
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 1149-1169 (2022)

DOI: 10.6688/JISE.202211_38(6).0004

1149

An Operation-Injection Approach to Detect Runtime

Permission Crashes of Android Apps

CHIEN-HUNG LIU1 AND SHU-LING CHEN2,+

1Department of Computer Science and Information Engineering

National Taipei University of Technology

Taipei, 106 Taiwan
2Department of Industrial Management and Information

Southern Taiwan University of Science and Technology

Tainan, 700 Taiwan

E-mail: cliu@ntut.edu.tw; slchen@stust.edu.tw

Starting from Android API 23, Android apps need to request appropriate runtime per-

missions before accessing restrict data or performing restrict actions, such as reading files

or taking photos. Further, users can revoke the permissions that were previously granted

to an app in system settings later or even during runtime of the app by keeping the app in

background, going to system settings to disable the permissions, and returning back to the

app. This can cause an app to crash if the app doesn’t handle the runtime permissions

carefully. To automatically detect the crashes related to runtime permissions, this paper

proposes an approach in which a crawler is first used to explore and detect permission

crashes of Android apps systematically. During the exploration, a state model is also pro-

duced. Based on the model, test paths related to runtime permissions are generated. These

test paths are further injected with operations to revoke the already granted permissions

and executed using a test runner directly to detect the crashes that can occur if users disable

the granted permissions manually. The experimental results show that the proposed ap-

proach can detect runtime permission crashes effectively.

Keywords: Android DevOps, crash detection, runtime permissions, Android crawler, op-

eration injection

1. INTRODUCTION

Recently, DevOps [1] for Android apps is gaining popularity since apps are often

constantly updated due to frequent release of new smartphones, OS updates, feature en-

hancements, and quality improvements. Particularly, to react faster to user feedback, An-

droid DevOps practices [2] become indispensable for streamlining the app development

process and bringing together different stakeholders so that the development and delivery

time of Android apps can be largely reduced. Among various practices of Android DevOps,

automated app testing is considered essential since different app versions needed to be

tested rapidly on numerous smartphone devices before an updated app can be released.

There are many automated testing tools that can be used in the Android DevOps en-

vironment to assure the quality of apps from different perspectives, such as functionality,

compatibility, and security. In particular, in the DevOps environment, an updated Android

app should be continuously tested to see if the app behaves as expected and no runtime

crashes will occur. To ensure that Android apps function properly, many approaches and

tools have been proposed to detect app runtime crashes automatically. However, to detect

Received December 30, 2021; revised February 9, 2022; accepted March 9, 2022.

Communicated by Shin-Jie Lee.
+ Corresponding author.

CHIEN-HUNG LIU AND SHU-LING CHEN

1150

all possible crashes of Android apps thoroughly is challenging, since the causes of the

crashes can be very wide and diverse, such as incorrect callback implementations or lack

of considering Android versions. Thus, more efforts are still needed to tackle this problem.

Particularly, starting with Android API 23 (i.e., Android version 6), Google provides

a new runtime permission model to replace the old install-time permission system to fur-

ther protect user privacy [3]. Unlike the install-time permissions which are automatically

granted when an app is installed, in the new model users will be prompted to accept or

deny individual permission requests at runtime when an app attempts to access restricted

data like user’s location and contact or perform restricted actions like taking photos and

recording audio. To access the resources protected by the runtime permissions, also known

as dangerous permissions, developers must declare the permissions and provide the corre-

sponding implementations that follow a predefined workflow [4] (to be detailed in Section

2.1) for obtaining the permissions and handling user’s responses. Incorrect implementa-

tions for the workflow of each individual runtime permission required by an app can cause

the app to crash.

Moreover, users can revoke the permissions that were previously granted to an app in

system settings later or even during the runtime of the app by keeping the app in back-

ground, going to system settings to disable the individual permissions granted to the app,

and returning back to the app. This indicates that even though a resource protected by

runtime permission can be accessed now, there is no guarantee that the resource can be

successfully accessed next time. Thus, a new class of bugs can be introduced by the

runtime permission model and dissatisfy users [5] if the implementations of an app do not

always request and obtain the permissions before the app accessing any restricted data or

performing restricted actions.

Fig. 1 shows a motivation example for an app that requires to access the photos, media,

and files on the devices. To access these restricted resources, the app first requests and

obtains the storage permission from the user as shown in Fig. 1 (a). If the requested per-

mission is allowed by the user, the app then can successfully access the resource files in

the folder as shown in Fig. 1 (b). Later, the user can go to app setting and disable the

storage permission that was previously granted to this app as shown in Fig. 1 (c). If the

implementation of the app does not always check and obtain the storage permission before

accessing the files in the folder, then a runtime permission crash can happen as shown in

Fig. 1 (d) when the app tries to access the files again.

(a) Allowing permission. (b) Accessing files. (c) Disabling permission. (d) App crash.

Fig. 1. An example of permission crash happened when revoking a previously granted permission.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1151

To automatically detect the crashes related to runtime permissions, this paper pro-

poses an approach based on app crawling and operation injection. Particularly, the pro-

posed approach consists of two phases. The first phase is to systematically explore Android

apps using a crawler to detect possible crashes including those crashes related to runtime

permissions. Specifically, during this phase, the behavior of the app under test (AUT) is

systematically exercised including the behavior related to deny and allow the runtime per-

mission requests. A state model of the AUT is also created by the crawler. In the second

phase, the exploring sequences (i.e., test paths) related to runtime permissions are gener-

ated from the state model. These test paths are further injected with operations to revoke

the already granted permissions and executed using a test runner directly to detect the

crashes that can occur if users disable the granted permissions manually.

To support the proposed approach, we have first extended an Android crawler called

ACE [6] for properly exploring the app behavior related to runtime permissions and de-

tecting possible runtime permission crashes. The state model generated by the extended

ACE is then used by the tool called AAD (Android Anomaly Detector) to further detect

other runtime permission crashes using revoke-operation injections. The AAD used in the

proposed approach is an extension from our previous work [7]. Specifically, AAD imple-

ments a test runner to execute the operation-injected test paths directly without the need to

generate test scripts. Moreover, AAD can also run multiple test cases associated with a

single test path together. Thus, it can reduce the overall test case execution and, hence,

improve the detection efficiency as compared with the tool used in the earlier work of this

paper [8]. To evaluate the approach, several experiments were conducted. The experi-

mental results show that the proposed approach can effectively detect runtime permission

crashes of Android apps. Further, it requires much less execution time than the earlier work.

