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For real-time image processing applications in consumer electronic products, high- 

speed preprocessing algorithms are necessary and have been widely investigated. This 
article presents a highly efficient very large scale integrated (VLSI) circuit implementa-
tion of Canny edge detection. We employed an approximation method that reduces hard- 
ware costs without affecting computation results. Additionally, we divided the whole 
image into several blocks for processing to obtain superior detection performance. It can 
efficiently prevent missing the real edge in low-contrast regions. The VLSI architecture 
of our design yields a processing rate of approximately 250 MHz using the Xilinx Vir-
tex-5 field-programmable gate array. The simulation result shows that the proposed cir-
cuit takes 0.14ms for processing 512  512 test image database and requires the least 
number of operations compared with previous techniques; therefore, it is suitable for 
low-cost high-performance system on chip systems. 
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1. INTRODUCTION 
 

As technology advances, computer vision plays an increasingly central role in our 
lives. Edge detection is a widely used algorithm in image processing for applications 
such as image segmentation, feature extraction, and object tracking. It significantly re-
duces the number of processing steps, excludes irrelevant messages, and retains key in-
formation objects. Many edge detector algorithms have been proposed, such as the Rob-
erts detector [1], Kirsch detector [2], Gauss-Laplace detector [3], and Canny detector [4]. 
Among existing algorithms, the Canny algorithm exhibits a more favorable performance 
because of its ability to detect edges in images that are contaminated by noise [5]. The 
advantage of the Canny algorithm is that it processes edge detection through hysteresis 
thresholding, which computes a high and a low threshold to reduce the edge detection 
error rate. However, the Canny algorithm engenders higher computational complexity 
than do other edge detectors and it cannot be employed in real-time applications. More-
over, Deep learning-based methods for edge detection (or contour detection) have better 
detection performance than the Canny algorithm [6], however the implementation hard-
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ware required by these methods are far more than the Canny algorithm. For real-time 
application, the Canny algorithm may be a better choice than deep learning based meth-
ods. 

The Canny circuit may be applied in end-user camera equipment or equipped in 
medical imaging systems; hence, how to implement it with a lower hardware cost is a 
vital concern. For this reason, previous studies [7-11] concerning the very large scale int- 
egration (VLSI) architecture of Canny algorithms have been conducted. A Field-Pro- 
grammable Gate Array (FPGA) implementation of an edge detection algorithm using 
handle-C by Rao and Venkatesan [7] applies system-level hardware design tools to tran- 
slate the software design directly into Very high-speed integrated circuit Hardware De-
scription Language (VHDL) or Verilog and increase the time performance. In [8], a par-
allel design of a real-time Canny implementation is presented. The design benefits from 
4-pixel parallel computations to achieve high throughput with the cost of an increased 
number of memory accesses. In [9], He and Yuan proposed a self-adaptive threshold 
Canny edge detection algorithm, whereby low and high threshold values are computed 
for each input image. A multiresolution FPGA-based architecture which also uses adap-
tive thresholds was proposed by Possa et al. [10]. The key component in this architecture 
is the neighborhood extractor that can be parameterized ‘on-the-fly’ on the basis of the 
image characteristics. Some simplifications in the algorithms that reduce mathematical 
complexity, latency, and memory requirements are also presented in this paper. A dis-
tributed Canny edge detector proposed by Xu et al. [11] computes the edges of multiple 
blocks at the same time. To support this, an adaptive threshold selection method is pro-
posed that predicts the high and low thresholds of the entire image while only processing 
the pixels of an individual block. 

To achieve lower costs and higher efficiency, we used approximation methods to 
replace the complex operations and adopted a pipelined architecture to implement a 
Canny edge detector. Our proposed design can be implemented at a low cost and can 
deliver high throughput. The experimental results indicate that the proposed mechanism 
exhibits a superior performance compared with existing mechanisms in terms of subjec-
tive testing. 

The rest of this paper is organized as follows: Section 2 briefly introduces the orig-
inal Canny edge detector algorithm. The proposed VLSI implementation of Canny edge 
detection is introduced in Section 3. Section 4 presents the simulation results. The con-
clusion is provided in Section 5. 

