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Autism spectrum disorder (ASD), also known as autism, is a mental illness caused by
disorders of the nervous system. Autism is mainly characterized by developmental disor-
ders, accompanied by abnormalities in social skills, communication skills, interests, and
behavioral patterns. Autism cannot be completely cured by existing medical means, and its
symptoms can only be relieved through acquired intervention. The best intervention period
for autistic patients is before the age of six. But relying on existing methods, most patients
with autism have missed the best intervention period when they are diagnosed. In order to
allow the subject to be diagnosed with autism in a timely manner, we proposed a method
that uses a deep neural network to analyze the subject’s magnetic resonance imaging (MRI)
and evaluate the performance for early screening of ASD. Our primary analysis of patients
with functional magnetic resonance imaging (fMRI) also compared with structural magnetic
resonance imaging (sMRI). Experiments have shown that fMRI is more sensitive to autism
than sMRI. In addition, we explain the classification results of fMRI.

Keywords: autism spectrum disorder (ASD), 3D convolutional neural network (3D CNN),
magnetic resonance imaging (MRI), network visualization, network interpretation

1. INTRODUCTION

Autism spectrum disorder (ASD) is a congenital neurodevelopmental disorder that
cannot be effectively detected by traditional medical methods. However, with the rise
of the AI+ Medical model, deep neural networks (DNN) have increasingly been used in
many aspects of the medical field, which brings a new dawn to the detection of ASD.
So far, researchers have used deep convolutional neural networks to identify Computed
Tomography (CT) images, such as pneumonia by CT images of the lungs [1], classifying
tuberculosis patients based on CT images [2], and a large number of researchers have
achieved good results in the classification of brain images, especially brain tumor images
[3, 4]. In particular, for brain image recognition, the use of deep convolutional neural net-
works to analyze the sMRI of the patient’s brain [5, 6] is also a common approach. How-
ever, in current clinical applications, the diagnostic criteria for autism in various countries
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are still the scale method proposed in Diagnostic and Statistical Manual of Mental Dis-
orders (Fifth Edition) (DSM-V), which is provided by American Psychiatric Association.
The table method requires doctors to observe and evaluate the social behavior, language,
movements and repetitive behaviors of patients, subjective, high misdiagnosis rate and
long diagnosis period.

Though many scholars have done researchs on ASD, most of them are for symptom
analysis of patients who have already identified autism [7, 8]. In addition, some schol-
ars have developed a classifier based on nerve images to identify functional connectivity
anomalies [9]. However, these are all researches for adult autism which is difficult to
prognose. We hope to determine whether the subject suffers from autism in childhood,
especially around one year old, because the earlier the age of detection and treatments,
the more obvious the prognosis improvement of autism.

Our designs Facing the low accuracy and the long diagnosis period of traditional
medical methods of ASD diagnosis, we explored the possibility of applying DNN to early
screening for ASD. After multiple comparisons, we collaborated with two local hospitals
to collect sMRI data from 1,102 subjects and fMRI data from 2,352 subjects. Based on
these, we use 3D CNN [10] to replace traditional 2D CNN to extract features from sMRI.
At the same time, we combine the 3D CNN with ConvLSTM [11] to extract features from
fMRI.

Our design is based on two key insights. First, the convolutional neural network is
very effective at extracting feature information from images. If the acquisition of ASD
is related to different features of one or more brain regions, it will also be extracted by
our network. Second, fMRI has a rich set of timing characteristics. To take advantage
of these timing features, we first apply the 3D convolution to a single time point, and the
convolved results will be sent to ConvLSTM. Since the last time point contains the most
abundant information, we take the output of the last time node of ConvLSTM as a result.

Evaluations and experiment We focus on evaluating the performance of neural net-
works under fMRI, and find it has an excellent performance in early autism classification.
Meanwhile, we introduce a new means - deconvolution, and try to use this method to
mark the classification of fMRI to explain why it has such excellent performance. Last,
we hope we can give back the results of our explanation to doctors as a medical diagnosis
of autism.

Contributions The main contribution of this paper can be summarized as follows:

• We establish a database of sMRI and fMRI for patients with ASD in early stage.

• We have found a correlation between ASD and MRI in the brain, especially with
fMRI. Moreover, we try to analyze the fMRI of the brain with a deep neural network
and obtained excellent classification results.

• We explain the classification results of fMRI.