The rest of the paper is organized as follows. Section 2 briefly reviews background

and related work. Section 3 presents the proposed approach for detecting crashes related

to runtime permissions. Section 4 describes and discusses the experimental results. The

conclusion remarks and future work are given in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Background of Android Runtime Permissions

To protect apps and Android system from other or malicious apps, Android runs apps

in a sandbox. If an app needs to access the resources outside the sandbox, the app must

request and obtain the assess permissions corresponding to the resources. Beginning with

Android 6.0 (API level 23), Google introduced a new permissions model that let apps re-

quest needed permissions from the user at runtime, rather than prior to installation. Further,

users can revoke the already granted permissions from any app at any time on the device

with API 23 or higher, even if the app targets a lower API level. Thus, even if an app can

access restricted data or perform restricted actions now, it cannot assume that it still has

the access permissions next time.

If an app needs a dangerous permission for accessing restricted data or performing

restricted actions, the developer of the app must programmatically check whether the app

CHIEN-HUNG LIU AND SHU-LING CHEN

1152

has the permission every time by following a predefined permission request flow. If, how-

ever, the app does not properly follow the permission request flow to handle the accesses

to restricted data or restricted actions, the app can crash or function unexpectedly.

Fig. 2 shows the Android runtime permission request flow [9]. Basically, the app first

needs to check the Android platform version in which the app is running. If the platform

is Android 6.0 or higher, it then checks whether the required runtime permission has been

granted by user. If so, the app can access the restricted data or restricted actions. If not, the

app may show a permission rationale dialog to explain why the app needs this particular

runtime permission. The app then requests the runtime permission and handles the re-

sponse depending on whether the user grants the requested permission or not.

Fig. 2. The workflow for requesting and handling Android runtime permissions.

Fig. 3 shows a sample code that implements the aforementioned permission request

flow for accessing the contacts on the smartphone. Suppose that the Android version for

smartphone is API 23 or higher. To access the contact information, the app first uses the

ContextCompat.checkSelfPermission() function to check whether the app has the permis-

sion to read the contact information. If the app has the permission, it then handles the

request. If, however, the app does not have the permission (i.e., READ_CONTACTS per-

mission is not granted), it then uses the AcitivityCompat.shouldShowRequestPermission-

Rationale() function to determine whether or not to show an explanation why the app needs

this permission. The function will return true if the app has requested this permission be-

fore and the user denied the request. If the users denied the permission request before and

checked the “Don’t ask again” option, the function will return false. Finally, the app uses

the ActivityCompat.requestPermissoins() function to request the permission from the user

for accessing the contact information.

To handle user’s response of the permission request, the app needs to implement the

onRequestPermissionsResult() function as shown in Fig. 4. Based on the permission re-

quest code (i.e., requestCode), the function selects the corresponding handler to process

the request. For example, the requestCode for reading contacts is REQUEST_CODE_

READ_CONTACTS. Once the user responds to the permission request, the app then

checks whether the user grants or rejects the request, and performs the corresponding ac-

tions based on user’s response. If an app does not properly implement the permission work-

flow illustrated in Figs. 3 and 4, the app can crash whenever accessing restricted data or

performing restricted actions.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1153

Fig. 3. An example of sample code for checking and requesting a runtime permission.

Fig. 4. An example of sample code for handling the response of a runtime permission request.

2.2 Related Work

To assure the quality of Android apps, many approaches and tools have been proposed

to detect runtime crashes of Android apps automatically. Particularly, app runtime crashes

can be triggered by different types of errors, unhandled exceptions, or methods such as

combinations of GUI events, rotating devices, or disconnecting network. In addition to

permission crashes, detection of other app crashes is also important as well for ensuring

the quality of Android apps. Thus, many existing tools (e.g., Android Monkey [10]) con-

sider only the detection of typical app crashes through exploring combinations of GUI

events. Although these tools may also reveal some crashes that happen to relate to permis-

sions, they did not specifically address the detection of runtime permission crashes, espe-

cially the crashes caused by revoking previously granted permissions. The followings

briefly review existing studies for detecting app runtime crashes, including permission

crashes.

public void showContacts(View view) {
 // Check for the requested permission
 if (ContextCompat.checkSelfPermission(MainActivity.this,
 Manifest.permission.READ_CONTACTS) != PackageManager.PERMISSION_GRANTED) {

// Permission is not granted. Should we show an explanation?
 if (ActivityCompat.shouldShowRequestPermissionRationale(MainActivity.this,
 Manifest.permission.READ_CONTACTS)) {
 // Show an explanation to the user…
 }
 //Request the permission
 ActivityCompat.requestPermissions(MainActivity.this,
 new String[]{Manifest.permission.READ_CONTACTS}, REQUEST_CODE_READ_CONTACTS);
 }
 else {
 // Permission has already been granted. Handle the request…
 }
}

@Override
public void onRequestPermissionsResult(int requestCode, String[] permissions, int[] grantResults) {
 switch (requestCode) {
 case REQUEST_CODE_READ_CONTACTS: {
 if (grantResults.length>0 && grantResults[0]==PackageManager.PERMISSION_GRANTED) {
 // Permission was granted! Do the contacts-related tasks.
 }

 else {
 // Permission denied! Disable the functionality that depends on this permission.
 }
 return;
 }
 // other 'case' lines to check for other permissions this app might request...
 }
}

CHIEN-HUNG LIU AND SHU-LING CHEN

1154

Chen et al. [7] propose a method and tool called AAD (Android Anomaly Detector)

that can detect anomalies in Android apps. Specifically, AAD can generate test cases au-

tomatically from the state model produced by an Android crawler, called ACE [6]. The

test cases systematically traverse each state of the app and perform the four kinds of oper-

ations at the same time, including rotating back and forth, switching Wi-Fi connection

on/off, exiting and re-entering app, and entering random input data to test whether the app

behave normally. This work extends AAD to detect runtime permission crashes by inject-

ing operations into test paths generated from the state model to revoke the already granted

permissions and running the test paths to see if any crashes can happen.