2. ORIGINAL CANNY EDGE DETECTION ALGORITHM 

This section outlines the original Canny edge detection algorithm. The original Can- 
ny edge detection algorithm’s process includes five steps, namely (1) Apply a Gaussian 
filter to smooth the image to remove noise; (2) For each pixel located, calculate the hor-
izontal gradient value (Gx) and the vertical gradient value (Gy); (3) Calculate the magni-
tude (Ms) using the Euclidean distance formula, and the direction (i,j) using the arctan-
gent function (inverse trigonometric function); (4) After receiving the gradient direction 
of the central pixel, use Non-Maximum Suppression (NMS) to ‘thin’ the edge, which 
compares the central pixel magnitude with its two neighbors along the gradient direction; 
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the gradient magnitude is set to zero if it does not correspond to a local maximum. Canny 
classifies the gradient direction into eight main direction masks at degrees 0, 45, 90, 
135, 180, 225, 270, and 315. This method not only thins the edge to achieve higher 
object recognition but also filters some noise to reduce false edges. (5) Perform hystere-
sis thresholding to determine the edge map. If the pixel magnitude is larger than the high 
threshold, the pixel is labeled as a strong edge pixel and is instantly considered as a defi-
nite edge. If the pixel magnitude is lower than is the low threshold, the pixel is labeled as 
a nonedge pixel, and the value of the pixel is set to zero. If the gradient magnitude of a 
pixel is between the low threshold and high threshold, the pixel is labeled as a weak edge. 
The weak edge pixel is classified as an edge pixel if and only if it is connected to a 
strong edge pixel. 

Among the existing implementation mechanisms, they require extensive and com-
plex computations, such as huge matrix multiplication and division, square roots, and ex- 
ponents. Thus, we propose a more efficient and low-complexity implementation mecha-
nism that can obtain favorable results and satisfy the requirements of real-time applica-
tions. 

3. PROPOSED MECHANISM & VLSI ARCHITECTURE 

The flow diagram of our efficient implementation mechanism for the Canny edge 
detection algorithm is shown in Fig. 1. The operating procedure of the proposed mecha-
nism comprises four principal parts: block division, optimization of Canny operation, 
calculation of thresholds, and hysteresis. First, a block division technique is used for  
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Fig. 1. Flow diagram of the Canny mechanism. 
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improving edge detection performance. Second, we employ a low-cost implementation 
for optimization of Canny operation to decrease computational complexity. Third, thres- 
holds are calculated by block classification type and gradient magnitude. Therefore, we 
can detect detail edges in the low-contrast region. Finally, hysteresis thresholding is per-
formed to determine the edge image. For some real-time image and video applications in 
consumer electronic products, fast execution time is required. Thus, we employ pipeline 
scheduling to implement the flowchart (see Fig. 1). We have developed an 11-stage 
pipelined hardware architecture as shown in Fig. 2. The architecture is divided into eight 
units: the line buffer and register bank units, Gaussian filter unit, Sobel operator unit 
(horizontal and vertical gradient computation, and gradient magnitude and direction cal-
culation), Non-Maximum Suppression unit (NMS), block classification unit, double 
thresholds calculator unit (DTC), hysteresis unit, and controller unit. The details of each 
process are described as follows. 
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Fig. 2. Block diagram of hardware architecture for our Canny mechanism. 

 

3.1 Block Division 

For more accurate edge detection performance, a block division module is em-
ployed. It divided the input image into m  m overlapping blocks. To handle these blocks 
independently of each other to prevent image block artifacts, we should divide the input 
image into n(64)  n(64) non-overlapping blocks and then enlarge each block by three 
pixels on the left, right, top, and bottom sides. Generally, a larger mask size will have a 
better result. However, it will increase the hardware cost. Hence, we choose 3  3 mask 
size in our mechanism. For instance, an image of size 512  512 is divided into 8  8 
blocks, where each block has a size of 64  64. With a 3  3-sized Gaussian mask, a 3  

3-sized gradient mask, and a 3  3-sized NMS mask, each block has a size of m(64 + 2 + 2 

+ 2)  m(64 + 2 + 2 + 2). 

