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Modelling learning behaviors and predicting student performance in massive open on-
line courses (MOOCs) are vital for adaptive course planning and personalized intervention.
This study proposes a new approach for discovering time-embedded behavioral patterns in
micro behaviors of MOOC learners and incorporating them as features for student profil-
ing and learning performance prediction. We embedded discretized time intervals into in-
teraction sequences and used n-gram extraction to output time-related behavioral patterns.
With log data from a Python programming MOOC with 591 learners, we exploited ex-
ploration data analysis, unsupervised, and supervised learning to elucidate the associations
between time-related behavioral patterns and academic performance. Nine out of seventeen
targeted patterns are highly correlated with the final grade, in which, three patterns related
to the help-seeking, evaluation, and study activities with short or medium intervals (less
than two minutes) are strong predictors of academic performance in a very early stage. The
time-related behavioral patterns also serve as good features for clustering learners into three
groups based on learning behaviors: Sampling learners, Comprehensive learners, and Tar-
geting learners. Our empirical results show the usability of the proposed time-embedded
behavioral patterns in immediate diagnosis learners’ engagement, raising new challenges
for learning analytics with time concerning to achieve precision education.

Keywords: MOOCs, learning analytics, time-embedded n-grams, time-related behavioral
patterns, student performance prediction

1. INTRODUCTION

In recent years, MOOCs has become an important learning environment for com-
puter science students. Courses related to computer science and programming are always
in the list of most popular MOOCs of all time [1]. However, besides obvious benefits
from the open online form of learning, MOOCs also encounter challenges related to their
intrinsic nature, which are high dropout and low completion/success rates. In the past few

Received November 1, 2021; revised December 20, 2021; accepted January 12, 2022.
Communicated by Shin-Jie Lee.
+Corresponding author.

1109



1110 HSI-MIN CHEN, BAO-AN NGUYEN, CHYI-REN DOW, NIEN-LIN HSUEH, AN-CHI LIU

years, researchers have paid remarkable attention to modeling student behaviors, develop-
ing predictive models to finding out factors that influence academic performance, dropout,
and success/failure of students in courses. The prediction of student success enhances the
performance of MOOCs in a variety of tasks. First, it supports individualized timely inter-
ventions by determining actionable factors that can improve the learning experiences of
students. Second, it is beneficial in adaptive content and learner pathways by presenting
course content and learning experiences that were optimized for student success. Third,
building prediction models help to understand the data such as learner behaviors, learner
attributes, and course attributes. Explainable prediction models provide useful insights
behind the outcomes that enable interventions to reach the success of both the learners
and the courses [2].

Among types of data extracted from MOOCs platforms, clickstreams data and
concept-oriented assignments are best predictors for student performance [3]. Click-
streams contain a variety of meta-data that allows reconstructing student behaviors by
several schemes and extraction of meaningful features from discrete events under every
mouse-clicks like page load, video play/stop/pause/skip, assessment submit, forum posts,
etc. [2]. The common way is constructing counting-based activity features, i.e., number
of viewed videos, number of tried assessments, number of questions in the forum, etc.
However, since counting features did not capture dynamic behaviors of students, the in-
terventions would be limited in improving the frequency/quantity of learning activities
associated with these summative features [4].

In a more advanced way, dynamic behaviors are modelled in form of higher-order
activity-based features. The features are extracted from sequences of clicks/activities and
named as interpretable behaviors [5–7]. For example, the help-seeking pattern might oc-
cur when a student starts playing a lecture video while doing an exercise [8]; a rewatch
pattern occurs when a student is repeatedly pressing seek-back and play buttons in a lec-
ture video [9]. Discovery of these features requires complex data analytics techniques or
advanced tools like frequent sequential pattern mining [10] , process mining [8,11], motif
identification [12] , n-gram extraction [9,13,14], etc. Moreover, interpreting the sequential
patterns as learning behaviors required deep expertise. In return, the high-order activity-
based features have shown their contribution in improving prediction performance and
offering more precise interventions based on effective dynamic behaviors [3, 14].

Despite their success, existing studies using high-order activity-based features in
MOOCs only consider the presence of specific activity/actions in clickstreams without
inspecting the time intervals between them, even time-gap is an intrinsic attribute of in-
teraction sequences. Given a sequence of actions, the intervals between actions intuitively
reveal how a learner is dealing with the current learning object. For example, the inter-
vals between two consecutive submit actions in an assessment give us some implications
about the difficulty of the problem (i.e., easy problems can be solved in a shorter time or
vice versa, etc.) or the academic performance of learners (i.e., better students can solve
the problems in a shorter time or vice versa, etc.). It is no doubt that analysis on the
time aspect of interaction sequences can gain meaningful insights for behavior steering in
MOOCs.

To fulfill this research gap, we propose a novel temporal sequence mining approach
to explore the time-related behavioral patterns in MOOCs. Discretized time gaps are
augmented into the interaction sequence prior to n-gram extraction to construct time-
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embedded n-grams. These patterns then are interpreted to identify activity at the micro-
level. With the belief that temporal insights are meaningful indicators for precise inter-
ventions in MOOCs, we address the efficiency of time-related behavioral patterns in two
important problems of education, i.e., learner profiling and academic performance pre-
dicting. Therefore, we proposed 3 following research questions:

• RQ1: What is the predictive effectiveness of time-related behavioral patterns in the
early prediction of learning performance?

• RQ2: What time-related behavioral patterns are important in the early prediction
of learning performance?

• RQ3: What learner profiles would be detected based on the time-related behavioral
patterns?

