
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 375-395 (2022)
DOI: 10.6688/JISE.202203 38(2).0006

Identification and Validation of Web Themes:
A DOM-Structure Matching Approach∗

BAO-AN NGUYEN1,2, HSI-MIN CHEN1, CHYI-REN DOW1,
YAN-TING CHEN1 AND HOANG-THANH DUONG1

1Department of Information Engineering and Computer Science
Feng Chia University

Taichung, 40724 Taiwan
2Department of Information Technology

Tra Vinh University
Tra Vinh, 940000 Vietnam

E-mail: annb@tvu.edu.vn; {hmchen;crdow; m0705965; dhthanh}@mail.fcu.edu.tw

In modern large-scale websites, front-end web development is constructed by the team-
work of developers. To be a professional website, all web pages should strictly follow prede-
fined theme specifications in order to maintain the common look and feel of the web layout.
However, this requires a lot of testing effort to ensure that web pages developed by indi-
vidual developers are compliant with the web theme. This research proposes a system to
enable the automatic identification of web theme templates from existing web pages and to
examine the compliance of new web pages based on the identified web theme template. By
using our system, violations of web themes can be detected as soon as developers commit
changes to the version control repository. In this way, the apparent consistency of websites
is not only carefully maintained, but the effort for manual validation can also be drastically
reduced.

Keywords: web theme template, web programming, software testing, web quality, software
quality

1. INTRODUCTION

At a first glance, web development tasks can be categorized into front-end and back-
end tasks [1]. While back-end development refers to server-side operations providing
functional communication between the database and the web browser, front-end devel-
opment refers to user experience via visual functionalities. Front-end developers are en-
gaged in designing web user interfaces and ensuring user interaction at the client-side
using front-end languages such as HTML (HyperText Markup Language), CSS (Cascad-
ing Style Sheets), and JavaScript [2]. Recently, many front-end frameworks have been
proposed to reduce developers’ workload and boosting user satisfaction as well as web
applications’ quality such as BootStrap, React, Angular, Vue. On the contrary, there are
few studies in web testing to support web developers to validate their designs.

Received November 16, 2020; revised December 27, 2020 & February 21, 2021; accepted March 1, 2021.
Communicated by Chu-Ti Lin.
* This research was supported in part by Ministry of Science and Technology, Taiwan, under Grants No. 109-
2221-E-035 -055 -MY3.

375

376 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

Fig. 1. Basic template of web theme.

Since it is related to users’ look and feel, the web layout should be always consistent
among all element web pages of a website. A web theme template is a pre-defined lay-
out scheme that facilitates developers to ensure the consistency of the website interface.
Fig. 1 shows a commonly used web theme template in several websites, according to the
semantic elements of HTML 5 [3]. The identification signs of the web site are presented
in the header block and the footer block. The aside block is placed in a fixed position
for showing dynamic announcement or advertisement contents. The theme template is
always embedded to provide the same layout but different contents for all web pages of
the website.

In large-scale websites, it is hard to maintain this consistency, due to the variations
in design habits of various front-end developers who contribute to the project [4]. In the
early days of web projects developed from scratch, the web theme template and/or design
specifications were not carefully considered. Since at that time, the website is only on
small scale and easy to maintain with a few developers, or because the customers required
a short time to release [5]. Nevertheless, as the website scale grows incrementally, web
templates become an essential concern that not only guarantees a professional look and
feel presentations for users but also ensures that developers adhere to a consistent layout
style during their works. According to the survey by [6], the volume of web templates
on the World Wide Web was about nearly 50% and contains around 30% hyperlinks and
visible terms. In such a context, how to identify a theme template from a series of web
pages already developed becomes an essential issue that needs to be addressed. Moreover,
after committed by a developer, how to confirm that a web page fully adheres to the
pre-defined web theme templates? Web development teams have to spend a long time
verifying the compliance between the newly added web page and the templates if no
support tools have been used. This raises a further motivation for us, where the new web
pages have to be validated automatically immediately after they have been committed.

Based on the above aspects, we developed a strategy to identify theme templates
from existing web pages and to validate the compliance of newly introduced web pages
towards the detected theme. Through our approach, web developers can easily define a
template from a selected web page without designing it from scratch and can get imme-
diate feedback after the validation scheme has been applied. The proposed automated
system for identification and validation of web theme templates can dramatically reduce
web development costs with consistent look-and-feel themes.

In addition, our proposed approach shows the potential to be applied in web content

IDENTIFICATION AND VALIDATION OF WEB THEMES 377

mining tasks such as classification, clustering of web documents and even in search en-
gines. Using our tool, the web template blocks are quickly identified and detached from
the main content of web pages, and thus, the execution time of information retrieval tasks
can be reduced significantly.