Adamsen et al. [11] proposed a crash detection tool called THOR for Android apps.

Specifically, the tool can inject system events after the execution of each event in the test

script to detect app crashes caused by environment changes or rotations of a smartphone.

However, the tool needs to write assertions manually in the test script developed by testers

in order to check whether app errors occur. Further, although the tool can detect the crashes

caused by environment changes or rotations, it does not support the detection of runtime

permission crashes.

Hu et al. [12] presented an app testing tool called AppDoctor. The tool can inject

system or user actions to test if an Android app handles the changes of activity lifecycle

correctly. Particularly, it uses approximate execution by directly invoking event handler to

speed up the testing. Moreover, the tool can automatically verify the exposed bugs and

remove most false positives. To further speed up bug diagnosis, an action slicing technique

is used to reduce the lengths of action traces and simplify bug diagnosis. However, the tool

mainly focuses on app crashes related to activity lifecycle and does not support runtime

permission crash detection.

Moran et al. [13, 14] propose a testing tool for Android apps called CrashScope. The

tool can systematically generate test inputs, explore, and detect whether an app crashes

with the information obtained from static and dynamic analysis, such as contextual API

calls. To detect crashes more effectively, CrashScope supports two text input generation

and GUI traversing strategies. Particularly, the tool can automatically generate detailed

crash reports and replay test scripts that are very useful for developers to reproduce the

crashes. Although CrashScope can detect crashes caused by different factors, such as in-

puts, device rotation, and disconnected network, it does not yet support runtime permission

crash detection.

Mao et al. [15] proposed a crash detection tool for Android apps called Sapienz based

on search-based testing technique. In particular, the tool can automatically explore and

optimize test sequences and minimize the length of test sequences while maximizing test

coverage and fault revelation. Specifically, the tool combines random fuzzing, systematic

and search-based exploration, and string seeding to generate test inputs and guide the ex-

ploration of the app under test. The experimental results indicate that Sapienz has better

performance than other fuzzing test tools. However, the tool does not support the runtime

permission crash detection.

Zhang et al. [16] propose a crash detection tool for Android App called CrashFuzzer.

CrashFuzzer is mainly used to test app crashes due to poor input validation. Specifically,

the tool combines static analysis and semi-random technique to generate test inputs for

detecting crashes caused by improper input data processing. It identifies the API methods

related to input data processing, performs exception handling analysis, generate input test

DETECTING PERMISSION CRASHES OF ANDROID APPS 1155

data, and then injects the inputs into the app under test to check whether the app will crash.

CrashFuzzer can also generate structured trace information of detected crashes to assist in

the debugging of the app.

Su et al. [17] proposed an approach and a testing tool called Stoat (STOchastic model

App Tester) for Android apps. The tool is divided into two execution phases. First, the app

is explored to construct a GUI model (in the form of stochastic finite state machine). It

then iteratively perturbs the probability values of the model transitions and generates test

suites from the mutated stochastic model. The test suites are injected with system events

to uncover possible errors or exceptions in an app. The proposed tool can detect app crashes

caused by injected system events, and may detect the crashes caused by lack of requested

permissions. However, it does not support the detection of app crashes caused by disabling

the already granted permissions.

Cao et al. [18] proposed an Android testing tool called Xdroid. The tool can monitor

and inject resource dependencies that an app requires, such as contents and permissions,

for testing apps. In particular, to resolve dependencies, it makes use of the notification and

injection mechanisms. If external resources or permissions are required during the testing,

previous test data will be reused or the user will be notified to give the corresponding

resources or permissions. To drive the test process, a built-in test tool based on Monkey is

used. Although Xdroid can be used to detect crashes related to permissions, it does not

deal with the crashes caused by revoking granted permissions.

Fang et al. [19] proposed a tool called revDroid to detect potential side effects of

permission revocation for Android apps. Basically, the tool performs static analysis on app

source code based on Soot [20] and FlowDroid [21]. It can analyze whether there is any

code to check if the app has the permission before calling corresponding APIs, or whether

the code will handle SecurityException. Unlike revDroid, the proposed approach uses a

dynamic approach to explore an AUT for generating a state model while detecting possible

app crashes. It then injects operations into generated test paths to revoke previously granted

permissions for detecting runtime permission crashes. Thus, the proposed approach can

also detect other types of crashes in addition to permission crashes.

Sadeghi et al. [22] proposed a tool called PATDroid (Permission-Aware GUI Testing

of Android) for efficiently testing an Android app under a variety of permission settings.

Particularly, the tool uses a hybrid analysis method to examine apps and their test suites to

identify the permission combinations that are relevant to execution of tests. The irrelevant

permissions are then excluded during the test runs in order to reduce the testing effort.

Unlike PATDroid that focuses on the effort reduction for detecting permission crashes, the

proposed tool aims to explore apps and generate test cases to detect permission crashes.

Another attempt was the earlier work of this paper [8], which reported a runtime per-

mission crash detection approach for Android apps using the extended ACE and PAD (Per-

mission Anomaly Detector). Instead of using PAD, this paper extends the AAD to support

permission crash detection with a test runner and a re-run mechanism to further improve

the efficiency of permission crash detection. The extension includes an additional back-

ground information describing the typical implementations of requesting and handling

runtime permissions in an Android app, additional related work, an enhancement of the

original approach by using a test runner with a re-run mechanism to reduce the execution

time of test cases, and a new evaluation of the enhanced tool, i.e., AAD, with more subject

apps and its comparisons with the original one.

CHIEN-HUNG LIU AND SHU-LING CHEN

1156

Table 1 shows the comparisons of the related tools and the proposed approach, in-

cluding whether the tool can support permission crash detection, whether the tool can de-

tect app crashes other than permission crashes, and whether the tool considers the permis-

sion crashes caused by revoking previously granted permissions.

Table 1. The comparisons of related tools and the proposed approach.