2. LITERATURE REVIEW

Among types of variables, the most commonly used are those related to interac-
tions in videos [14, 15], exercises [16], and forum [17]. Clickstreams contain logs of
client request to the platform’s web server that allow reconstruction of student behaviors
at multiple levels of aggregation. As clickstreams are raw, the events behind students’
clicks should be aggregated and combined with the context given by the metadata of the
current learning resource to construct meaningful and interpretable features. Forum posts
is another hint of learner engagements and their interest in the lessons. The text content
of forum posts reveals the problems that learners concern [17]. The connection network
formed between learners in the forums can also be mined to extract social features [5].
Quizzes and exercises are assessment activities that are high correlated with student com-
pletion. Exercise variables are the most powerful predictors for learning performance pre-
diction [18]. Demographics has shown its impact on interpreting learner retention [19].
However, when compared with other kinds of data, the demographics-based models have
minimum predictive power [13, 18]. The most robust predictors were those variables re-
lated to exercises, and followed by clickstreams [18].

Regardless of good prediction results, analysis using counting-based feature do bet-
ter on giving understanding about factors affecting learning performance rather than pro-
viding a good basis for interventions. Therefore, researchers have tried to observe learner
behaviors in their contexts using temporal and sequential activity models, to find out inter-
pretable learning patterns/strategies affecting student success. Based on theses patterns,
personalized interventions can be given to learners from any stage of the course.

Hidden Markov models (HMM) were selected as suitable choices to extract behav-
ioral representations of learners’ activities since they can model latent characteristics of
learners and their transitions in a probabilistic graphical model. Balakrishnan and Coet-
zee [20] captured weekly frequencies of video-watching, forum thread viewed and posted,
progress page checked to construct the HMM and predict dropout. Geigle and Zhai [21]
employed two-layer HMM to extract interpretable behavioral patterns from clickstreams
that correlate with the learning outcomes. Ramesh et al. [22] proposed a statistical rela-
tional learning framework, called hinge-loss Markov random fields, to interpret learner
engagement via a combination of behavioral, linguistic, structural, and temporal cues.



1112 HSI-MIN CHEN, BAO-AN NGUYEN, CHYI-REN DOW, NIEN-LIN HSUEH, AN-CHI LIU

The model demonstrated the ability in predicting student success from the early stage as
well as in understanding learners’ engagement at multiple levels.

Brooks et al. [13] examine the incremental changes in performance with each ad-
ditional day by captured student interactions in 4 different granularities of time frames
(one day, three days, one week, and one month) and encoded the interactions between
students and resources into a set of time series features. They used n-grams to capture
the co-occurrence of features in a timeframe. With a large combination of 1221 features
made up from multiple settings of time frame and n-gram, they demonstrate good per-
formance over the first 3 weeks of evaluated MOOCs. Fei and Yeung [23] captured the
incremental in measures activities over weeks using a sequential model. They considered
seven activities on lecture, quiz, and forum of learners and fetched the weekly activity
feature vectors as input to a Long Short Term Memory (LSTM) neural network to predict
dropout. LSTM modeling overcomes the limitations of HMM on the assumption that the
next state depends only on the current state, so that, it has been employed and delivered a
high predictive performance in later studies [10].

The interaction logs contained meaningful sequential patterns which can be mapped
into interpretable high-order activity-based features to build the prediction models. How-
ever, sequential pattern mining algorithms, e.g. cSPADE [24], often generate a high
amount of patterns and require extremely high computational/memory cost when the
minimum support is set too low. Fortunately, there are several alternative solutions to dis-
cover sequential patterns from interaction data that generated fruitful results. Maldonado-
Mahauad et al. [8] used process mining to identify self-regulated learning (SRL) strate-
gies (Study, Rehearsal, Goal-setting, Elaboration, Help-seeking, Reviewing-record) based
on the transitions of learners over videos and assessments. The discovered SRL strate-
gies were then used as features to segment learners into three clusters including Targeted
learners, Comprehensive learners, and Sample learners. In a later study, they showed
that event-based SRL strategies illustrated very high predictive power in dropout predic-
tion [18]. Brinton et al. [12] leveraged the motif identification tool used in bioinformatics
to extract behavioral motifs from video-watching clickstreams. Especially, they embed-
ded the time intervals between events before motif extraction to obtain time-respected
video-watching behavior patterns. The motifs were grouped and interpreted as four pat-
terns (Reflecting, Reviewing, Skimming, and Speeding). Some of the discovered behav-
ioral motifs are significantly correlated with the likelihood that a student will be Correct
on First Attempt (CFA) or give up answering a quiz question.

By adapting NLP and text mining tools to sequential mining, the n-grams features
at coarse-grained levels can denote learner habits or frequent transitions over learning
units [6]. For example, the 3-gram related to video (V-V-V) represents the behavior pattern
of “watchers”, the 3-gram related to quizzes (Q-Q-Q) represents the behavior of “quiz
harvesters” [25], and the longer n-grams can denote the learning paths. Predictive models
build from n-grams features do not only show acceptable results but also demonstrate
learning behavioral patterns that are associated with learning performance/retention.

At the fine-grained level, n-grams extracted from consecutive clicks can be inter-
preted as intended activities which can discriminate different types of learners. Sinha
et al. [9] extracted 4-grams from students’ clicks on videos, grouped them into seven
behavioral actions in a self-defined taxonomy (Rewatch, Skipping, Fast watching, Slow
watching, Clear concept, Checkback reference, and Playrate transition), and constructed



EXPLORE TIME-RELATE MICRO-BEHAVIORAL PATTERNS IN PYTHON PROGRAM MOOC 1113

a quantitative information processing index to interpret student engagements in the cog-
nition perspective. Yu et al. [14] inherited the behavioral patterns by Sinha et al. [9] and
built prediction models for learning outcomes with the highest prediction results were
given by the artificial neural network.

