and testing for channel capacity or key generation speed is also suggested.

Keywords: cryptography, secret key sharing protocol, Catalan numbers, Lattice path, Mau-
rer’s satellite scenario

1. INTRODUCTION

The core of modern communication is a protocol that ensures a sufficient degree of
secrecy. These protocols can be absolute, apropos theoretically or computationally safe.
Storing the keys or choosing the key that one can trust to can be a major problem. The
likelihood that the key and all available copies will be lost is inversely proportional to the
number of instances that the copies are trusted. By increasing the number of instances,
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there is a growing risk of the key being compromised.

The problem of secret key distribution is constantly present since the very beginnings
of cryptography. Regardless of how much the cryptographic algorithm is theoretically se-
cure, it can be jeopardized by key distribution. Many researchers believe that the issue of
key distribution in the cryptographic system is its’ the weakest point. If two entities want
to exchange data in a secure environment, they must trust the third party that distributes
keys (usually referred to as trusted third party in the literature). This trust relationship may
become a security weak point.

Key management is extremely important for security of the entire communication
system. In cryptology-based infrastructure, majority of attacks are aimed at the key man-
agement level. Participants in cryptographic systems must be able to generate keys. If the
key is lost or compromised in any other way by any participant in the communication,
others must be warned promptly. Otherwise, the adversary will be able to decrypt messages
with the stolen key. Since the keys have a limited life expectancy, the most important rea-
son for their periodic replacement is protection against cryptanalysis.

The main contribution of this paper is a novel symmetric cryptographic key exchange
scenario based on the specific properties of Catalan numbers and the Lattice Path combi-
natorial approach, as well as how it can be merged with the Maurer’s satellite scenario.

The rest of the paper is organized as follows. Relevant researches regarding crypto-
graphic key distribution are discussed in section two. Section three provides the basic set-
tings relating to the specific properties of Catalan numbers and the Lattice Path combina-
torial problem as well as some of its constraints. Additionally, this section also discusses
the connection between Catalan numbers and the given problem. Section four describes
our symmetric cryptology key exchanging scenario consisting of three phases: generating
Catalan values, defining the Lattice Path movement space and defining key equalization
rules. Section five deals with a comparison and combination of our key exchange scenario
with Maurer’s satellite scenario. Security analysis of the protocol and testing for channel
capacity or key generation speed is also discussed in that section. Concluding remarks and
proposals for further work are given in the final section of this paper.

2. AN OVERVIEW OF RELATED RESEARCH

The security of cryptography-based infrastructure heavily depends on the crypto-
graphic key management. In a two-party setup, cryptographic protocols often ignore the
possibility that both parties will transmit messages simultaneously. Most two-party proto-
cols have been designed assuming that parties alternate sending their messages.

Reyes et al. [1] presented the permutation parity machine, an artificial neural network
proposed as a binary variant of the tree parity machine. A key agreement mechanism based
on neural synchronization of two permutation parity machines is defined. Recently, it was
shown that two artificial neural networks can synchronize themselves by mutual learning.

Applied number theory has numerous applications in cryptography, especially in the
field of the integer sequences. Previous cryptographic algorithms were designed using the
integer sequences of the Fibonacci sequence, Lucas and Catalan numbers. According to
the research of Romankov and Obzor [2], many known schemes of the cryptographic key
public exchange protocols in algebraic cryptography using two-sided multiplications and
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in most cases, such schemes are based on the platforms that are subsets of some linear
spaces. This method allows computing the exchanged keys without computing any private
data and without solving the hard algorithmic problems. Authors concluded that this
method can be successfully applied to the further scenarios and general scheme and, thus,
is a universal one. Zhang [3] presented two provably-secure protocols for two-party au-
thenticated key exchange (AKE) which require not only a single round, but more efficient
message transmission from a computational perspective. The protocol provides implicit
authentication, key independence and forward secrecy.

Fahmy [4] presents protocol based on the public key cryptosystem (elliptic curve cry-
ptosystem) that exchanges cipher keys over an insecure communication channel. It refers
to key generation, distribution, storage, and deletion. The author emphasizes that designing
secure cryptographic algorithms is hard, and keeping the keys secret is much harder and
that cryptanalysts usually attack cryptosystems through their key management.