3.2 Optimize Canny Operation 

As discussed in Section 2, the original Canny edge detection algorithm [4] requires 
complex computation, and requires a long execution time. To mitigate the disadvantage 
of the algorithm presented in [4], we proposed a low-cost implementation mechanism of 
the Canny method, which is suitable for VLSI implementation. The mechanism contains 
four steps: Gaussian filter, horizontal and vertical gradient computation, gradient magni-
tude and direction calculation, and non-maximum suppression. The details of each step 
are described as follows: 
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3.2.1 Gaussian filter 

As a consequence of edge detection being easily affected by noise, finding the op-
timal edges in an untreated image proves difficult. Hence, a preprocessing step before 
the edge detection of the image is required, the Gaussian filter preserves more real edges 
than other uniform blurring filters. Canny uses a 2-D convolution operator to blur the image 
and remove the noises. The Gaussian distribution in 2-D has the form: 
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Where x is the distance from the horizontal axis, y is the distance from the vertical axis, 
and  is the standard deviation of Gaussian distribution. Hence, it adopts a 3×3 mask and 
the value of  set as 3. To implement actual weighted value, it is replaced by an ap-
proximation of the weighted value, as shown in Table 1. They are very similar to each 
other in the experimental results. 

 

Table 1. Approximate Gaussian weighted value. 
Actual Weighted Value Approximate Weighted Value 

0.106997 2-4 + 2-5 + 2-6 (0.109375) 
0.11311 2-4 + 2-5 + 2-6 + 2-8 (0.113281) 
0.119572 2-4 + 2-5 + 2-6 + 2-7 (0.117187) 

3.2.2 Horizontal & vertical gradient computation 

As mentioned in [3], the Sobel operator detects edges more accurately than do the 
Prewitt and Roberts operators. Therefore, we use the Sobel operator to calculate the hor-
izontal and vertical gradient magnitude. Subsequently, this information is used in next 
step to calculate gradient magnitude and direction. 

3.2.3 Gradient magnitude & direction calculation 

Based on the Euclidean distance formula, two square operations and one square root 
operation are required to calculate the magnitude of one target pixel. In hardware im-
plementation, the cost for the calculation of the square and square root is high. Therefore, 
we utilize the square root approximation (SRA) technique suggested in [12] to decrease 
the hardware cost. The equation for gradient magnitude is expressed as follows: 

2 2
, , max((0.875 0.5 ), ),x y

S i j i jM G G a b a     (2) 

, ,max(| |, | |),x y
i j i ja G G  (3) 

, ,min(| |,| |).x y
i j i jb G G  (4) 

As introduced in Section 2, the horizontal and vertical values are used to calculate the 
gradient direction (). This step uses an arctangent function which distinguishes the gra-
dient direction masks. The required hardware cost is high, so a coordinate rotation digital 
computer (CORDIC) module [13] was considered. Such modules are widely used for 
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Fig. 5. Architecture of Gx
i,j  tan22.5  Gx

i,j  tan67.5. 

calculating various trigonometric and transcendental functions by rotating vectors. 
However, the main drawback to the CORDIC module is that many iterations are needed 
to obtain acceptable calculation precision. To achieve low computational complexity, we 
eliminate the calculation of the arctangent function by using the definition of the trigo-
nometric function. The equations are expressed as follows [14]: 

.tantan 1,,,  i
x

ji
y

jii
x

ji GGG   (5) 

Because we only need to determine the direction bins instead of calculating the real value of 
the arctangent, the  can be classified into one of the four bins as shown in Fig. 3 by compar-
ing the values of tangent of the degrees of 22.5, 67.5, 112.5, and 157.5. The Gx

i,j located at 
the second quadrant can be mapped into the first quadrant by Gx

i,j = Gx
i,j. A signal ‘sign bit’ is 

used to further reduce the size of the lookup table. If the sign bits of the two values are iden-
tical, we can determine that the gradient direction is within the first quadrant; otherwise, the 
gradient direction is within the second quadrant. Furthermore, we use the shift-and-add func-
tion to replace the multiply function. The shift-and-add coefficient values of tan 22.5 and tan 
67.5 are listed in Table 2. Fig. 4 is the implementation of Gx

i,j  tan22.5, and Fig. 5 is the 
architecture used to consider bins 0 to 3 and to determine in which bin  actually belongs. 
 