There are two important remarks in the aforementioned studies. First, most of them
(except [9,12,14]) focused on macro-behaviors regarding the interactions between learn-
ers with the learning resources (extracted from the coarse-grained level of clickstreams,
e.g. watching-video, doing-assessment, etc.). The patterns extracted from transitions of
the learner over learning resources can be viewed as learning strategies ( [3, 8], or learn-
ing paths [6, 25, 26] that can be used as predictors for learner success prediction. Second,
the temporal dimension was considered in time slices in which the learning progress is
observed via weekly increments whereas the time gaps between activities were mostly ig-
nored (except in [12], regardless that the temporal aspect related to temporal perspective
and self-regulation in learning [27]. Intuitively, time intervals between learners’ clicks
on the learning resources related to time-on-task, the time learners are actively engaged
in learning. In the computer-based learning environment, time-on-task is positively cor-
related with the learning outcomes [28], positively related to learning performance, and
increases with task difficulty [29]. Inspecting the time-on-tasks in a MOOC, Lee [30]
stated that uninterrupted time activities with longer duration are correlated with student
success. Again, these studies only focus on the duration in macro-behaviors of students.

In this paper, we aim to explore the time intervals in the micro-behaviors extracted
from the finest-grained level of clickstream data. We propose a new term, call time-related
behavior pattern, alongside its mining approach called time-embedded n-gram. Via dis-
covered patterns, we aim to understand the temporal aspect of micro-behaviors of learners
in the two most common activities in MOOCs which are watching videos and doing as-
sessments. The associations between time-related behavior patterns with student success
are analyzed both in student profiling and learning performance prediction.

3. METHOD

3.1 Clickstream Data and Data Extraction

Since we exploit the data from a MOOC platform developed based on Open Edx, the
extracted log data includes JSON objects representing interactive events of learners. We
defined two concepts for the data extraction stage which are interaction and session, as
follows:

• Interaction: In this study, we focus on the interactions related to video watch-
ing and assessment submissions (Table 1). We observed six events recorded when
learners interact with lecture videos: load, play, pause, seek back, seek forward,
and stop and the dual-events related to assessment including two consecutive events
which are “problem-check”, raised when the learner presses the submit button, and
“problem-graded”, raised when the problem is graded by the platform and the re-
sult is shown on learner’s browser.

• Session: Since learners usually open the courses and let the web browsers keeping
the connection to the platform day by day without logging out, hence, a session
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Table 1. Interaction events from Open edX clickstreams.
Event type Event Open edX event name Event descriptions

Video

Lo video load load video
Pl video play play video
Pa video pause pause video
St video stop stop video
Sf video seek seek forward
Sb video seek seek backward

Assessment
Pc problem check problem submitted
Pg problem graded problem graded

Table 2. Example of an sequence database S and the time-interval sequential database Q
derived from S.

SID Sequence database S
10 ((Lo,0),(Pl,0),(Pa,30),(Pl,80),(St,180))
20 ((Lo,0),(Pl,0),(Pa,35),(Pc,35),(Pg,36),(Pl,39),(Pc,59))
30 ((Pc,0),(Pg,1),(Pc,31),(Pg,32),(Lo,52),(Pl,53),(St,70)
SID Time-interval sequence database Q
10 ((Lo,0),(Pl,30),(Pa,50),(Pl,100),(St,0))
20 ((Lo,0),(Pl,35),(Pa,0),(Pc,1),(Pg,3),(Pl,20),(Pc,0))
30 ((Pc,1),(Pg,30),(Pc,1),(Pg,20),(Lo,1),(Pl,17),(St,0))

should be denoted by a sequence of interactions with the inactivity duration no
longer than a threshold. This threshold was subjective to the researchers’ opinion
which varies around 30, 45, or 60 minutes [31].

3.2 Time-Related Behavioral Pattern Mining Using Time-Embedded n-grams

Formally, interactions can be described as a sequence database, in which each trans-
action presents one sequence of interactions as defined by Chen and Huang in [32] as
follows:

Definition 1: A sequence s is presented as s = ((a1, t1),(a2, t2), ...,(an, tn)) where
a j is an item and t j stands for the time at which a j occurs, 1 ≤ j ≤ n and t j−1 ≤ t j for
2 ≤ j ≤ n.

A time-interval sequence q can be derived from the sequence s by replacing the
timestamp of the item a j with the time gaps between it and its adjacent item. It is defined
as follows:

Definition 2: Given s = ((a1, t1),(a2, t2), ...,(an, tn)) as a sequence, a time-interval
sequence q derived from s is presented as q = ((a1, i1),(a2, i2), ...,(an,0)) where a j is an
item and i j = t j+1 − t j stands for the time-interval between the timestamps of item a j and
item a j+1, for 1 ≤ j < n.

Considering learner’s interactions as an sequence database S, we can obtain a time-
interval sequential database Q containing all interaction sequences in S, as shown in the
example in Table 2.