The rest of the paper is organized as follows. Section 2 describes related works. The
proposed approach is presented in Section 3. The experimental results are carried out in
Section 4 and finally, we conclude our work in Section 5.

2. RELATED WORK

The high impact of web applications generates high demand for web testing tech-
niques to ensure the quality of web projects [7]. In web testing, the input models can be
classified into one of such categories: navigation models, control or data flow models,
document object models (DOMs), and others [8]. While the two former types of input
models are used to analyze the dynamic operation of websites, DOM models are a repre-
sentation of the rendered layout of web pages, and hence, they are used as the main input
of GUI related test cases. In such test cases, due to the tree structure of DOM models,
tree-based algorithms are used to implement testing procedures.

The problems of tree matching and tree similarity measuring are popularly used in
HTML/XML comparison, natural language processing, compiler design, computer vi-
sion, molecular biology, and many other fields [9–12]. In web testing, the problem of
determining template nodes from DOM trees can be reduced to the problem of finding
common subtrees, in which a common subtree represents the hierarchical structure of
the extracted template. Two common approaches for determining common subtree are
using the suffix tree [13] and using the concept of common longest subsequence (LCS).
The maximum common subtree problem is reducible to the LCS problem with input are
ordered trees [14]. Tree LCS can be computed using various Tree Edit Distance-based al-
gorithms [15]. The authors of [16] measured the structural similarity of HTML pages by
using Tree Edit Distance and proposed a clustering algorithm for web pages. For the same
purpose, Gupta and Chhabra use Cityblock Distance to compare the similarity between
web pages [17]. Yin et al. used Text Edit Distance between tags sequences extracted from
the DOM trees as the main similarity measurement for template extraction and cluster-
ing web pages [18]. The authors of [19] used Tree Edit Distance in a restricted top-down
mapping algorithm for web template detection using the DOM tree. High time complexity
O(N3) of the Tree Edit Distance is one limitation of this conventional similarity measure-
ment [20]. Besides, using replace, delete and insert functions in Tree Edit Distance based
matching algorithms may lead to wrong level templates when level information of nodes
is not maintained when edit functions are executed.

Recently, to address the drawbacks of conventional methods, researchers proposed
new DOM tree similarity measurements for web template extraction. The article [21] pro-
posed a new similarity metric based on DOM’s path with shingles technique according
to the ratio of the intersection and union of the shingles paths between two DOMs; this
metric allows either web pages clustering or structural mining on web documents. The
study [22] adopted minimum description length to manage the unknown number of web
templates to improve the performance of template identifying and extraction algorithms.

378 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

Joshi et al. [23] proposed the bag of tree-paths model for measuring structural similarity
in web documents which only capture parent/child relationships to reduce the computa-
tional complexity of structural information comparison tasks. The study [24] leveraged
dynamic programming to produce the maximum matching between two DOM trees by re-
cursively comparing every possible pair of subtrees at each corresponding level and cap-
ture the maximum matched. Similarly, in the web template extraction plugin TexMe [25]
implemented its comparison function using the graph theory formalism called Equal Top-
Down Mapping (ETDM) to inspect the relation between DOM trees. The study [26]
used the combination of hyperlink distance and DOM distance to identify templates in
web pages belonging to a website. To enable a fast and no-restricted comparison of web
pages, the authors of [27] proposed the method Similarity-based Tree Matching which can
match real-life documents in practical time (less than a second for matching the DOM of
Youtube). The aforementioned studies introduced multiple efficient similarity metrics
for web page matching. However, those approaches may not suitable for web template
comparison since they were designed for information extraction or eliminating the tem-
plate, not for template validation. Some additional works should be done to make these
approaches suitable for web template validation.

In dynamic web, the appearance of web pages can vary in different web browsers.
Webdiff [28] analyzed both the structure of the DOM structure and the visual representa-
tion of the layout of the web page to detect rendering errors in cross-browser tests. Since
user actions via AJAX can change the content of DOM trees. The study [29] inspected
the variants of DOM trees to detect Ajax-specific faults after user events. These match-
ing methods test variants of DOM trees of only one page, thus they are not suitable to be
merged into template identification tasks, which always take place on multiple web pages.

Besides those web documents analysis methods based on DOM trees, layout analy-
sis based on rendered contents of web documents were also studied. Roudaki et al. [30]
extracted structured data from web documents by leverage a converting technique called
visual engineering for web patterns in which two-dimension graph grammar of web page
is transformed into one-dimension of string induction. Moran et al. [31] adopted a com-
puter vision based approach to identify errors in mobile application GUIs by leveraging
the design diagram. However, visual-based methods might not applicable when dealing
with complicated nested structures of layout elements.