The use of neural networks to analyze magnetic resonance imaging (MRI) of subjects
suspected of having ASD is a new and potentially promising screening tool. Compared
to the existing screening method, especially in using neural networks for early screening
of fMRI, we have achieved even better results.
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2. DATA SET

Our team collaborated with two local Grade-A Tertiary Hospital to collect 1,102
sets of sMRI data and 2,352 sets of fMRI data. sMRI data includes 530 children with
autism and 572 normal children. fMRI data includes 1,123 children with autism and
1,229 normal children. Since both sMRI and fMRI have a small amount of data, we have
not separately divided the dev set. We randomly selected 70% of fMRI data as the training
set and the remaining 30% as the test set. The same is true for sMRI.

2.1 Collecting Testers

Normal children are recruited from local kindergartens. The criteria for entry are as
follows (refer to Autism Diagnostic Interview-Revised (ADI-R) assessment results that do
not meet the children’s autism score criteria):

• According to Wechsler Intelligence Scale for Children (WISC) test, the total IQ is
greater than or equal to 70 points;

• Habitual use of the right hand.
• do not take any psychotropic drugs before collection.
• There is no history of mental illness in themselves and their family.

We guarantee that children and parents volunteer to participate in the study and can
cooperate with MRI. The normal children who participated in the study were 4 to 10 (7
± 3) years old; the total IQ score was (91.06 ± 12.40).

Children in the autism group are diagnosed by the local top three hospitals and meet
the diagnosis of American Diagnostic and Statistical Manual of Mental Disorders (Fourth
Edition) (DSM-IV) The most basic requirements for recruiting autistic children as follows:

• Comply with the criteria for determining autism.

• Habitual use of the right hand.
• There is no history of mental illness in themselves and their family.
• No other psychotropic drugs are used before collection.

Recruited children need to exceed the autism disorder diagnosis threshold of assess-
ment results in ADI-R; According to WISC test, the total IQ is greater than or equal to 70
points; Testers and their families are willing to participate in the research; The children
recruited in the study are 4 to 10 (7 ± 3) years old; The total IQ is (83.87 ± 15.51) points.

There is no significant difference in age (P = 0.321) and total IQ (P = 0.154) between
the two groups. All tested children and their parents agree to participate in the study, and
the parents sign informed consent.

2.2 Pre-processing of sMRI Data

T1 structural images are analyzed with Matlab 2012a using Statistical Parametric
Mapping1 and VBM toolbox2. Imaging data are pre-processed by realignment, bias-
correction, tissue classification and spatial normalization. Tissue classification is used
1SPM8, Welcome Department of Cognitive Neurology, London, UK; https://www.fil.ion.ucl.ac.uk/spm/
2http://dbm.neuro.uni-jena.de/vbm/download/



350 M. ZHANG, Y. MA, L. ZHENG, Y. WANG, Z. LIU, J. MA, Q. XIANG, K. ZHANG, L. JIAO

(a) (b) (c) (d)
Fig. 1. The sMRI data; (a) the original sMRI data before pre-processing; (b) the gray matter data
after pre-processing; (c) the white matter data after pre-processing; (d) the Cerebrospinal Fluid
(CSF) data after pre-processing. By preprocessing the raw image data, we divided the structural
magnetic resonance imaging of the brain into gray, white matter and CSF. The gray matter data is
widely used in image analysis, which will be used in the next experiment.

to segment the brain into GM, WM, and cerebrospinal fluid images based on an adap-
tive Maximum a Posterior (MAP) technique [12]. To this end, images are normalized to
the Montreal Neurological Institute (MNI) template using the Diffeomorphic Anatomi-
cal RegisTration using Exponentiated Lie algebra (DARTEL) technique [13] with a pre-
defined tissue probability map. In addition, non-linear normalization is only incorporated
to take into account volume changes caused by spatial normalization that could cause
certain brain regions to shrink or expand. This is done by multiplying the voxel values
by the non-linear components derived from the spatial normalization step. The voxel
size is 1.5×1.5×1.5 mm3. Finally, all normalized, segmented and modulated images are
smoothed with an 8-mm full-width at half-maximum (FWHM) isotropic Gaussian kernel.
The sMRI images before and after processing are shown in Fig. 1.