Barman and Chattopadhyay [5] introduced a key-exchange protocol that uses bio-
metric data of the sender and the receiver. The session is established between enrolled
users through the central server. A user generates a cryptographic key randomly and shares
it with another user using biometrics-based cryptography. In this key-exchange protocol,
the privacy of the biometric data for both sides is preserved.

Also, Barman et al. [6] introduced a CBS to exchange a randomly generated crypto-
graphic key with user’s fingerprint data. This method also protects the privacy and security
of fingerprint identity of the user using cancelable biometrics. The cryptographic key is
hidden within fingerprint data using a fuzzy commitment scheme and it is extracted from
cryptographic construction. This concept of using cryptography for secure communication
brings out the requirement of cryptographic key management. Zhou [7] examined some
security issues on the Internet Key Exchange protocol. It is important to emphasize that
secure communication over the Internet becomes an essential requirement for any value-
added Internet application.

3. PRELIMINARIES ON CATALAN NUMBERS AND LATTICE PATH

The goal of our previous research papers [8-12] was to evaluate if Catalan numbers
can be used in cryptography. So far, we have demonstrated [10] that Lattice Path combi-
natorial problems which are based on the properties of Catalan numbers can be used for
encrypting and decrypting files and plaintext. Accordingly, we have used the NIST (Na-
tional Institute of Standards and Technology) statistical battery of tests to verify the quality
of generated keys.

Catalan numbers (C;) represent a sequence of numbers which are primarily used in
solving many combinatorial problems. Catalan numbers are defined as [13]:

__C@m (1)

" (n+1)!n!

The basic feature that must be fulfilled is bit property balance, in the binary form for
a certain number from the C, set. Catalan number property is defined as follows [13]: a
number can be labeled as a Catalan object when its binary form consists of numbers equal
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to “1” and “0” and starting with “1”. This property is known as a Dyck word in Algorithm
1.

Algorithm 1: Catalan binary (dyck) word generator.

INPUT: n (base for Catalan number C;)

1. Initialize count=0.

2. Recursively call Step 2 until 'bit 1' count is less than the given n

2.1 If 'bit 1' count becomes more than the 'bit 0' count, then put a ‘bit 0’ and recursively
call for the remaining bits.

2.2 If 'bit 1" count is less than n, then put an 'bit 1' and call step 2 for the remaining bits.
OUTPUT: Binary notation with Catalan properties (bit balance or Dyck word)

For example, for the basis n =30, the space of value C3p=3 814 986 502 092 304 i.e.,
the values that satisfy the property of Catalan object (Catalan-key). By increasing the n
basis, the key space is also drastically increasing.

Catalan numbers have found widespread usage in solving many combinatorial prob-
lems. In [13], concrete applications of these numbers are given, with possible solutions,
when it comes to representation over certain combinatorial problems. The binary notation
of a Catalan object can be graphically represented in the Lattice Path which consists of a
number of points in the Cartesian coordinate system. The number of possible valid paths
in the Lattice Path is directly determined by the calculating formula for the C, set of Cata-
lan numbers. The pathways consist of 2n steps with the initial point (0, 0) and the end point
(n, n). If we apply a binary notation of a Catalan object, then bit 1 represents the movement
to the right and bit 0 represents the movement to the up in Fig. 1.

(3.3)

3.2)

—>¢—Se -
0,00 {1,0) (2.0) (3.0)

1
Fig. 1. Lattice path based on the Catalan key K3 = 110100.

As shown in Fig. 1, each path in the integer network can be encoded with a specific
order of vector movement to the right (1, 0) and vector movement to the up (0, 1). Thus,
for a valid Catalan object, the direction through the integer network will do exactly 2n
movements, starting from the center point (0, 0), and finishing it at the endpoint (n, n). A
restriction has been introduced on the network of the size n x n and it thus, determines how
many shortest paths exist in the integer network. The path never crosses its diagonal. The
main requirement is that each subsequent step must be closer to the target point. Moving
through Lattice Path space can be linked with other notations, such as balanced parenthesis
or Ballot problem [14].
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Proposition: A number of valid paths in lattice (Mp) correspond to the Catalan number (Cy).
Proof: Let M, denote the number of possible paths. The first i pairs (bits 1 and 0) can be
correctly grouped in M; ways and the remaining n—i— 1 pairs in Mn.i.; ways. Using the
multiplication principle, these two events can take place together in M; My.i.; different ways.
Because this is true for each value of i, by the addition principle:

M =S MM, . =MM,_ +MM_, +..+M_M,> )

Il
o

where My=M;=1, My=2, M3=35, My = 14, etc. Thus M, satisfies the same recurrence
relation and the same initial condition as C,. Consequently, M,=C, for every n > 0. For
properties of generalized Catalan Numbers, function series, generators and random walks
see papers [15-19].

4. PROPOSED SCENARIO FOR CRYPTOLOGIC KEY EXCHANGE

Our key exchange scenario consists of the following steps: generating Catalan values,
defining the Lattice Path movement space and defining the key equalization rules.

1. Generating Catalan values: Both sides randomly select the Catalan number from the C,
set. The selected Catalan number (in binary form) is represented in the discrete grid with
Lattice Path. If the selected value has a bit-balance property (Dyck word), then there is
no possibility that side A goes to side B and vice versa. If the selected number does not
meet the Catalan number (bit-balance) property then there is the possibility of switching
over the diagonal or exiting the lattice. Details of the connection of Catalan numbers
with lattice path combinatorial problem are given in [10].

2. Defining the Lattice Path movement space: If the moving space for A side is in the
direction of the x-axis, then the movement rule is (1 — right, 0 — top), while for side B
whose space is y-axis applies the rule (1 — top, 0 — right) — cf. Fig. 2 (right). There is
another variant where side A is in the y-axis direction (1 — top, 0 — right), and the side
B by in the x-axis (1 — right, 0 — top) — cf. Fig. 2 (left).

Fig. 2. Defining the lattice path movement space.

3. Defining the key equalization rules: As first, we select the main side, that is, the side
that dictates the change. The other side is a secondary one, and it makes the matching of
owns bits. An additional parameter is a collocation rule that is implemented in two sce-
narios — approximation to the diagonal or moving away from the diagonal.
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Example 1: How our scenario works step by step on a concrete scenario. The first phase
is generating Catalan values. The side A randomly selects a decimal value of 856 (binary
1101011000), while side B randomly selects a value of 684 (a binary entry of 1010101100).
The condition was the selected values fulfilled the described bit-balance property (Dyck
word property).

The second phase is defining the Lattice Path movement space. Each side selects the
movement axis, and in this example let movements are with the following parameters: side
A: x-axis (1 — right, 0 — top) and side B: y-axis (1 — top, 0 — right). The overall move-
ments of both sides, based on the chosen random Catalan value, is depicted in Fig. 3 and
presented in Table 1.

1101011000 1010101100

Fig. 3. Lattice Path movement space-based side A (left) and side B (right).

Table 1. Movement procedure for both sides (R for move right, T for move top).
Step (1 (2 |3 |4 |5|6 |7 |89 |10
A R|IR|T|R|T|R|R|T|T|T
B TIR|T|R|T|R|T|T]|R]|R

a

Fig. 4. Movement procedure for both sides on lattice path.

Fig. 4 depicts the unified scenario, i.e. the path for both sides. Both sides have chosen
values that satisfy the Catalan number property, i.e. in this case, there is no possibility of
crossing the diagonal, the conflict between the two sides or exiting from the network.

The third phase is defining key equalization rules. The main side is selected, that is,
the side that dictates the change, and the other party agrees to the basic defined rules, which
means that the additional parameter refers to the definition of the rules for the assignment
which can be realized in two scenarios: scenario 1 (approximation to the diagonal) or sce-
nario 2 (moving away from the diagonal). Below, we describe the work of both scenarios
on the concrete example.
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Scenario 1: Moving towards the diagonal and A is the main: Let A be the main side, while
for the side B holds or is changed bit by the following rule: if the direction is the same on
both sides (True: True or False: False) then side B retains its own bit, and if the directions
differ, then the side B changes its bit. Table 2 presents the matching of the keys according
to the “diagonal approximation” scenario.

Table 2. Scenario 1 — moving towards the diagonal.