From the perspective of data mining, the purpose of a typical algorithm for sequential
pattern mining (SPM) respecting time intervals is to discover all time-interval sequential
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patterns whose frequencies exceed a given threshold called minimum support. In a real
context, this approach encounters two following problems:

i) Time constraint: Since it is not possible to count the frequencies of continuous
values, the time values should be discretized into a small number of finite values to en-
able summative operations (Han et al., 2011). For example, Chen et al. (2003) embedded
discretized time-interval into conventional mining algorithms and proposed I-Apriori and
I-PrefixSpan to find the whole set of frequent time-interval sequential patterns. The dis-
covered patterns are sequences of items with the time-intervals in the middle, for example,
(a, I1,b, I2,c) with a,b,c are items and I1, I2 are discrete values or ranges of time-intervals.
We reuse this approach in our method.

ii) Interpretability of patterns: We might not need all patterns to be discovered be-
cause of three reasons. First, finding all possible patterns is time and resource-consuming.
Second, not all patterns are meaningful to the study context. Third, it is challenged to in-
terpret or summarize the whole set of discovered patterns [33]. Hence, the mining prob-
lem can be limited by certain constraints to reduce the computation cost and enable the
interpretability of patterns.

Regarding time constraints, we can discretize continuous time-intervals to enable
counting in mining algorithms. Since interval discretization and quantile discretization are
sensitive to outliers and do not consider the distribution of data, we employed clustering-
based discretization using k-means to this regard. Note that k should be large enough to
maintain the differences between time intervals in students’ behaviors, as well as small
enough to limit the number and enable the interpretability of generated time-embedded
patterns. Based on this heuristic, k = 5 was adopted to obtain five ranges of duration,
namely Very-Short(1), Short(2), Medium(3), Long(4), and Very-Long(5). The discretized
time intervals are then embedded into the interaction names and form a new format of
sequential data called time-embedded (TE) sequences, as shown in Table 3, where dis-
cretized time-embedded intervals are represented as subscripts.

Regarding the interpretability of patterns, we can reduce the mining problem with
two constraints: i) The patterns should present the continuous sequence of learner ac-
tions, so they contain no gap; ii) The patterns should be easy to be interpreted, so they
should not be too long. Fortunately, subsequences with no gap can be discovered with
less effort, in terms of both computation cost and memory usage, using the well-known
natural language processing technique n-gram.

An n-gram is a sequence of n consecutive characters/words/events which can be ex-
tracted by using a sliding window on the input sequence [34]. The length of resulted
patterns can be specified by the width of the sliding window. The support of each n-gram
is counted by the frequency of that n-gram appearing in the sequence database. Using
the support, we can select top k n-grams, or select all frequent n-grams using a specific
threshold of support, like in general pattern mining algorithms.

Definition 3: Time-embedded n-grams are those n-grams extracted by applying n-
gram extraction on time-embedded sequences.

Given a clickstream dataset D, the problem of time-interval SPM from D can be
well reduced to the sub-problem called time-embedded n-grams mining. An example of
time-embedded-4-grams extraction from a time-interval sequence is presented in Table 3.
With the high number of time-embedded-n-grams discovered, they should be interpreted
as learning behaviors.
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Table 3. An example of time-embedded n-gram extraction.
Time-interval sequence ((Lo,0),(Pl,30),(Pa,50),(Pl,100),(St,1),(Lo,1),(Pl,50),(St,0))
Time-embedded sequence (Lo1,Pl2,Pa2,Pl3,St1,Lo1,Pl2,St1)

Time-embedded 4-grams
(Lo1,Pl2,Pa2,Pl3); (Pl2,Pa2,Pl3,St1); (Pa2,Pl3,St1,Lo1);
(Pl3,St2,Lo1,Pl2); (St1,Lo1,Pl2,St1)

Note. Time-interval ranges: (1 : [0,13]; 2 : [14,50]; 3 : [51,109]; 4 : [110,194]; 5 : [195,300])

Table 4. Summary of time-related behavioral patterns.
Group ID Description Examples of n-grams

Evaluation

EV-1 Very-short evaluation (Pc1,Pg1,Pc1,Pg1)
EV-2 Short evaluation (Pc1,Pg2,Pc1,Pg2)
EV-3 Medium evaluation (Pc1,Pg3,Pc1,Pg2)
EV-4 Long evaluation (Pc1,Pg4,Pc1,Pg1)
EV-5 Very-long evaluation (Pc1,Pg5,Pc1,Pg2)

Study

ST-1 Very short study (Pl1)
ST-2 Short study (Pl2)
ST-3 Medium study (Pl3)
ST-4 Long study (Pl4)
ST-5 Very long study (Pl5)

Help-seeking

HS-1 Very short help-seeking (Pg1,Lo1,Pl1,Pc1)
HS-2 Short help-seeking (Pg1,Lo1,Pl2,Pc1)
HS-3 Medium help-seeking (Pg1,Pl2,Pa3,Pc1)
HS-4 Long help-seeking (Pg2,Lo1,Pl1,Pa4)
HS-5 Very long help-seeking (Pl1,Pc1,Pg5,Pa1)

Video seeking
RW Rewatch (Pl2,Sb1,Sb1,Pl2)
SK Skipping (S f1,S f1,Sb1,Pl2)

3.3 Mapping Time-Embedded-n-grams to Time-Related Behavioral Patterns

After time-embedded n-grams are extracted, they should be mapped into time-related
behavioral patterns to explore students learning strategies that they imply. Since it is not
easy to interpret too long patterns, we specified n = 1 and n = 4 for n-grams extraction
as it was recommended in previous studies [9, 14, 25]. To simplify the naming scheme, a
pattern is named based on the interactions and the longest time interval within it.