2.3 Pre-processing of fMRI Data

Slow fluctuations of brain activity are fundamental features of the resting brain, and
their presence is vital in determining correlated activity between brain regions and defin-
ing resting state networks. The relative magnitude of these fluctuations can differ be-
tween brain regions and between subjects, and thus may act as an index of individual
difference or dysfunction. Resting-state images are preprocessed using SPM8 and Data
Processing Assistant for Resting-State fMRI3. Specifically, the first five time points are
removed to minimize non-equilibrium effects in the fMRI signal, and then slice-timing,
realignment-based head movement correction, and spatial normalization (voxel size of
3×3×3 mm3) are performed. Demeaning or detrending is performed and head-motion
parameters, white-matter signals, cerebrospinal-fluid signals and global signals are re-
gressed out as nuisance covariates [14]. fMRI time-points that are severely affected by
motion are removed using a “scrubbing method” (FD value > 0.5mm, and ∆BOLD of
DVARS > 0.5%), and less than 5% time points were removed per subject. Finally, Band-
pass temporal filtering (0.01-0.08Hz) is used to remove the effects of very low-frequency
drift and high-frequency noise, and all images are smoothed with a 6-mm FWHM Gaus-
sian kernel. The fMRI images before and after processing are shown in Fig. 2.

3DPARSF, https://sourceforge.net/projects/restingfmri/
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(a) (b)
Fig. 2. The fMRI data; (a) the original fMRI data before pre-processing; (b) the fMRI data after
pre-processing. The pre-processed image is more regular than the image before pre-processing,
making it easier for the network to analyze.

3. NETWORK STRUCTURE

3.1 Network Structure under the Principle of sMRI

Here, We have improved the traditional 3D convolution process. The concept of
3D convolutional networks is first proposed in a paper on human behavior recognition in
surveillance video [10]. Researchers in this work stack multiple two-dimensional video
frames to form a three-dimensional cube, and then apply a three-dimensional convolution
kernel to feature extraction. However, for sMRI data, it is already a three-dimensional
structure. We directly apply a three-dimensional convolution kernel directly on it. For
convenience, we call our improved 3D convolution process “3D CNN which is applied to
spatial dimensions”. The single-step three-dimensional convolution process is shown in
Fig. 3.

sMRI data is a three-dimensional structure, and we use 3D CNN which is applied to
spatial dimensions to extract features. When the data dimension drops to a low level, we
roll it out and send it to the fully connected layer for disease risk prediction. The network
structure is shown in Table 1.

Table 1. Neural network under the principle of sMRI.
Layer Layer Type Output Shape #Param

1 Input Layer 121×145×121×1 0
2 Conv3D+Relu 121×145×121×4 6
3 Conv3D+BN+Relu 60×72×60×3 246+12
4 Conv3D+Relu 60×72×60×8 32
5 Conv3D+BN+Relu 29×35×29×8 1736+32
6 Conv3D+Relu 29×35×29×10 90
7 Conv3D+BN+Relu 14×17×14×10 2710+40
8 Fatten 33320 0
9 FC+Relu 256 8530176
10 FC+Relu 128 32896
11 FC+Softmax 2 258
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Fig. 3. Single 3D convolution kernel convolution calculation process. For example, a convolution
operation of a size of 3×3×3 is used to convolve a 79×95×79 cube. The convolution step is 1 in
all directions, so a convolution is obtained with a cube of size 77×93×77.

3.2 Network Structure under the Principle of fMRI

Here, we use 3D CNN which is applied to spatial dimensions and ConvLSTM. Con-
vLSTM is first proposed in precipitation nowcasting [11]. Researchers in this work build
an end-to-end trainable model for precipitation nowcasting by stacking multiple Con-
vLSTM layers and forming an encoding-forecasting structure. In ConvLSTM, the three
gates are updated with gate Γu, the forgotten gate Γ f , and the output gate Γo are given by
Eqs. (1), (2) and (3).

Unlike ordinary LSTM, in ConvLSTM, x<t> is a two-dimensional input. a<t−1> is
the activation value of the previous layer, so the dimension is the same as x<t>. W is
the corresponding weight parameter, and its subscript can well reflect which gate value
is associated with it. It can be seen that, in addition to the input of the layer x<t> and
the upper output a<t−1>, the gate value also “peep” the memory cell value of the upper
layer c<t−1>, this is due to the addition of a peephole. Finally, the memory cell c<t> and
activation a<t> of the t-th layer are given by Eqs. (4) and (5).