Step Moving towards the diagonal (True / False) | B — before B — after
1 Side A — FALSE / Side B — FALSE 1 1
2 Side A — FALSE / Side B — TRUE 10 11
3 Side A — TRUE / Side B — FALSE 101 110
4 Side A — FALSE / Side B — TRUE 1010 1101
5 Side A — TRUE / Side B - FALSE 10101 11010
6 Side A — FALSE/ Side B — TRUE 101010 110101
7 Side A — FALSE / Side B — FALSE 1010101 1101011
8 Side A — TRUE / Side B - FALSE 10101011 11010110
9 Side A — TRUE / Side B— TRUE 101010110 110101100
10 Side A — TRUE / Side B— TRUE 1010101100 | 1101011000

Finally, side B has aligned its key, which is identical to the key that has side A:
1101011000.

Scenario 2: Movement from the diagonal and B is main: Let B be the main side, while for
the side A holds or is changed the bit, as follows: if the direction is the same on both sides
(True: True or False: False), then A retains its own bit, and if the directions differ, then the
side A changes its bits. Table 3 presents the matching of the keys according to moving
away from the diagonal scenario.

Table 3. Scenario 2 — movement from the diagonal.

Step Movement from the diagonal (True / False) | A — before A — after
1 Side A — TRUE / Side B— TRUE 1 1
2 Side A — TRUE / Side B — FALSE 11 10
3 Side A — FALSE / Side B - TRUE 110 101
4 Side A — TRUE / Side B — FALSE 1101 1010
5 Side A — FALSE / Side B — TRUE 11010 10101
6 Side A — TRUE / Side B — FALSE 110101 101010
7 Side A — TRUE / Side B — TRUE 1101011 1010101
8 Side A — FALSE / Side B — TRUE 11010110 10101011
9 Side A — FALSE / Side B — FALSE 110101100 101010110
10 Side A — FALSE / Side B — FALSE 1101011000 1010101100

Finally, side A has aligned its key, which is identical to the key that has the side B:

1010101100.

The question arises, that in this case is not known to the third party (the adversary).

These are the following parameters:
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— “Who is on which side?” Whether A is on the x-axis, B on the y-axis, or vice versa.

— “What is the main side?” Is the main side A that dictates the change of bit on side B or
vice versa.

— “Which equalization rule is used?” Is the bit equalization rule used to approximate or
move away from the diagonal?

The safety of these three parameters is very significant. In this premature scenario,
based on various combinations to define these three parameters, there are 8 different com-
binations of scenarios:

1. approximation to the diagonal (main side A on the x-axis, B on the y-axis),

2. approximation to the diagonal (main side A on the y-axis, B on the x-axis),

3. approximation to the diagonal (main side B on the x-axis, A on the y-axis),

4. approximation to the diagonal (main side B on the y-axis, A on the x-axis),

5. moving away from the diagonal (main side A on the x-axis, B on the y-axis),

6. moving away from the diagonal (main side A on the y-axis, B on the x-axis),

7. moving away from the diagonal (main side B on the x-axis, A on the y-axis) and
8. moving away from the diagonal (main side B on the y-axis, A on the x-axis).

5. MAURER’S PROTOCOL WITH CATALAN NUMBERS

According to Shannon’s theory, cryptographic systems can be divided into two cate-
gories. The first category is related to computer security, designed in relation to the com-
puting power of adversaries. The second one is the domain of perfect encryption systems
that we consider secure even when the adversary possesses computer resources that exceed
our limits of cognition. This is particularly true having in mind quantum computers that
are awaiting us in the near future. Ueli Maurer devised his own protocol where he replaced
the quantum channel with a weak source of information or a source that would definitely
cause an error in the transmission [20, 21].

In the first phase of the protocol, both parties receive a broadcast signal through a
noisy communication channel. In the second phase, they extract the mutual information,
at the end of the third phase it is used by equalization, while the third party becomes com-
pletely independent, i.e., it remains without the mutual information that initially existed
initially between all participants. According to the theoretical foundations of the Maurer
protocol, in this way the key is exchanged through a public channel, where the conditions
are met that the adversarial party possess no information about the key or the message.
According to the information theory and the definition of perfect secrecy, the mutual in-
formation between the plaintext and the ciphertext as well as between the ciphertext and
the key must be zero. Also, according to Kerckhoff’s principle, the adversary is familiar
with the key exchange and encryption algorithm, while the key remains secret.