Table 2. Approximate value of tan. 
Tangent Approximate value

tan22.5 2
-2

 + 2
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 + 2
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 + 2
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tan67.5 2 + 2
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Fig. 3. Bins of gradient direction. 
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3.3 Calculate Thresholds 
 
To enhance the performance of the proposed implementation mechanism of the 

Canny method, we divided the whole image into several blocks and classified each block 
into three types. The high and low thresholds of each block were then determined ac-
cording to the type and gradient magnitude of the block. These steps are described brief-
ly in the following sections. 

 
3.3.1 Block classification 

 
On the basis of [15], we classify the block by its data standard deviation. Because 

the data standard deviation is a measurement that is calculated from the amount of varia-
tion within a set of data values, the more concentrated the values are, the smaller is the 
standard deviation. The type of each block is determined by its maximum data standard 
deviation, calculated from all 3 × 3 masks. It means to find a maximum value in the 64 
standard deviations. To decrease hardware costs, we use variance instead of standard 
deviation and replace nine (3 × 3) masks with eight. Afterwards, the blocks are classified 
into three types in the basis of the value of their maximum variance (max_v): Smooth, 
Texture, and Edge. According to our experimental results, we set coefficients as 1000, 
and 4100, and the type value T is used to represent the block type, as shown in Table 3. 

 

Table 3. Block type classification. 
Block type Type value (T) Maximum Variance (max_v) 

Smooth 0 max_v  1000 

Texture 1 1000 < max_v  4100 

Edge 2 max_v > 4100 

 

3.3.2 Double thresholds calculation 

This step takes advantage of the type and the gradient magnitude at the block to 
compute the high threshold. After a series of experiments, we know that if the maximum 
gradient magnitude is lower than a threshold Tm, the block has implied excessive noise or 
no edges. Therefore, if the maximum gradient magnitude is smaller than Tm, the high 
threshold is set to be the maximum gradient magnitude. Hence, the value of Tm set as 70. 
Otherwise, if the maximum gradient magnitude is greater than a threshold Tm, the high 
threshold is set to be the value of the maximum gradient magnitude multiplied by a pro-
portion value (PT) according to the block type. The formula is shown as 

, if
.

, otherwise
m

H
T

max_mag max_mag T
T

max_mag P


  

 (6) 

Where PT  {0.5, 0.25, 0.125}. After calculating the high threshold, we set the low thres- 
hold value to be half of the high threshold value in the basis of Section 2. 
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Fig. 6. Architecture of line buffers and the register banks: (a) for Gaussian filter; (b) for Sobel 
operator; (c) for NMS; and (d) for Hysteresis. 

3.4 Line Buffer & Register Bank 

We realize a module with two line buffers and a register bank to concurrently pro-
duce nine values of a 3 × 3 window (Fig. 2). The line buffer outputs one pixel to the reg-
ister bank and replaces the output pixel with a new pixel from the register bank at every 
cycle. The register bank is designed to feature a shift register style that saves the nine pixels 
of a 3 × 3 window and can output these pixels concurrently at every cycle. Then, the nine 
pixels are used at the next stage for the Gaussian filter unit, and block classification unit. 
Similarly, the three other line buffer and register bank modules are applied to store the pre-
vious Gaussian filter, Sobel operator, and NMS results, respectively, as shown in Fig. 6. 

4. IMPLEMENTATION RESULTS AND COMPARISONS 

To verify the performance of the Canny edge detection algorithm implemented us-
ing various mechanisms, several simulations were conducted on the USC SIPI Image 
Database [16] and the Standard Test Image Database [17]. 

Figs. 7-8 show the simulation results compared with Canny’s work [4], Xu’s meth-
od [11], and our work, respectively. The simulation result of the proposed mechanism 
preserves more details than [4] in the cropped regions, and is similar to [11]. 