In this paper, we add into the literature two web template identification methods and
their corresponding web template validation procedures. The first method, called Rigid
Template, concerns original structural information of the DOM trees with both top-down
and bottom-up approaches. The second method, called Soft Template, performs matching
on the flattened version of the DOM trees. We enhance the second method by using a
post-processing step to avoid wrong level matching on the flattened trees. Our proposed
approach can be used as a useful testing tool for developers from the very first stage of
the web development process. In the following sections, we present our novel methods
for identifying web theme templates from HTML documents as well as methods for val-
idating web theme compliance of newly developed web pages. The analysis algorithms
not only analyze the content of nodes but also consider the structure of DOM trees and
the relative position of nodes in the trees.

IDENTIFICATION AND VALIDATION OF WEB THEMES 379

Table 1. Notations for web template identification algorithms.
Notation Description

T A set of n DOM trees T = {T 1,T 2, . . . ,T n}.
T P The DOM Tree selected as the base tree.
TC The currently considered DOM Tree
rootP Root node of the DOM tree P.
nP

i A ith child node of root node rootP (level-1).
nP

i, j A jth child node of the node nP
i (level-2).

With index of nodes denoted by i, j. Indexing rules are as follows:
if index > 0: indexing starts from left.
if index < 0: indexing starts from right.

NP The set of nodes {nP
1 ,n

P
2 , . . .} which are children of rootP.

NP
i The set of nodes {nP

i,1,n
P
i,2, . . .} which are children of node nP

i .
PreOrder(T) A sequence of tags generated by traversing the tree T in node-left-right order.
SubTree(nP

i) A subtree of the tree P formed by node nC
i and its descendants.

LCS(nP
i ,n

C
j) Longest common subsequent betwen the ith subtree of DOM tree P and jth

subtree of DOM tree C.
Vi, j(P,C) Length of Longest Common Subsequence (LCS) between the ith subtree of

DOM tree P and jth subtree of DOM tree C.
Example: Length of LCS between {div1, li2,a3} and {div1, li2} is 2

3. PROPOSED APPROACH

This section introduces our algorithms for identifying and validating a website’s
theme templates. DOM trees are adopted as input data models for the analysis algorithms.
Concerning the identification of web templates, the algorithms try to find common nodes
between the input DOM trees, starting from a base tree given by a specific HTML docu-
ment. In order to cover possible matching cases between DOM trees, this study focuses
on two types of web templates called Rigid Template and Soft Template. Whereas the
Rigid Template inspects both the order and the position of nodes at each tree level in
its matching procedure, the Soft Template takes into account only the order of common
nodes at each level of input trees. We introduce the necessary notations for the proposed
algorithms in Table 1. The definition of two types of templates, identification algorithms
and validation algorithms for web templates will be presented in the next subsection.

3.1 Theme Template Definitions

Given a DOM tree T P as a base web page and a set of DOM trees T which contains
all inspected pages, we define the web theme template as follows:

3.1.1 Rigid template

A rigid template is defined as a structure of web layout in which each GUI element
appears in a fixed position among all web pages. Formally, a web template is a structure
of common nodes that appear at fixed positions with the same orders at each level of
all DOM trees. Since the template nodes can be found with a high possibility from the

380 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

Fig. 2. Example of the rigid template.

top and the bottom of web pages, it is feasible for searching for template nodes in both
two fashions, top-down and bottom-up. In tree structures, top-down searching is done
by traversing nodes of a level from left to right, and vice versa for bottom-up searching.
Formally, given a two DOM trees T P and TC , in which T P is the base tree and TC is the
currently considered tree, we can identify rigid templates by following procedures:

Matching from the left: Two lists of nodes at each level of the two DOM trees are
traversed concurrently from left to right. If nP

i of tree T P and nC
i of tree TC are the same

element, they are template nodes. As shown in Fig. 2, the first nodes from the left of both
two trees are div nodes with the index i = 1. Hence, nP

1 and nC
1 should be selected as a

template node.

Matching from the right: Two lists of nodes at each level of the two DOM trees are
traversed concurrently from right to left (hence, the nodes have negative indexes). If nP

−i
of tree T P and nC

−i of tree TC are the same elements, they are template nodes. Take Fig.
2 as an example, the rightmost nodes two trees, nP

−1 and nC
−1, have the same value p with

index i =−1, so the p element of this position is detected as a template node.
Generally, template UI elements positioned at the bottom of a UI block are usually

linked continuously, hence, any break in the searching from the right indicates that the
template block is interrupted at that position. As shown in Fig. 2, the second node from
the right of two trees T P and TC are p and div, respectively. Due to this difference, the
following nodes will not be counted as template nodes and the search step will be termi-
nated before it reaches nP

−3 and nC
−3. A general example of a rigid template is illustrated

in Fig. 2.