We concluded from several tests that both Catalan sequences are always completely
independent. Authors in [22] introduced two new recursive bit-sequences, and then, with
the help of these sequences, obtained the identities for the convolution involving the Cat-
alan numbers. Also, authors [23, 24] discover several series of identities involving the Cat-
alan numbers. The main purpose of paper [25] is to find expressions for two Catalan-se-
quences and to solve two related conjectures arising from the study of sums of finite
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products of Catalan numbers. In [26], the authors prove a conjecture about the equality of
two generating functions for two sets whose cardinalities are given by Catalan numbers.

We will describe how we made a connection between our scenario and the aforemen-
tioned Maurer’s Satellite scenario. It is important to state that we have experimentally
found that if in Maurer’s protocol both sides generate a random Catalan number, the mutual
information will always be 0. This is a very good property of Catalan numbers, and more
precisely, both sequences are always independent. Eve is a passive eavesdropper that par-
ticipated in a public discussion performing the same steps as Bob in Fig. 5. If Eve does
everything exactly the same as Bob, that is, imitates a participant in public discussion and
realizes the protocol with Bob, by calculating mutual information it was determined that
at the end of the protocol mutual information between Alice and Eve is 0. Also, the mutual
information between Bob and Eve is 0, while mutual information between Alice and Bob
is 1. This measuring was performed in a simulated environment.

Eve \
g Public discussion [ L
D <
Alice - Catalan generator Bob - Catalan generator

Kab - Shared key
Fig. 5. Equivalent noisy channel for public discussion.

Table 4. Two random Catalan-keys.

A_key (dec):
1206719762343446959053171812826403121865940614803696816575611552645589411924
A_key (bin):
10101010101111101010101011101001010111101010110111101001010111010101010101000101010101
01010101100011100000011101010101010110101000010101001011101001101010111000010100000101
011101011101001101011101000101110000010101010110100001011010101010100001010100

E key (dec):
1620934935692751310532589993655837700010838143940873627601226573876598155946
E key (bin):
11100101010110101010101010010101010101011011011101110111011011101010101110101101111111
10010101000000100010101010100101110101010101010110101100000101000010001001100001010010
10100001111101010100010101010101010100101010101101010101010000010101010101010
RESULT:

mutual (shared) information = 0; shared key length = 0.
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Example 2: Let both sides generate a random 250-bit Catalan object. Below are the pa-
rameters from one test, where the common key cannot be separated, or the mutual infor-
mation is always equal to 0, which means that the common key has length 0.

The complete scenario is based on the assumption that Eve is a passive eavesdropper.
If Eve takes an active role, she may impersonate Alice or Bob, thereby compromising the
security mechanisms, i.e. the key exchange protocol. One possible way is initial authenti-
cation based on the existing PKI infrastructure. Another possible way that is achievable on
the physical layer is to remember the impulse response of the participants' channels, pro-
vided that in the first communication with them, when the impulse response is also esti-
mated, their authenticity is trusted. Regarding practical implementation, secure channel
codes would be implemented in wireless interface card drivers. With the progress of the
“software-defined radios” project, it is reasonable to assume that the implementation of
this type of security mechanisms on the physical layer is becoming easier for integration
with forthcoming communications systems.

In order to exploit the listed Catalan sequence properties, more precisely to achieve
the goal of reaching a significantly longer shared secret key from a partially known shared
set of bits, we present the Maurer-Catalan protocol in Fig. 6.

A J Catalan pseudo generator —l B

K.B "A" generates a random Step | 1 K “B" generates a random
Catalan key b Catalan key
Ra "A" generates a random Step | 2 R “B" generates a random
sequence (X-bits) b sequence (Y-bits)

| —

" Step | 3
Ca Encryption (Ra,Ka) Cb Encryption (Rb,Kb)
INPUT A Step 4 INPUT B
Maurer protocol )
Step I 5

Shared K

Fig. 6. Maurer protocol with Catalan-keys.