In the literature, there have been some pioneering works regarding mapping se-
quential patterns in MOOCs to learning activities or self-regulated learning (SRL) strate-
gies [8, 9, 12]. For example, the pattern involving ”assessment try” → ”video lecture”
are interpreted as Help-seeking strategy; the patterns involving “only assessment” related
to Elaboration or Evaluation strategies; the patterns involving to “only video-lecture”
related to Study or Rehearsal strategy, etc. Although the labels for the patterns are subjec-
tive, the results of these studies show the feasibility of interpreting learner engagements
as well as predicting learning performance. In the level of micro-behavior, we observe
that three out of six patterns discussed by Maldonado-Mahauad et al. [8] can be reused to
identify learners’ micro-behaviors from clickstream as follows:

• Only assessment: Those patterns that contain only assessment interactions (Pc and
Pg) can be considered as Evaluation(EV) behaviors. In n-gram representation, it
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should contain at least two consecutive submitting actions. For example, the pattern
(Pc1,Pg3,Pc1,Pg2) implies a “Medium Evaluation” when the learner continues to
the second problem after a medium time interval.

• Only videos: As all the lectures of our MOOC are given in videos, the video-
watching activity can be considered as a Study(ST) activity. We consider the mono-
grams of Pl to inspect the single interaction of video watching. For example, the
monogram (Pl3) implies a “Medium Study” in which the learner watches videos in
a medium time interval.

• Mixture of assessment and video: This pattern represents the behavior in which
a student finds help from learning materials (videos) while doing assessments,
so it can be labeled as Help-seeking(HS) behavior. For example, the pattern
(Pg1,Pl4,Pa2,Pc1) implies that after finished an assessment problem, the learner
needed help to solve the next problem, so he pressed playing the lecture video,
watched it for a long duration to review the lesson, and presses pause before return
to the assessment.

• In addition, we learn that video seeking is the most frequent interaction in the click-
streams, so we also target two addition patterns related to seeking behaviors in
video watching: Rewatch (RW) and Skipping (SK). Since the seeking interaction
sequences often contain multiple continuous clicks of seeking within very short
time intervals (short than two seconds), we do not care about the time-related in-
formation in these patterns and only consider those 4-grams containing at least one
Pl interaction. The patterns are named based on the seeking action appearing in the
4-grams which are Rewatch for Sb and Skipping for S f . Those 4-grams containing
both Sb and S f action will be named based on the seeking action that earlier appears
in the patterns. For example, the 4-grams (Pl1,S f1,S f1,Sb1) implies a “Skipping”
pattern.

With 5 discretized values of time intervals and three patterns (Evaluation, Study, and
Help-Seeking), together with RW and SK, totally we have 17 time-related behavioral
patterns which can be extracted from the clickstreams (Table 4).

3.4 Research Procedure

The workflow for exploring time-related behavioral patterns from clickstream data
to answer the research questions is depicted in Fig. 1. It can be divided into two stages
which are pattern extraction and pattern analysis. In the first stage, we used Python to re-
construct student behaviors from clickstreams in form of time-interval sequences. To en-
able queries and information extraction tasks, we fetched all the JSON data into Mongo-
DB. We leverage k-means clustering to discretize time intervals and to obtain the time-
embedded sequences. The time-embedded n-grams are acquired at the end of the first
stage.

In the second stage, we step by step to answer the RQs. Descriptive statistics and ex-
ploratory data analysis (EDA) are employed to elucidate the associations between the pat-
terns and the academic performance of learners. We answer RQ1 by constructing machine
learning models to predict learner success. To answer the RQ2, we employ SHAP [35] to
interpret the model and elucidate the effects of learning behavioral patterns on the final
grades. Finally, we take hierarchical clustering analysis on the data to segment learners
into groups based on their learning behaviors to answer the RQ3.
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Fig. 1. Research procedure of this study.

4. EXPERIMENTAL RESULTS

4.1 The Course and Data

In this study, we encompassed a Python programming course offered by Feng Chia 
University on OpenEdu [36] in Spring 2020. The course was taught in Chinese with an 
expected duration of 16 weeks. Course contents were organized into several modules in 
which each module is composed of 2 to 6 lecture videos and attached in-video quizzes. 
Assessments were placed at the end of each module as self-tests. We used historical 
interactions in both in-video quizzes and self-tests in our analysis. Students who achieve 
over 60% in the final g rade c an p ass t he c ourses. T here w ere 1 201 l earners enrolled 
in the course, however, only 591 learners had at least one interaction with the courses. 
At the end of the course, 71 learners passed the course (12%). The set of 591 learners 
leave 158,998 interactions in the log database. The distribution of all time-intervals is 
illustrated in Fig. 2 (frequency axis appears in log scale; time-intervals which are longer 
than 5 minutes were excluded).

As discussed in Section 3.2, we aim to segment the time intervals into five ranges 
called Very-Short(1), Short(2), Medium(3), Long (4), and Very-Long (5). Since the lengths 
of lecture videos in the course are between 3 and 13 minutes, and needed time to answer an 
assessment question is often less than one minute, we considered all time-intervals longer 
than 5 minutes are certainly very long and thus we excluded them in the discretization 
procedure. We perform 1D k-means clustering on the population of time-intervals. By 
specifying k = 5, we obtained five s egments: ( Very-short: [0,13], S hort: [14,50], Med-
ium: [51,109], Long: [110,194], Very-long: [195, 300]). The distribution of five discrete 
values of time-intervals is also shown in Fig. 2.
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Fig. 2. Distributions of time-intervals and five segments of time-intervals produced by k-means.

Fig. 3. Network of strongly correlated patterns.