Testing Tool
Support permission

crash detection

Detect crashes other

than permission

crashes

Detect permission

crashes caused by per-

mission revocation

THOR   

AppDoctor   

CrashScope   

Sapienz   

CrashFuzzer   

Stoat   

Xdroid   

revDroid   

PATDroid   

The proposed

approach
  

3. THE PROPOSED APPROACH

This section describes the proposed approach, including the overview of the approach,

the extension of ACE for properly crawling permission dialogs and permission response

behavior of apps, and the method of injecting permission-revoke operations to detect

runtime permission crashes.

3.1 Overview of the Approach

The proposed detection process of runtime permission crashes is shown in Fig. 5. The

first step uses the extended ACE [6] to explore the AUT, which generates a crash log and

a GUI state graph (i.e., state model) with all of the states found and the events (transitions)

executed by the extended ACE. Each state of the GUI state graph is an instance of an

Android activity and each event is a transition indicating that the event transfers a particu-

lar GUI state si to another GUI state sj. The second step uses the AAD to generate a number

of test paths (TP) from the GUI state graph according to ACE’s exploring sequences re-

lated to runtime permissions. Each test path is a sequence of events that traverses the AUT

from its root state to a leaf state. For each test path, the AAD then injects corresponding

permission-revoke operations in-between each pair of events after the permission is

granted or after the last event of the path. After that the AAD executes the test paths directly

using a test runner to detect and report the crashes revealed by the injected operations.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1157

Fig. 5. The proposed detection process of runtime permission crashes.

3.2 Extend ACE to Detect Runtime Permission Crashes

To enable ACE to correctly explore app behavior related to runtime permissions, ACE

is extended so that (1) both events for denying and granting permission requests can be

exercised; and (2) the response behavior of app for a granted permission can be explored

properly.

Note that depending whether the permission is requested first time or not, Android

system will display different permission dialogs. Fig. 6 (a) shows an example of a permis-

sion dialog, hereafter called AskPermission, that is displayed when a permission is re-

quested first time by an app. If the user clicks the “Allow” option to grant the permission,

this dialog won’t appear next time. If, however, the user denies the request, the next time

when the app requests the same permission again, the dialog shown in Fig. 6 (b), hereafter

called AskPermissionAgain, will be displayed. If the user checks “Don’t ask again” to

deny the permission again, the app will no longer ask for this permission again until the

user clears the app’s setting.

To properly explore the app behavior of denying or allowing a permission, ACE is

extended to crawl the permission dialog in a predefined order according to the type of the

dialog. Particularly, the extended ACE will execute only the “Deny” event of the AskPer-

mission dialog; otherwise, the event doesn’t have a chance to be fired after the “Allow”

event is executed. Similarly, the extended ACE will execute only the “Allow” event of the

AskPermissionAgain dialog since the “Deny” event has been explored before in the Ask-

Permission dialog.

Moreover, when the “Allow” option of a permission dialog is clicked, (i.e., the per-

mission request is granted), depending on the app implementation, the response behavior

of an app can be (1) directly to access the restricted data or perform the restricted action to

fulfill the request, or (2) indirectly to return to the original activity that triggers the permis-

sion request and let the user invoke the request again. In the latter case, when the request

Execute the Extend
ACE on AUT

Crash log and
State graph

Generate test paths
(TPs)

Inject revoke op-
erations into TPs

Run TPs and report
detection results

AAD

Begin

Stop

CHIEN-HUNG LIU AND SHU-LING CHEN

1158

is invoked again, the app can access the requested resource or perform the requested action

successfully since the requested permission has been granted. However, this can introduce

a crawling problem because ACE may not be able to crawl the GUI of the original activity

again if all the executable events in the original activity and the permission dialog have

been explored. In such a case, the response behavior of the app for allowing the permission

won’t be explored correctly since ACE considers all the related GUI states and events

being explored.

(a) AskPermission dialog.

(b) AskPermissionAgain dialog.

Fig. 6. The dialogs for AskPermission and AskPermissionAgain.

Figs. 7 and 8 respectively show two kinds of app response behavior that accesses the

camera directly and accesses the storage media indirectly through the original activity

when the “Allow” option of a permission dialog is clicked. Particularly, in Fig. 8, the GUI

for the activity that triggers the storage permission dialog has only one button and was

crawled when triggering the permission dialog. In this case, the GUI of this activity won’t

be explored by ACE again since all GUI events in the activity and permission dialog have

been explored. To enable ACE to properly explore the response behavior of handling a

granted permission for the case illustrated in Fig. 8, a hidden dummy event is added to the

permission dialog so that ACE will return to the original activity for invoking the permis-

sion request one more time in order to execute the dummy event. Consequently, the re-

sponse behavior of allowing the permission can be explored successfully.

Fig. 7. An example of fulfilling a permission request directly when clicking the “Allow” option.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1159

Fig. 8. An example of fulfilling a permission request indirectly when clicking the “Allow” option.

3.3 Inject Revoke Operations to Detect Permission Crashes using AAD

The extended ACE can be used to explore the app behavior related to permission

request and handling and, hence, can detect possible runtime permission crashes. However,

it is still unable to detect the permission crashes that can occur when the user manually

disables the granted permissions and then resumes the app. To detect such crashes and

ensure that the apps request and obtain the permissions before accessing any restricted data

or performing any restricted actions, the state graph generated by extended ACE is then

used by AAD to create test paths (i.e., exploring sequences) related to runtime permissions.

Each generated test path is from the initial GUI state to a leaf GUI state of the state graph.

The test paths are then injected a set of operations to revoke the already granted permis-

sions.

To inject the permission-revoke operations, let Eq. (1) be a test path (i.e., sequence of

events) created from the state graph generated by the extended ACE. Suppose that event ei

is the event allowing a particular permission request (i.e., eallow). Since the user can revoke

a permission at any time after it is granted and before the restricted resource is accessed,

to detect possible runtime permission crashes caused by an event after eallow, the proposed

approach injects a permission-revoke operation, denoted as r, in-between each pair of the

events after eallow or after the last event of the test path as shown in Eqs. (2)-(5). For exam-

ple, Eq. (2) is an injected test path that simulates a test scenario in which the permission is

granted in eallow, revoked by user right after eallow, and then immediately followed by an

event to access restricted data or perform restricted actions requiring the permission.

e1, …, ei-1, ei, ei+1, …, en (1)

e1, …, ei-1, eallow, r, ei+1 (2)

e1, …, ei-1, eallow, ei+1, r, ei+2 (3)

…

e1, …, ei-1, eallow, ei+1, …, en-1, r, en (4)

e1, …, ei-1, eallow, ei+1, …, en-1, en, r (5)

The button has

been explored!