Γu = σ(Wxu·x<t>+Wau·a<t−1>+Wcu·c<t−1>+bu) (1)

Γf = σ(Wf u·x<t>+Wa f ·a<t−1>+Wc f ·c<t−1>+b f ) (2)

Γo = σ(Wou·x<t>+Wao·a<t−1>+Wco·c<t−1>+bo) (3)

c<t> = (Γu·tanh(Wxc·x<t>+Woc·a<t−1>)+Γ f ·c<t−1> (4)

a<t> = Γo·tanh(c<t>) (5)

Since the data at a single time point of fMRI is also a three-dimensional structure,
we first use 3D convolution all applied to spatial dimensions to the data at each time
point. We select images of 20 consecutive time points in the middle as the input to the
convolution layer (Note that the image at each time is also a three-dimensional structure).
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Fig. 4. Neural network structure under fMRI.

There are three reasons why we do this: First, the middle data is stable enough. Second,
when the number of time point increases to a certain scale, existing computing resource
is not capable to accommodate all the data, thus resulting in memory overflow. Last, the
accuracy rate is not significantly improved even if the data of all time points is input to
the network. Conversely, less time points can save a lot of computing resources. The
convolution process for the convolution portion of our network is shown in Table 2.

Table 2. Convolution process of neural networks at a single time point of fMRI.
Layer Layer Type Output Shape

1 Input Layer 61×73×61×1
2 Conv3D+BN+Relu 61×73×61×8
3 Conv3D+BN+Relu 30×36×30×8
4 Conv3D+BN+Relu 30×36×15×10
5 Conv3D+BN+Relu 14×17×7×10
6 Conv3D+BN+Relu 14×17×4×16
7 Conv3D+BN+Relu 6×8×1×16

Table 2 shows a description of the convolution process at a single point in time for
fMRI. We selected data for a total of 20 time points. Table 2 lists only the convolution
process at a single point in time. The convolution process at the other 19 points is exactly
the same so that we do not list them. After convolutional process, we add the convolution
results of the 20 time points and send them to ConvLSTM. Since the last time point of
ConvLSTM contains the richest information, we select the output of the last time point
and send it to the fully connected layer to predict the risk of acquiring ASD. The network
structure is shown in Fig. 4.
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4. EXPERIMENTS

In this section, we evaluate the performance of our network on fMRI data, and com-
pare it to the performance of the network on sMRI data. The results show that our network
is very sensitive to fMRI data classification and bad on sMRI data.

4.1 Experimental Setup

We divide our data set as described in Chapter 2. In the training process for sMRI,
we set the learning rate to 0.00008, the batch size to 16, and use the Stochastic Gradient
Descent method (SGD) for training with a learning rate attenuation of 0.5e-6. The number
of epochs is 150. In the training process for fMRI, we set the learning rate to 0.001, the
batch size to 16, and the Adam optimization algorithm for training with a learning rate
attenuation of 0.5e-6. The number of epochs is 150.

For each training epoch, we calculated the cross entropy loss and accuracy on the
training set and test set and output. Currently, because there are not public MRI data sets
for ASD, we are unable to list the results of other researchers to compare with us. In fact,
we are prepared to expose the data we have collected so that other people can conduct
relevant research.

4.2 The Performance of Our Network under fMRI and sMRI

In the process of training fMRI data, we recorded the loss value and accuracy value of
each generation of training. After the end of the training, we draw the loss and accuracy of
the image according to the loss value and accuracy value in the training process, as shown
in Fig. 5 (a). We did the same on sMRI data, but since the network was not well trained
on sMRI data, we applied the early stop operation when we trained to 100 generations,
which is shown in Fig. 5 (b). Finally, we list the accuracy of the network with different
hyperparameters on fMRI and sMRI, as shown in Table 3.

5. INTERPRETATION METHOD

We have got excellent classification results on fMRI data. We hope to interpreting the
network for fMRI by deconvolution to mark the voxels that are classified. These labeled
voxels reflect why a fMRI is so classified, and can be returned to doctors as a basis for
diagnosis as a potential biological cause.

5.1 Some Visualization Methods

The interpretability problem of the CNN model, also known as the visualization of
CNN, was discussed after the birth of the network itself. In fact, there is not a very good
way to explain CNN so far. The currently available visualization methods are deconvo-
lution and guided-backpropagation, through which we can see the features learned by the
deeper convolutional layers of the CNN model to some extent.