Step 1: Sides A and B randomly select Catalan key K, and Ky (over C,, generator).

Step 2: Each side generates a random value (Ra, Rp) of an arbitrary length.

Step 3: Both sides encrypt the selected value of Ra and Ry with their chosen Catalan-key:
Ca=E (Ra, Ka) and Cp = E (Ryp, Kp).

Step 4: C, and C;, are the initial values of the first phase of the Maurer protocol. Values A
and B (key material) are completely equalized after the second phase and are usable for
generating a symmetric cryptographic key through the final phase (privacy amplification)
in Maurer’s protocol, in which a specific class of hash codes (universal hashing) is applied.
This neutralizes the mutual information between Eve and the other participants that existed
at the beginning of the protocol. The bit sequence on Eve’s side is completely independent
of A and B.
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Step 5: After the third round, the common key Kap is exchanged.

Channel capacity or key generation speed refers to the amount of secret bits generated
during one second of measurement, or the number of key bits shared between Alice and
Bob, conditioned by the amount of randomness available for extraction. Also, the different
bit rate (KDR) in the generated keys between Alice and Bob should be taken into account.
Let N denote the length of the key. KDR is defined as

N
K -KE
KDR:—Z':]| |<1|) iy (€)

If KDR is not less than the correction techniques capabilities described in the infor-
mation reconciliation phase, key generation will fail.

This key exchange scenario is applicable to smart city applications. In a smart city
such a large set of data collections for the citizens, it represents a major security issue. For
smart systems to gain widespread acceptance by users, the realization principle of smart
city ideas must assure all users of the security aspect and privacy of all data online. Block-
chain technology is the answer to the smart city security issue. More specifically, this tech-
nology provides the confidentiality and integrity of data in a smart environment. From a
security point of view, blockchain technology is a very stable concept, but only while
online users keep their private keys. This is precisely one of the weak points and challenges
that creators of such systems will have to address. Also, the secret key generation and
distribution are crucial to the information security of smart grids. Theft of a cryptographic
key can have unprecedented consequences for the individual, and for this reason, it is often
placed the emphasis on the secure distribution of keys in a smart environment.

One suggestion for implementing this proposed symmetric key exchange scenario
that establishes cryptographically secured communication between two entities is in the
realization of smart city applications. The first entity (user) randomly selects the function
and sends its’ description to the other user. The agreement on the description is done at the
beginning of the protocol and it can be some parameter that selects the concrete function
in the closed set. The result of this is a symmetric key of 128, 192 or 256 bits key applicable
to AES algorithm.

Regarding the applicability of the protocol, it can primarily be used in 5G networks.
Additionally, the application includes LoRa (Long Range), which is a relatively new IoT
(internet of things) technique used widely in smart agriculture, smart cities, etc., that can
support long-range communications if the channel quality is good.

6. CONCLUSION AND FURTHER WORK

We have presented key exchange protocol where a string of random sequences is used
as the key base. More precisely, aforementioned sequences satisfy the Catalan number
property. The presented protocol for symmetric key exchange scenario consists of three
phases: generating Catalan values, defining the Lattice Path movement space and defining
the key equalization rules — key generation. Additionally, we have specified a concrete
application in the form of Maurer-Catalan protocol combination. According to tests, we
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have noticed that enviable results in the key distribution process are reached. We have
achieved the goal to securely exchange the significantly longer shared secret key from be
from partially known shared bit string. The scenario was tested in combination with the
encoding process of text or images using Catalan key and lattice path problems. Also, we
have stated the security analysis of the protocol and testing for channel capacity or key
generation speed.

The suggested methods can be further improved and adapted to modern approaches
and protocols in cryptography. Number theory today finds increasing application in the
realization of basic cryptographic techniques that deal with secure data exchange. Some
studies deal with the use of number theory in the realization of visual cryptography algo-
rithms, that is, in solving the problem of secrets sharing. In addition, it is important to note
the additional possibilities of encryption and exchange data based on two-parameter Fuss-
Catalan numbers. Accordingly, the proposal for future work could refer specifically to the
application of Fuss-Catalan numbers in the improvement of existing protocols for manag-
ing, generation, distribution and storage of cryptographic keys.
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