CHIEN-HUNG LIU AND SHU-LING CHEN

1160

Note that a test path can have many injection points to inject revoke operations as

illustrated in Eqs. (2)-(5). Thus, many test cases can be generated from a single test path.

In our earlier work [8], multiple test cases are created from a single test path and each of

them is converted into a test script to detect runtime permission crashes for Android apps

automatically. Although such a method provides flexibility to developers to edit test scripts,

it will generate a lot of test cases with small differences in the injection point of revoke

operation and the length of the test sequence. To reduce the time for detecting permission

crashes, this paper employs a test runner that can execute the operation-injected test paths

on AUT directly without the need to convert test cases into test scripts. Moreover, to further

improve the crash detection efficiency, test cases for a single test path are run together with

a re-run mechanism to shorten the execution time of individual test cases.

Suppose that test cases e1, …, r, en-1 and e1, …, en-1, r, en are two consecutive se-

quences derived from the same test path. We can observe that these two test cases have

almost the same test sequences except for the second test case has one more event, i.e., en

in the end of its sequence than the first test case. Moreover, the revoke operation r is in-

jected only once in the sequence before the event that could access restricted resource, i.e.,

en-1 or en. Note that the revoke operation can be injected at any time after the requested

permission is granted and before the restricted resource is accessed. Therefore, for the sec-

ond test case, if we change the injection point of the revoke operation r from before en to

before en-1, we can obtain a test sequence e1, …, r, en-1, en which is equivalent to the second

test case from the perspective of permission crash detection. Therefore, instead of execut-

ing both test cases separately, after executing r and en-1 in the first test case, if no crash

occurs (i.e., en-1 is not affected by the revoke operation r), we then can run the second test

case simply by directly executing en right after the execution completion of the first test

case. Thus, following this way, we can run multiple test cases derived from the same test

path together instead of separately to further reduce the crash detection time.

The above scenario works if the injected revoke operation r does not cause AUT crash.

However, if the AUT gets crashed due to the revoke operation, the crash state of AUT can

interrupt the execution of the remaining test cases that are generated from the same test

path. In order to resume and continue the execution of the remaining test cases, the AUT

is restarted and a “re-run” mechanism is proposed and implemented in the test runner to

re-inject the revoke operation and re-run the remaining test cases of the test path. In par-

ticular, assume that the revoke operation r is injected right before an event ec and the exe-

cution of r and ec causes AUT crash. In such a case, the “re-run” mechanism will (1) re-

move the revoke operation r injected before ec to avoid this crash; (2) re-inject a new re-

voke operation into test path right after ec to generate a new test sequence for the remaining

test cases; and (3) start a new test run with the new test sequence. In this way, each AUT

crash will trigger a new test run to remove the previously injected revoke operation, re-

inject the revoke operation right after the event causing AUT crash, and re-run the test until

the remaining test cases of the same test path are all executed.

To illustrate the idea of the re-run mechanism, let’s consider an example test path TP

e1, …, eallow, ec, …, en shown in Fig. 9. Suppose that TP is initially injected with a revoke

operation after 𝑒𝑎𝑙𝑙𝑜𝑤. Thus, TP becomes as e1, …, eallow, r, ec, …, en. Assume that the first

test run of TP (i.e., test run: 1) causes an app crash after executing r and ec. At this time,

the test runner will remove the previously injected r from TP and re-inject r into TP after

ec to generate a new test sequence e1, …, eallow, ec, r, …, en. Then, the test runner starts the

DETECTING PERMISSION CRASHES OF ANDROID APPS 1161

next test run (i.e., test run: 2) with the new test sequence for the remaining test cases to

detect other app crashes. The re-run process will repeat if any app crash is detected again

until all the test cases associated with the same test path are executed.

 Fig. 9. The re-run mechanism if a crash occurs when executing a test path.

Fig. 10 shows the algorithm of the test runner to inject permission revoke operation

and run the test path directly for detecting runtime permission crashes. Basically, the algo-

rithm takes a test path as input and outputs a crash report related to the test path. The

function findFirstInjectionPoint() in Line 2 will return the event that grants a permission

on the test path. The injectRevokeOperationIntoTestPath() function in Line 3 will inject a re-

voke operation into the test path right after a target event and generate a test sequence. The

findFirstEvent() in Line 4 will find the first event of the test sequence to be executed. The

while-loop in Lines 5-16 will execute the event in the test sequence one by one. If the

execution of an event causes an app crash, find the injection point after the event (Line 9),

re-inject a revoke operation into the test path to generate a new test sequence (Line 10),

and record the crash in the report (Line 11). Then, find the first event of the new test se-

quence (Line 12) and re-run the test with the sequence for the remaining test cases of the

test path (Line 13). Finally, Line 17 returns the crash report when all the events in the test

path are executed completely.

Note that the permission-revoke operations being injected into a test path are corre-

sponding to the types of granted permissions. The granted permission types, such as cam-

era or file access, are logged by the extended ACE during the exploration and are recorded

in the exploring sequences. Such information is provided to AAD along with the test paths

in order to inject the proper revoke operations corresponding to the granted permission

types into the test sequences. The detail to record the permission types is omitted here for

simplicity.