We limited the number of patterns by specifying the minsup = 10%. 219 time-em-
bedded n-grams, corresponding to 17 time-related behavioral patterns (as listed in Table
4), are obtained from the extraction phase. Consequently, a learner record is denoted by a
vector containing frequencies of 17 behavioral patterns in which that learner is involved.
We employed Exploration Data Analysis (EDA – a statistical approach that gain insights
into the nature of the data, e.g., distributions, statistical descriptions, and associations
among attributes) featured by correlation matrix and correlation network to elucidate the
association between behavioral patterns and their effects on the final grade. Computed
Pearson coefficients told us that all behavioral patterns significantly and positively corre-
lated with the final grade. We extracted those features whose correlations exceed 0.6 and
construct the correlation networks in Fig. 3. It can interpret that academic performance
associate with engagement levels. However, only intended learning patterns are strongly
positively correlated with performance.
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Regarding Evaluation behaviors, EV-2 and EV-3 are indicators of effectively contin-
uous efforts, in which the short and medium time intervals denote appropriate durations
of problem-solving. On the other hand, because of their low frequencies, EV-4 and EV-5
do not have any association with the learning result. Besides, Help-seeking patterns also
demonstrate intended learning behaviors featured by a series of switching efforts between
lecture videos and assessments. So that, all Help-seeking patterns are strongly correlated
to performance, in which, short and medium intervals are most appropriate durations,
again. With Study patterns, longer duration of video watching (ST-3, ST-4, and ST-5) is
the implication of better performance. The ST-1 pattern is not considered since very short
video watching can result from repeated seeking interaction (Rw and Sk).

4.2 Early Prediction of Learning Performance

We employ two well-known ensemble methods which are Random Forest (RF) [37]
and eXtreme Gradient Boosting (XGBoost) [38] as learning algorithms. The two algo-
rithms were selected because of their high performance as well as their ability to ignore
weak predictors during the training process. With a high number of input features, the
built-in feature selection of ensemble methods based on decision trees can be useful in
eliminating unimportant features to boosting learning performance. The early prediction
models were built based on a weekly basis. Data for the n− th week is extracted from the
beginning to week n. We performed two strategies of data extraction to form the datasets
for early prediction: i) Accumulated data extraction: The features were extracted based on
the accumulated interactions of learners from the course beginning to the current week. ii)
Mixed data extraction: Since the former strategy only captures accumulated behaviors of
learners as a single snapshot, weekly increments are not considered. As temporal behav-
iors on a weekly basis have demonstrated good improvement in prediction performance
in the literature [10], we augmented the accumulated dataset with snapshots of weekly
data. The resulted data of the second strategy is called mixed dataset. The experiments
were implemented using Python with the libraries scikit-learn and xgboost. In each exper-
iment, the early prediction in each week is performed on two datasets (accumulated and
mixed) with two selected learning algorithms. We used random sampling to split the data
into train set (67%) and test set (33%). Each experiment is repeated 10 times to general-
ize the evaluation results. In the prediction of binary learning result (Pass/Fail), we used
the combination of Accuracy (Acc), Area Under the Curve (AUC), Precision (Pre), Recall
(Rec), and F1 to evaluate the prediction performance. Since the data is dramatically im-
balanced, we employed the metrics derived from the confusion matrix (Pre, Rec, and F1)
to obtain a better view of model performance. In this prediction, we target to predict if a
learner “passes” the course, so the metrics were computed on the minority class of “pass
learners”. Table 5 shows the evaluation results of Pass/Fail prediction using the whole
set of learner interactions. The early prediction performance for students’ Pass/Fail is
depicted in Fig. 4.

Results show that student success in the course can be predicted with a good AUC
(greater than 0.9) from week 5. AUC values increase dramatically from week 1 to week 3
and slowly increase in later weeks and reach 0.95 around the middle week of the course.
Best prediction results (AUC greater than 0.94) can be found after the middle point of time
of the course (week 8). Mixed data can help in improving AUC in most cases. However,
its contributions are not clear in improving other metrics. Concerning the algorithms,



EXPLORE TIME-RELATE MICRO-BEHAVIORAL PATTERNS IN PYTHON PROGRAM MOOC 1121

Table 5. Evaluation results for Pass/Fail prediction.
Method AUC Acc F1 Pre Rec
Mixed + RF 0.950 0.940 0.712 0.831 0.631
Mixed + XGBoost 0.941 0.917 0.626 0.672 0.594
Accumulated + RF 0.940 0.939 0.709 0.814 0.629
Accumulated + XGBoost 0.926 0.917 0.619 0.674 0.583

Fig. 4. Evaluation results of early Pass/Fail prediction.

RF outperformed XGBoost in all cases. Our results on AUC are comparable to what
was reported by Moreno-Marcos et al. [3] in their dropout prediction. Using multiple
col- lections of counting based features and SRL strategies (variables related to learners
intentions, activity, interactions with videos and exercises, self-report SRL strategies, and
event-based SRL strategies), they recommended that the time needed to achieve AUC of
0.9 is between 43% and 67% of the total theoretical MOOC duration.

In final grade prediction, we evaluate the prediction performance using the coeffi-
cient of determination R2, root mean squared errors (RMSE), mean square error (MSE),
and mean absolute error (MAE). The evaluation results using the whole set of learner in-
teractions are shown in Table 6. The evaluation of early prediction is depicted in Fig. 5.
RF with mixed data was the winner among all settings. The contributions of mixed data
in reducing error values are not clear. The acceptable prediction results (R2 above 0.6 and
RMSE below 0.2) can be obtained from week 5 and the best results can be found after
week 7. After week 5, the prediction performance was slightly improved. Our prediction
results are also comparable with prior studies [39–41], in which RMSE values varied in
the range of 0.1 to 0.5, depending on the data, feature engineering, algorithms, and how
early the predictions were made.
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Table 6. Evaluation results for final grade prediction.
Method R2 RMSE MSE MAE
Mixed + RF 0.705 0.155 0.024 0.094
Mixed + XGBoost 0.629 0.173 0.030 0.106
Accumulated + RF 0.675 0.159 0.025 0.096
Accumulated + XGBoost 0.636 0.168 0.028 0.102

Fig. 5. Evaluation results of early prediction of final grade.