Both deconvolution and guided-backpropagation are based on backpropagation.
When the three methods interpret the same two-dimensional picture, the interpretation
result obtained by backpropagation is usually so noisy that almost impossible to explain.
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(a)

(b)

Fig. 5. Comparison of network loss and accuracy; (a) is the performance of our designed network
under the principle of fMRI; and (b) is the performance of our designed network under the principle
of sMRI.

When using deconvolution to interpret, it is possible to approximate the pixel profile that
affects the classification result, but there is a large amount of noise outside the contour.
Finally, when using guided-backpropagation to interpret, there is essentially no noise, and
features can be clearly concentrated on the pixels that affect the classification results.

5.2 Selection of Visualization Methods

In essence, both deconvolution and guided-backpropagation are derived from back-
propagation, which is the derivation of the input. The first appearance of the concept
”deconvolution” was proposed by Zeiler in his paper [15], but the name ”deconvolution”
was not specified at that time. The formal use of the term deconvolution is in its subse-
quent work [16].

Although we can see the internals of the CNN model by means of backpropagation,
deconvolution and guided-backpropagation, none of them are suitable as a way to explain
our classification results. The three methods are not sensitive enough to the categories, but
directly show all the features that can be extracted, even guided-backpropagation. When
guided-backpropagation is applied in high-dimensional scenes (such as interpreting our
3D CNN results), the interpretation effect will be significantly worse. In other words,
we cannot explain our fMRI classification results by these three methods. To solve this
problem, we must consider other methods.
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5.3 A New Way: the CAM Algorithm

Just as a thermogram can tell us what hot objects are in the dark, we hope to find
an algorithm that can locate the neural network interpretation principle. For a deep con-
volutional network, after multiple convolutions and pooling, its last layer contains the
most abundant spatial and semantic information. The information contained in the fully-
connected layer is difficult for humans to understand, and is difficult to visualize. There-
fore, in order to better explain the classification results of the network, the last convolu-
tional layer must be utilized well.

The Class Activation Mapping (CAM) algorithm does a good job of this. This al-
gorithm draws on a famous paper published by Lin Min et al. [17], in which the fully-
connected layer is replaced with Global Average Pooling (GAP). GAP has very significant
advantages. First, the input can be of any size without fully-connected layer. Secondly,
GAP can make full use of spatial information, and it is more robust and not easy to
produce over-fitting. The most important point is that in the mlpconv layer (the last con-
volutional layer), the feature map with the same number of target categories is forced to
be generated, and finally sent to the sigmoid layer through the GAP layer to obtain the re-
sult, so that each feature map is given a very clear meaning, which is also called category
confidence maps.

5.4 Using Improved CAM Algorithm to Interpret fMRI

Although the CAM algorithm already has a good interpretation effect, there is a very
obvious disadvantage that it requires modification of the structure of the original model,
which needs the retraining of the model so that the training cost is greatly increased. In
particular, if the model is already up and running, it is almost impossible for us to retrain
it. Therefore, we improved the CAM algorithm on the basis of the original, as shown in
Fig. 6, in order to apply to the actual situation. The improved algorithm process will be
described in detail below.

First, we select a patient’s fMRI image, and input it into the trained network model
for calculation. We extract 16 three-dimensional feature maps of the penultimate convo-
lution layer of the first sample point in the fMRI sequence, and then calculate the neuron
importance weight of each feature map to the classification task αc

m, which is shown as
Eq. (6), where “Z” is calculated by Eq. (7). In Eq. (6), αc

m(t) represents the contribution
of the mth feature map of the tth sample point of fMRI to the classification results of c-
class; w, l and h represent the width, length and height of the feature map; yc represents
the score of the c-class before the softmax; Am

i jk(t) represents the activation value of mth
feature map of the tth sample point of fMRI. From this we have obtained the mth feature
map for the c-class, which is shown as Eq. (8).

In our project, we set T = 20 (The sampling point of a single fMRI is much larger
than 20, and we have selected the samples with the most stable 20 time points in the
middle part), then derive the activation map I of the fMRI of a single autism spectrum
disorder patient, which is shown as Eq. (9).