TP:

inject r

into TP

injection point: after eallow

test run: 1 Crash State

re-inject r

into TP
●

 ●
 ●

eallow

3
e1 en ● ● ● ● ● ●

● ● ● eallow

3

e1 ec ● ● ● en r

ec

eallow

3
e1 ec ● ● ● r

injection point: after ec

eallow

3
e1 r ● ● ● en ● ● ● ec

eallow

3
e1 r ● ● ● ● ● ● ec test run: 2

CHIEN-HUNG LIU AND SHU-LING CHEN

1162

Algorithm: PermissionCrashTestRunner

Input: TestPath TP

Output: CrashReport report

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

begin

 e ← findFirstInjectionPoint(TP) // find the injection point to inject revoke operation

itp ← injectRevokeOperationIntoTestPath(TP, e) // inject a revoke operation after e

e ← itp.findFirstEvent() // find the first event in itp

while e ≠ null

execute e

s ← current state

if s is a crash state then // re-inject a revoke operation after e and rerun TP

re ← findInjectionPointAfterEvent(TP, e) // find next event after e to re-inject

 itp ← injectRevokeOperationIntoTestPath(TP, re)

report ← record e and s

e ←itp.findFirstEvent()

continue

endif

e ← itp.FindNextEvent(e) // find the next event after e in itp

end while

return report

end

Fig. 10. The algorithm of test runner for a given test path.

4. EVALUATION

We conduct experiments to study whether the extended ACE and the AAD are useful

as well as whether the test runner approach can reduce the execution time of test cases as

compared to the tool PAD used in our earlier work. The following three research questions

are addressed:

RQ1 Can the extended ACE correctly explore the app behavior related to runtime

permissions?

RQ2 Can the extended ACE and AAD effectively detect runtime permission

crashes of an Android app from different perspectives?

RQ3 Can the test runner of AAD reduce the execution time of test cases as com-

pared to PAD?

We select 13 apps, taken from F-Droid Market [1], as the subjects of our evaluation.

These apps are selected because they use runtime permissions and some of them have been

studied in the related work. The details of the subject apps, including the name of the app,

line of code, the numbers of class, method, and activity, are given in Table 2. The hard-

ware/software equipment used in the experiments is shown in Table 3. Two experiments

were conducted to address the above research questions. Each experiment is described in

the following subsections.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1163

Table 2. The subject apps (AUT).

App Line of Code Class Method Activity

AnyMemo 28,178 190 6,427 30

Budget Watch 4,398 43 560 10

Catima 6,239 41 596 11

OSMBugs 4,127 55 2,450 3

ParkenDD 2,177 18 356 5

SAF Media Scanner 6,067 19 494 2

Smoke 27,458 45 1,668 7

Timber 20,379 159 3,568 7

Trigger 5,773 43 797 10

Rental Calc 4,124 24 428 12

PocketMaps 10,830 68 1,394 10

Etar 67,051 248 5,597 14

Open Note Scanner 3,587 23 654 4

Table 3. The experimental equipment.
Hardware/Software Specification/Version

CPU Intel Core i7-6700U 3.40 GHz

Memory 16GB LPDDR3 2133MHz

Disk SSD 256GB + HDD 1TB

OS Window10

Appium client/server Version 4.1.2/1.20.1

JDK Version 1.8.0

Android Studio Version 4.1.1

Samsung A9 Android ver. 9.0.0

4.1 Experiment 1

The first experiment addresses RQ1. We use the extended ACE to explore the behav-

ior of subject apps related to runtime permissions. The NFS algorithm [6] is used in ACE

for minimizing the number of app restart and the timeout limit is set to 3 hours for giving

ACE enough time to fully explore most apps. The results are shown in Table 4, including

the statement coverage (S.C.) and branch coverage (B.C.), the execution time, the number

of fired events, the number of explored states, the number of permission types requested

by the apps, and the number of permission types granted to the apps. The results show that

the original ACE is unable to explore eight out of thirteen apps, including AnyMemo, OS-

MBugs, SAF Media Scanner, etc., since these apps request runtime permissions immedi-

ately when launching the apps. Thus, the code coverage of these apps is 0% for the original

ACE. Note that, for the two apps Etar and Open Note Scanner, although they can be ex-

plored by the extended ACE successfully, we are unable to instrument these two apps on

our smartphones running Android version 9. As a result, their coverage is unavailable.

Moreover, from the number of permission types granted to the apps, we can observe

that the original ACE is unable to crawl the behavior of the subject apps for granting per-

missions and handling responses. The extended ACE, on the other hand, can successfully

crawl the permission dialog and explore the behavior of denying or allowing a permission

request for all subject apps. This can also be confirmed by the increases of code coverage,

execution time, as well as the numbers of the fired events and explored states.

CHIEN-HUNG LIU AND SHU-LING CHEN

1164

Table 4. The crawling results of extended ACE.

App
ACE

version
S.C. / B.C.

Time

(mm:ss)

Fired

events
States

Num of

perm.

types re-

quested

Num of

perm.

types

granted

AnyMemo
extend 52% / 36% 181:36 2004 163

1
1

original 0% / 0% − − − 0

Budget

Watch

extend 52% / 29% 141:29 1659 89
2

2

original 29% / 13% 56:01 549 34 0

Catima
extend 22% / 13% 17:59 228 23

2
2

original 16% / 8% 26:20 229 16 0

OSMBugs
extend 49% / 28% 15:15 227 26

1
1

original 0% / 0% − − − 0

ParkenDD
extend 14% / 10% 10:06 99 14

1
1

original 14% / 9% 26:04 203 15 0

SAF Media

Scanner

extend 6% / 3% 120:04 1322 48
1

1

original 0% / 0% − − − 0

Smoke
extend 7% / 3% 26:25 201 14

1
1

original 0% / 0% − − − 0

Timber
extend 37% / 22% 60:18 603 89

1
1

original 0% / 0% − − − 0

Trigger
extend 24% / 17% 74:48 759 36

2
2

original 24% / 15% 50:28 454 28 0

Rental Calc
extend 79% / 52% 181:28 2006 82

1
1

original 12% / 4% 12:41 108 11 0

PocketMaps
extend 3% / 2% 21:26 298 37

2
2

original 0% / 0% 1:54 4 3 0

Etar
extend unavailable 166:13 1702 117

3
3

original 0% / 0% − − − 0

Open Note

Scanner

extend unavailable 16:54 108 19
2

2

original 0% / 0% − − − 0

Overall, the answer to RQ1 is “yes, the extended ACE can correctly crawl the apps

that use runtime permissions.” Further, the extended ACE can obtain higher coverage than

the original one.