In order to explore the similarity of two-edge maps, three quality metrics including 
Pco (percentage of edge pixels detected by both implementations), Pnd (percentage of 
edge pixels detected by the original Canny edge detection algorithm that were not de-
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tected by the proposed low-cost Canny edge detection algorithm also referred as false 
negatives), and Pfa (percentage of edge pixels detected by the proposed low-cost Canny 
edge detection algorithm that were not detected by the original Canny edge detection 
algorithm, also referred as false positives), as proposed in [18]. For all database, the de-
tected edge pixel percentage Pco, Pnd, and Pfa were 92.81%, 3.51% and 3.67%, respec-
tively. Obviously, the proposed low-cost algorithm detects almost all edges that are de-
tected by the original Canny edge detection algorithm. 

The hardware architecture of our design is implemented using Verilog HDL, veri-
fied using ModelSim, and synthesised using the Xilinx ISE tool, where the FPGA family 
is the Virtex-5 (XC5VSX240T) [19]. The Canny results of the proposed method with a 
software programme and VLSI circuit were identical (Fig. 9). It operated at 4 ns and 
achieved a processing rate of approximately 250 megapixels per second (MP/s) which is 
quick enough to process a video resolution of Full HD (1920×1080) at 60 fps in real time.  

To explore the quality advantages of the proposed Canny mechanism, it was com-
pared with the four Canny chips [7-9, 11]. Table 4 lists the detailed comparisons for 
various Canny mechanisms. The normalization time is done with respect to an image of 
size 512512 and an FPGA clock frequency of 100 MHz. Although the proposed meth-
od required more slices than [8], it yielded a much faster computation time. Moreover, it 
has less cost than [11], and decreases by 2752 slices, 128 slice registers, 20960 slice 
LUT, and 299KB memory. 

To show the actual computational load, we also compared the computation com-
plexity of [11] in terms of actual number of adder, subtractor, shifter, multiplier, divider, 
multiplexer, comparator, square root, and exponential, as shown in Table 5. The number 
of operations for each pixel in the original image is specified. The result indicates that 
our method requires less computational load; therefore, it can be used in many real-time 
applications. 

(a) Original image. (b) Canny’s result. (c) Xu’s result. (d) Our result. 
Fig. 7. Results of various Canny mechanisms and ours. 

 

(a) Original image. (b) Canny’s result. (c) Xu’s result. (d) Our result. 
Fig. 8. Results of various Canny mechanisms and ours. 
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(a) (b) (c) 

Fig. 9. Proposed Canny results with software programme and VLSI circuit; (a) Original “image01”; 
(b) “image01” by software; and (c) “image01” by circuit. 

 

Table 4. Comparison of the proposed circuit and previous hardware implementation. 
[7] [8] [9] [11] Proposed

Image Size 256×256 512×512 360×280 512×512 512×512
FPGA Device Xilinx Vertex-E Xilinx Virtex-5 Altera Cyclone Xilinx Virtex-5 Xilinx Virtex-5

Slices □ 4553/71680 □ 23904/37440 21152/37440
Slice Registers □ □ □ 40640 40512

Slice LUTS □ □ □ 82496 61536
DSP48Es □ □ □ 224 224

Used Memory(KB) □ 192/5328 □ 16184/18576 15885/18576
Frequency(MHZ) 16 292.8 27 250 250

Time(ms) 4.2 0.57 2.5 0.15 0.14
Norm. Time(ms) 2.688 1.669 0.72 0.372 0.35  

 

Table 5. Comparison in terms of actual number of operations per pixel for Xu’s method. 
[11] Proposed

Adder 65 59

Substractor 16 15
Shifter 12 42

Multiplier 39 9
Divider 5 0

Multiplexer 4 9
Comparator 47 37
Square-root 1 0
Exponential 2 0  

5. CONCLUSIONS 

In this paper, a low-complexity pipelined implementation mechanism for Canny 
edge detection was proposed. Using approximation methods to replace complex opera- 
tions, our mechanism efficiently reduces hardware costs. The extensive experimental 
results show that our mechanism detects low-contrast edges. Additionally, the cost of the 
proposed design is more affordable than previous methods. Therefore, our low-cost cir-
cuit is a promising solution for low-cost VLSI implementation for consumer electronic 
products and can be integrated with other hardware modules in system on chip devices 
for real-time image applications. 
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