α
c
m(t) =

1
Z ∑

i
∑

j
∑
k

∂yc

∂Am
i jk(t)

(6)
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Z = w · l ·h (7)

Lc
Grad−CAM(t) = ReLU(∑

m
α

c
m(t) ·Am(t)) (8)

I =
T

∑
t=1

Lc
Grad−CAM(t) (9)

5.5 Abnormal Brain Area Extraction

In order to accurately locate the brain region, it is necessary to suppress the region
with a lower activation level to highlight the region with a higher activation level. The
suppression method we use as Eq. (10). Then, we normalize the I(i, j,k) to make the
voxel value of the brain thermogram in the 0-1 range, which is shown as Eq. (11). Fig. 7
shows the effect before and after suppression.

To verify the effect of suppression, we randomly select 116 samples including 54
patients with ASD and 62 normal subjects. All the tested people are distributed between
9 and 13 years old, with an average age of 11 years. Then, we pick up 54 fMRI thermo-
grams of the ASD group and weight them together. After comparing the different effects
of suppressing 10 rounds, 20 rounds and 30 rounds, we chose to suppress the activation
map after 30 rounds, as shown in Fig. 8. Meanwhile, we performed the same processing
on the images of 62 normal subjects, and pick up 54 of them as brain activation maps
representing normal persons. Finally, by comparing the activation maps between normal
subjects and ASD group, we obtain 15 brain activation regions shared by the ASD pa-
tient group and the normal group, as shown in Fig. 9, which can be used as markers to
distinguish patients with ASD from normal people.

Finally, we list the top 10 key brain regions based on the value of I(i, j,k), as shown
in Table 4. Among them, the left frontoparietal network (LFPN) is related to the percep-
tion of speech and semantics, mainly distributed in the Broca area, the Wernick area, the
medial frontal lobes and the caudate nucleus. The Broca area is primarily responsible for
language production, and may be related to grammar organization. The Wernick area is
responsible for the acceptance and understanding of the language. We give the difference
between the normal brain area and the abnormal brain area as shown in Fig. 10. Patients
with ASD are generally unable to respond to other people’s words and remain silent.
Therefore, it may be that ASD patients have greater problems in language acceptance.
And secondly, language understanding is problematic.

I(i, j,k) =

{
I(i, j,k) I(i, j,k)>

∑i, j,k I(i, j,k)
wI lIhI

0 otherwise
(10)

I(i, j,k) =
I(i, j,k)

Imax(i, j,k)
(11)

6. DISCUSSIONS

We have now enabled visualization of deep networks, targeting areas of deep learn-
ing models that are of interest to fMRI in ASD patients. However, in the visualization, the
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Fig. 6. Improved CAM algorithm.

Fig. 7. Schematic diagram of suppression effect.

Table 3. The top 10 brain regions with the greatest difference.
Encephalic region Activation
Angular L 0.90648
Parietal Inf L 0.84867
Occipital Sup L 0.845
Parietal Sup 0.84263
Precuneus R 0.83135
SupraMarginal R 0.82886
Occipital Inf 0.8231
Parietal Inf R 0.82194
Occipital Mid 0.82037
Angular R 0.81803
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resolution of the heat map is lower due to the expansion of the convolution kernel by the
difference. Therefore, we expect to design a dedicated fMRI neural network in the next
work to obtain more detailed brain region abnormalities, such as specific brain regions
with functional connections and abnormal activity patterns. Finally, we plan to link these
brain regions to sMRI of ASD patients so that we can better understand the underlying
mechanisms of the disease and introduce personalized rehabilitation programs in the field
of autism treatment.

Fig. 8. Comparison of effects of suppression after different rounds; (a) is the thermogram of the
brain after 10 rounds of suppression; (b) is the thermogram of the brain after 20 rounds of suppres-
sion; (c) is the thermogram of the brain after 30 rounds of suppression.

7. SUMMARY

In this paper, we explore the performance of neural network in the early screening of
ASD under the principle of fMRI, and compare with the performance on sMRI. We select
3D CNN as the way of feature extraction, and add recurrent neural network to extract the
features of time. Compared to sMRI, we have achieved excellent results on fMRI. In this
regard, we use Grad-CAM algorithm to analyze the reasons for the excellent performance
on fMRI. At the same time, by comparing the thermograms of the ASD patients with
normal group, we locate the possible brain region that triggers ASD. Finally, we present
some treatment recommendations for patients with ASD.

Fig. 9. The marked areas represent regions of interest that contain brain regions with different
functional connections and brain regions with different patterns of activity.
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Fig. 10. The degree of difference between abnormal brain regions and normal brain regions.
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