4.2 Experiment 2

The second experiment addresses RQ2 and RQ3. We first use the extended ACE to

explore the subject apps, generate state graphs, and discover runtime crashes related to

permissions. Based on the generated state graphs, the AAD is then used to create test cases

to detect runtime permission crashes that can occur when the user disables the already

granted permissions. Again, the NFS algorithm was used in ACE and timeout limit is set

to 3 hours. Tables 5 and 6 show the experimental results of the extended ACE and AAD,

respectively. The results of Table 5 show that for the extended ACE, on average, the num-

ber of explored sequences is 73.5, the number of fired events is 862.5, the execution time

of app exploration is 79.2 minutes, and the number of detected permission crashes is 0.2.

In particular, the results show that the extended ACE indeed discovers runtime permission

crashes for apps AnyMemo, ParkenDD, and Timber during the exploration.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1165

Table 5. The detection results of the extended ACE.

App
Num of

explored

sequences

Num of events

fired

Total execution

time (min)

Num of

permission

crashes

detected

AnyMemo 254 2,004 181 1

Budget Watch 76 1,659 141 0

Catima 21 228 18 0

OSMBugs 13 227 15 0

ParkenDD 18 99 10 1

SAF Media Scanner 153 1,322 120 0

Smoke 70 201 26 0

Timber 55 603 60 1

Trigger 91 756 74 0

Rental Calc 27 2,006 181 0

PocketMaps 27 298 21 0

Etar 133 1,702 166 0

Open Note Scanner 18 108 16 0

Average 73.5 862.5 79.2 0.2

Table 6. The detection results of AAD.

App
Num of

created test

paths

Num of

injected

operations

Total

execution

time (min)

Num of

total perm.

crashes

detected

Num of unique

perm. crashes

detected

AnyMemo 1,314 1,208 1,147 552 1

Budget Watch 184 215 122 0 0

Catima 41 70 60 0 0

OSMBugs 112 100 96 0 0

ParkenDD 23 21 17 0 0

SAF Media Scanner 593 589 588 0 0

Smoke 252 252 174 0 0

Timber 170 129 154 111 5

Trigger 379 547 558 232 3

Rental Calc 214 213 236 99 1

PocketMaps 266 267 320 90 1

Etar 996 1,521 1,188 134 10

Open Note Scanner 93 18 95 4 1

Average 356.7 396.2 365.8 94.0 1.7

In addition, the results of Table 6 show that the AAD is able to detect app permission

crashes happened when the already granted permissions were revoked. The results indicate

that for AAD, on average, the number of created test paths is 356.7, the number of injected

revoke operations is 396.2, the execution time of the test cases is 365.8 minutes, the num-

ber of detected permission crashes is 94.0, and the number of unique permission crashes is

1.7. Moreover, from the results of Tables 5 and 6, we can also observe that the number of

test cases (i.e., test sequences) created by AAD is much larger than that of the sequences

explored by the extended ACE. This is because that the revoke operations can be injected

after any subsequent event of the permission granted event since the user could disable an

CHIEN-HUNG LIU AND SHU-LING CHEN

1166

already granted permission at any time. Consequently, the number of fired events and the

total execution time of AAD can be significantly larger than those of extended ACE.

Note that, for the ParkenDD app, the extended ACE can reveal a runtime permission

crash. However, AAD does not discover this crash because the crash happens to occur in

the exploring path of denying the permission request which is not covered by AAD. Fur-

ther, for the Timber app, AAD can detect more runtime permission crashes than the ex-

tended ACE. This suggests that the extended ACE and AAD can detect runtime permission

crashes from different perspectives and together they can provide a more comprehensive

detection of runtime permission crashes for Android apps.

Overall, the extended ACE can detect runtime permission crashes during app explo-

ration though it is unable to discover those permission crashes happened when the user

disables the already granted permissions. On the other hand, AAD was able to detect such

permission crashes through revoke-operation injections. Thus, the answer to RQ2 is “yes,

the extended ACE and AAD can effectively detect runtime permission crashes from dif-

ferent perspectives and together they can provide a more complete detection of runtime

permission crashes.”

To evaluate whether the proposed test runner approach can reduce the execution time

of test cases and result in a better permission crash detection efficiency than the method

used in PAD, we compare the results of 4 apps that were used in the experiments of our

earlier work [8]. Table 7 shows the comparisons of the experimental results between PAD

and AAD. From the results, we can observe that the number of created test sequences, the

number of fired events, and the total execution time of AAD are much less than those of

PAD. The percentage of time reduction can be very significant although it varies depend-

ing on the AUT.

Table 7. The comparisons of execution results between PAD and AAD.

App
Testing

Tool

Num of test

sequences

created

Num of

events fired

Total execu-

tion time

(min)

Percentage of

execution time

reduction

Open Note

Scanner

PAD 592 4,790 775 −

AAD 93 503 95 87.7%

PocketMaps
PAD 749 4,078 646 −

AAD 266 1,374 320 50.5%

Etar
PAD 2,066 51,366 4,553 −

AAD 996 8,474 1,188 73.9%

Timber
PAD 2,525 32,781 4,797 −

AAD 170 1257 154 96.8%

Overall, AAD requires much less time than PAD to run the test cases for detecting

runtime permission crashes. Thus, the answer to RQ3 is “yes, AAD can significantly re-

duce the execution time of test cases as compared to PAD.”

5. CONCLUSIONS AND FUTURE WORK

This paper proposed an approach and tool, called AAD, that can detect runtime per-

mission crashes of Android apps. Especially, the approach and tool can detect the crashes

that can occur by manually disabling the granted permissions and then resuming the apps.

DETECTING PERMISSION CRASHES OF ANDROID APPS 1167

In particular, the proposed approach first explores the AUT systematically to detect app

crashes related to runtime permissions and generates a state graph. Based on the state graph,

test paths are generated automatically. For each test path, the approach injects revoke op-

erations in-between each pair of the events after the permission is granted. A test runner is

designed to execute the test path directly and report the revealed crashes. Our evaluation

results showed that the proposed approach indeed is useful and promising for detecting

runtime permission crashes. The use of test runner can also improve the efficiency of crash

detection significantly.

The current approach mainly focuses on the detection of runtime permission crashes.