Overall, the experiments on the predictive performance of time-related behavioral
patterns can respond to the RQ1. The learning performance of learners can be predicted
effectively from the 33% theoretical duration of the MOOC (with AUC above 0.9 for
Pass/Fail, R2 above 0.6, and RMSE below 0.2 for final grade). The most important remark
is that our models are easier to be built since the learners’ features are only extracted from
the clickstreams, without using any counting-based features or self-reports. In addition, as
confusion-matrix-based metrics were rarely available in prior studies, the results reported
in this article (regarding Pre, Rec, and F1) can be viewed as a baseline for the specificity
and the sensitivity of prediction models for student success in MOOCs.

4.3 Feature Importance of Time-Related Behavior Patterns in Early Prediction

After obtaining fruitful prediction results for students’ performance, we need to
know the behavioral patterns affecting the learning performance which are the responses
for RQ2. To address the question, we employed SHAP [35] as means of feature impor-
tance explanation. We performed SHAP analysis at two points of time to get a better
understand of the effects of learning behaviors on learning outcomes over time. As the
prediction model for the final grade reached an acceptable result at week 5, we selected it
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as the first inspected point. The second point of time is the final week of the course (week
16).

The SHAP plots in Fig. 6 show that the triple of HS-3, EV-2, ST-1 are the most
impact patterns on learning outcomes both in the early stages (week 5) and the final stage
(week 16) of the course. Notably, in the early stage, help-seeking with medium durations
(HS-3) seems to be the most effective; the second was evaluation with short duration (EV-
2); the study patterns (ST-1) were less important and ranked third. However, at the final
stage, the ST-1 became the most important pattern; the HS-3 became less important and
ranked third; EV-2 keeps its rank as the second. The position swap between HS-3 and
ST-1 in the two SHAP plots implies that, in the early stage, rewatching lectures videos
is a good strategy if a student did not prepare well for his/her quizzes. This strategy can
even positively affect the final grades. However, in the whole course, engagements in
studying and self-evaluation without help-seeking seem to be the most important. Short
and very short (less than 1 minute) are most common in important patterns related to study
and evaluation. Medium durations are suitable for help-seeking. Long durations (longer
than 2 minutes) in the evaluation strategy are less meaningful. These findings raise new
concerns for courses’ instructors when specifying time-setting for assessment activities.

Fig. 6. Feature importance derived from final grade prediction models.

4.4 Detection of Learner Profiles based on Time-Related Behavioral Patterns

The time-related behavioral patterns not only contribute as robust predictors for
learning performance using supervised learning but also can be used as meaningful fea-
tures to segment students into clusters of similar students using unsupervised learning.
The prototype of this task was first proposed by Maldonado-Mahauad et al. in [8]. In
that study, they use process mining to detect six common patterns on macro-behaviors of
videos and assignments, and mapped them into six SRL strategies; then the strategies were
used to detect three SRL learning profiles: Sampling learners, Comprehensive learners,
and Targeting learners. We repeat that procedure to determine if the same set of learner
profiles can be found in our feature space and interpret the learner profiles through the
lens of time-related patterns.
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The agglomerative hierarchical clustering was selected as the detection algorithm.
We employed the complete-link clustering to generate the dendrogram and specified the
cut point to obtain three clusters. As our findings are consistent with what was discov-
ered in prior studies [7, 8], we leverage the same set of cluster names to describe the
learner profiles. With three clusters obtained, we performed cluster profile analysis to
compare the difference between learner profiles. The boxplot depicted in Fig. 7 illustrates
the distribution of behavioral patterns of three learner profiles. Note that the differences
between clusters in our study are significant, which differ from the findings of Maldonado-
Mahauad et al. [8], in which they did not observe the statistically significant differences
between Comprehensive learners and Targeting learners. The SRL learner profiles can
be described based on time-related behavioral patterns as follows:

• Cluster 1 – Sampling learners (N=547): This cluster includes learners with the least
engagement compared with the remaining groups. They tried to skim on some lecture
videos in short durations and attempt to solve a small number of assessments. They
only interacted with the system at the beginning of the course to make some “sampling”
actions on the learning materials. As a result, most of them are non-completers and
received very low final grades.

• Cluster 2 – Comprehensive learners (N=33): This cluster includes those learners
who tend to follow the path given by the course design to achieve the learning ob-
jectives [8]. Their level of interaction on lecture videos and the duration of sessions
(on average) is higher than those of Targeting learners. Their participation in assess-
ment is significantly lower than Targeting learners. Because they tend to obey the
rules, they paid more effort in assessment without help-seeking, so they have higher
frequencies of evaluation engagement. Since their learning performance is not as high
as that of Targeting learners, they need more time to watch lecture videos when they
encounter difficult questions, so their frequencies of long help-seeking are higher. In
video-watching, they have significantly higher frequencies of long and very-long video-
watching and rarely fire-seeking actions in videos. With these behaviors, most of them
are completers with final grades slightly lower than those of Targeting Learners.