Thus, other types of crashes caused by device rotation or disconnected network are not

considered. In the future, we expect to expand the approach to detect more types of app

crashes and further improve the detection efficiency of AAD. We also plan to integrate

AAD into a mobile DevOps platform to support continuous testing of Android apps.

ACKNOWLEDGMENT

This research was partially supported by the Ministry of Science and Technology,

Taiwan, under contract numbers MOST 110-2221-E-027-004, which is gratefully acknow-

ledged.

REFERENCES

1. R. Jabbari, N. B. Ali, K. Petersen, and B. Tanveer, “What is DevOps?: a systematic

mapping study on definitions and practices,” in Proceedings of the Scientific Work-

shop Proceedings of XP2016, 2016, pp. 1-11.

2. R. Tak and J. Modi, Mobile DevOps: Deliver Continuous Integration and Deployment

within Your Mobile Applications, Packt Publishing, Birmingham, 2018.

3. Android 6.0 Changes, https://developer.android.com/about/versions/marshmallow/an-

droid-6.0-changes, 2021.

4. Permissions on Android, https://developer.android.com/guide/topics/permissions/overview, 2021.

5. G. L. Scoccia, S. Ruberto, I. Malavolta, M. Autili, and P. Inverardi, “An investigation

into Android run-time permissions from the end users’ perspective,” in Proceedings

of IEEE/ACM 5th International Conference on Mobile Software Engineering and Sys-

tems, 2018, pp. 45-55.

6. C. H. Liu, W. K. Chen, and S. H. Ho, “NFS: an algorithm for avoiding restarts to

improve the efficiency of crawling Android applications,” in Proceedings of the 42nd

IEEE International Conference on Computers, Software, and Applications, 2018, pp.

69-74.

7. W. K. Chen, C. H. Liu, and Z. Z. Li, “On detecting abnormal behavior in Android

apps,” in Proceedings of International Joint Conference of TCSE, JASPIC and SEA,

2019.

8. C. H. Liu, C. T. Liu, and H. H. Li, “Detecting permission crashes of Android apps

using crawling and revoke operation injections,” in Proceedings of the 28th Asia-Pa-

cific Software Engineering Conference Workshops, 2021, pp. 47-51.

https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/about/versions/marshmallow/android-6.0-changes
https://developer.android.com/guide/topics/permissions/overview

CHIEN-HUNG LIU AND SHU-LING CHEN

1168

9. Request App Permissions, https://developer.android.com/training/permissions/requesting,

2021.

10. Android UI/Application Exerciser Monkey, https://developer.android.com/studio/test/other-

testing-tools/monkey, 2022.

11. C. Q. Adamsen, G. Mezzetti, and A. Møller, “Systematic execution of Android test

suites in adverse conditions,” in Proceedings of International Symposium on Software

Testing and Analysis, 2015, pp. 83-93.

12. G. Hu, X. Yuan, Y. Tang, and J. Yang, “Efficiently, effectively detecting mobile app

bugs with AppDoctor,” in Proceedings of the 9th European Conference on Computer

Systems, 2014, pp. 1-15.

13. K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshy-

vanyk, “Automatically discovering, reporting and reproducing Android application

crashes,” in Proceedings of IEEE International Conference on Software Testing, Ver-

ification and Validation, 2016, pp. 33-44.

14. K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshyvan-

yk, “CrashScope: a practical tool for automated testing of Android applications,” in

Proceedings of the 39th IEEE/ACM International Conference on Software Engineer-

ing, 2017, pp. 15-18.

15. K. Mao, M. Harman, and Y. Jia, “Sapienz: multi-objective automated testing for An-

droid applications,” in Proceedings of the 25th International Symposium on Software

Testing and Analysis, 2016, pp. 94-105.

16. A. Zhang, Y. He, and Y. Jiang, “CrashFuzzer: detecting input processing related crash

bugs in Android applications,” in Proceedings of the 35th International Performance

Computing and Communications Conference, 2016, pp. 1-8.

17. T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and Z. Su, “Guided,

stochastic model-based GUI testing of Android apps,” in Proceedings of the 11th Joint

Meeting on Foundations of Software Engineering, 2017, pp. 245-256.

18. C. Cao, C. Meng, H. Ge, P. Yu, and X. Ma, “Xdroid: testing Android apps with de-

pendency injection,” in Proceedings of IEEE 41st Annual Computer Software and Ap-

plications Conference, 2017, pp. 214-223.

19. Z. Fang, Z. Qian, and H. Chen, “revDroid: code analysis of the side effects after dy-

namic permission revocation of Android apps,” in Proceedings of the 11th ACM on

Asia Conference on Computer and Communications Security, 2016, pp. 747-758.

20. R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan, “Soot − a

Java bytecode optimization framework,” in Proceedings of Conference of the Centre

for Advanced Studies on Collaborative Research, 1999, pp. 214-224.

21. S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L. Traon, D. Octeau,

and P. McDaniel, “FlowDroid: precise context, flow, field, object-sensitive and lifecy-

cle-aware taint analysis for Android apps,” in Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation, 2014, pp. 259-

269.

22. A. Sadeghi, R. Jabbarvand, and S. Malek, “PATDroid: permission-aware GUI testing

of Android,” in Proceedings of the 11th Joint Meeting on Foundations of Software

Engineering, 2017, pp. 220-232.

23. F-Droid, https://www.f-droid.org/, 2021.

https://developer.android.com/training/permissions/requesting
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey

DETECTING PERMISSION CRASHES OF ANDROID APPS 1169

 Chien-Hung Liu (劉建宏) received his Ph.D. degree in Com-

puter Science and Engineering from the University of Texas at Ar-

lington in 2002. He is currently an Associate Professor of Computer

Science and Information Engineering Department at National Taipei

University of Technology, Taiwan. His research interests include

software testing, software engineering, deep learning applications,

and vocal detection.

Shu-Ling Chen (陳淑玲) received her Ph.D. degree in Indus-

trial and Manufacturing Systems Engineering from the University of

Texas at Arlington in 2002. She is currently an Assistant Professor

of the Industrial Management and Information Department at South-

ern Taiwan University of Science and Technology. Her research in-

terests include information management systems, e-business, supply

chain, and software testing.