• Cluster 3 – Targeting learners (N=11): This cluster includes those learners who have
specific targets when engaging with the course. They have the highest level of en-
gagement in comparison to their counterparts. In assessment, they paid less effort than
Comprehensive learners in solving the problems without reviewing lecture videos, but
they seem to use the help-seeking strategy effectively. They have very high frequencies
of short help-seeking (HS-2), but low frequencies of long help-seeking (HS-4). They
can find out the solutions for the questions in shorter durations than that the Com-
prehensive learners do. Their targeting behaviors are also shown in video-watching
behaviors in which they prefer watching lecture videos in short or medium durations
and frequently skip or rewatch specific video contents. With this pragmatic strategy, all
of them are completers with high academic performance.

The above analysis responds to the RQ3 by confirming that the time-related be-
havioral patterns found by using time-embedded n-grams at the micro-level of MOOC
interactions can be leveraged to obtain the three learner profiles, like what SRL strategies
on macro-level did [8]. The results extended the additional insights about time intervals
which can be viewed as the learning velocity of different types of learners.
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Fig. 7. Boxplots indicating time-related behavioral patterns of three learner profiles (EV-4 and EV-5
were not included).

5. DISCUSSIONS AND CONCLUSIONS

5.1 Practical Implications

The findings of this research promote improvements to the learning environment in
multiple ways. Time-related behavioral patterns can be embedded into the platform as
feedback for engagement tracking. For example, the idea of “referenced students” [42]
can be utilized to build a personalized feedback widget indicating the immediate engage-
ment level of learners with time-related patterns, concerning learner profiles detected in
RQ3. Through these individualized feedbacks, the educators can diagnose struggling
situations (i.e. very long durations of help-seeking, etc.) to offer precise interventions
based on the learner profile that the learner belongs to; the learners can better understand
their pros and cons by comparing to referenced profiles (Fig. 8). In return, the tailored
prompts and targeted feedbacks would result in fostering motivation as well as reduc-
ing the dropout rate [43]. In the same way, the dropout prediction model can be early
established using time-embedded patterns, like grade prediction in RQ1.

Fig. 8. Example of feedback widget regarding time-related patterns using referenced profiles.

With these predictions, potential dropout learners might receive timely interventions
from the precision education platform to assist them in completing the study. Finally,
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time-related patterns can highlight challenge sections requiring a high cognitive load in
the lectures or assessments. These insights can contribute to optimizing the lectures and
course structure to reduce the negative impact of insufficient designs within the courses.

5.2 Pedagogical Implications

We argue that time intervals embedded in micro behaviors, especially in assessment,
can earlier announce the competence of learners than summative assessments. They are in
line with the term “time-on-task” which was recommended to be a predictor for formative
assessment outcomes in blended learning (Tempelaar et al., 2015). In this manner, tem-
poral insights from fine-grained levels would be shed light on the immediate performance
of learners from which precise feedbacks or interventions can be offered. The strong im-
pact of help-seeking strategies on academic performance discovered in RQ2 is consistent
with the conclusions of Corrin, De Barba, & Bakharia [44], Sun, Wu, & Lee [45], and
Sands & Yadav [46]. We add to this statement two additional comments that i) only help-
seeking interactions in relatively short intervals (less than 2 minutes) have strong effects
on learners’ grades; and ii) the shorter help-seeking interactions are, the higher grades the
learners can gain. Note that the advancements of help-seeking are visible thanks to the
in-video-quizzes, so that, we emphasize the importance of embedding precision educa-
tion solutions to assessment activities, besides regular SRL prompts which are commonly
provided in lecture videos.

5.3 Limitations

Despite its findings, there are a couple of problems that should be considered as the
continuing of the current study. First, since the n-grams cannot capture patterns with
gaps, n-gram with gaps can be considered to increase the generality of the patterns. Sec-
ond, the discretization scheme for time intervals can be varied or fine-tuned depending
on the research context. Since hard-clustering causes the problem of sharpening cuts in
the time dimension, a fuzzy-based approach can be applied to soften the boundary of
time discretized values. Third, due to the nature of the selected courses, only video, and
assessment-related interactions were considered, in general cases, a more varied set of
behavioral patterns could be discovered which may contain forums or textbooks related
interactions. Fourth, the mapping scheme of time-embedded n-grams to learning behav-
iors can be justified by considering studies about time constraints in SRL. We leave all
these problems for future works.

In summary, the contributions of this research to the body of knowledge can be sum-
marized as follows: i) A proposal for time-embedded n-gram and its mining procedure
from MOOCs clickstreams. ii) Identification of time-related micro-behavioral patterns
that learners exhibit in MOOCs. iii) Identification of three clusters of learners based on
their time-related behaviors: Sampling learners, Comprehensive Learners, and Targeting
learners. iv) Elucidating the association between time-related learning behaviors with
academic achievement: help-seeking and evaluation activities that are performed in less
than two minutes have positive effects on the final grade. v) Come up with a potential
application of time-embedded behavioral patterns in early prediction of learning perfor-
mance.

Finally, we emphasize the promising directions for future research using time-related
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n-grams in MOOCs. By embedding time intervals into interaction sequences of learners,
more meaningful behavioral patterns can be obtained. So that the instructors can gain
more hints to build up tailored interventions for learners and achieve precision education
targets.

ACKNOWLEDGMENT

Thanks to the OpenEdu team who developed the MOOCs system and provided the
de-identification log data of learners’ interaction events.

REFERENCES

1. S. Patra, “The 250 most popular online courses of all time,” https://www.classcentral.
com/report/most-popular-online-courses/, 2021.

2. J. Gardner and C. Brooks, “Student success prediction in MOOCs,” User Modeling
and User-Adapted Interaction, Vol. 28, 2018, pp. 127-203.
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