3.1.2 Soft template

Rigid templates are useful for managing structural information of web themes be-
cause the orders and indexes of a template node are fixed. To support a flexible identi-
fication scheme, we suggest another type of template, called soft template, in which the
orders of the template nodes must be maintained, but the corresponding indexes can vary
between DOM trees. In other words, the soft template is an extension for identifying tem-
plate structures of such websites that have been developed in the style of freedom, with
additional content nodes being added between template nodes.

As shown in Fig. 3, the three nodes {div,h1, p} appearing in three pairs {nP
1 ,n

C
1 },

IDENTIFICATION AND VALIDATION OF WEB THEMES 381

Fig. 3. Example of the soft template.

Fig. 4. The workflow of web template identification.

{nP
2 ,n

C
3 }, and {nP

4 ,n
C
5 }, respectively, in the two DOM trees can be identified as template

nodes in the soft template, since they share common elements and orders but vary in their
indexes. To identify such cases of pattern matching, we leverage LCS (Longest Common
Subsequence) [32] technique on the input trees, in which the tree structures are flattened
to be string vectors and inputted to the matching procedure. All template identification
algorithms will be discussed in the next section.

3.2 Template Identification Algorithms

Given a set T = T 1,T 2, . . . ,T n of DOM trees and a base tree T P, the web template
is identified in T by the matching procedures between T P and each TC ∈ T . Both rigid
template and soft template should be outputted by the algorithms.

The Selenium tool [33] was used to render dynamic web pages and compare resulting
DOM trees of HTML documents to determine which UI elements belong to the template.
Fig. 4 shows the flowchart of the template identification process. Let’s start with the
algorithm MultipleTemplateIdentification with the base tree T P and a set T of DOM trees,
the identification process of web template can be explained as follows:

382 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

Algorithm 1: MultipleTemplateIdentification

Input:A set of n DOM trees T = {T 1, . . . ,T n}
Output:Web templates
begin

loss←{};
T P← base tree for matching;
//Comparing all web pages in T to identify the template
for each TC ∈ T do

if templateType==”rigid” then
T P← LevelMatching(T P,TC);

else
//templateType==”soft”
sameNodes← LevelMatching(T P,TC);
loss← loss∪{T P− sameNodes};

end
end
//get the template by deleting all non-template node
webTemplate←{T P–loss};

end

Algorithm 2: LevelMatching

Input: nP
i ,n

C
i

Output:Templates structure of current level
begin

tNP← NP
i ;

tNC← NC
i ;

if templateType=”rigid” then
nP

i ← RigidLevelMatching(tNP, tNC) ;
else

//templateType=”soft”
nP

i ← So f tLevelMatching(tNP, tNC);
end
//recursively get the child nodes of the next levels
for each nP

i, j ∈ NP
i do

if NP
i, j ̸= Ø then
tempNP

i j← SubTree
(

nP
i, j

)
;

tempNC
i j ← SubTree

(
nC

i, j

)
;

LevelMatching(tempNP
i j, tempNC

i j);
end

end
end

IDENTIFICATION AND VALIDATION OF WEB THEMES 383

Step 1: Select an input TC ∈ T for inspecting. The algorithm LevelCompare is called to
perform matching on the level-1 nodes of two DOM trees T P and TC.

Step 2: Perform both two types of template matching for rigid template and soft template
for the current level. NodeMatching function is used for matching two nodes in the rigid
template; LCS function is used for matching two subtrees in the soft template.

Step 3: After the current level is matched, the algorithm LevelMatching is recursively
performed on all pairs of corresponding subtrees of current levels until all levels of TC

are matched.

Step 4: Temporary result for the current DOM tree TC is returned to the overall set of
templates. The algorithm MultipleTemplateIdentification repeatedly performs identifica-
tion steps (beginning from step 1) for the next DOM tree in T until all DOM trees in T
are considered.

Step 5: Two kinds of web templates are outputted as the identified web templates.

The algorithm 1, MultipleTemplateIdentification, presents the workflow of the web
template identification procedure. The rigid template can easily be obtained after a series
of operations LevelMatching have been performed recursively. On the contrary, with
the soft template, there are non-template nodes obtained after after each execution of
LevelMatching, we need to run a post-processing step to eliminate these nodes. Finally,
we receive two template files, one for the rigid template and one for the soft template, as
results of the web template identification algorithm.

At each level of the DOM tree, we leverage the LevelMatching method to discover
template nodes at that level. Just like commonly used approaches in tree matching, we use
a recursive strategy to do the comparison at all levels of the DOM trees. In this function, if
the selected method is rigid, the RigidLevelMatching method is activated to the matching
steps for two directions of approaching, from left and right, as in Fig. 2. Otherwise, the
SoftLevelMatching with LCS method is called to determine matching nodes between cor-
responding levels of the two trees based on the idea of the LCS algorithm. LevelMatching
method is described in detail in Algorithm 2.

3.2.1 Rigid template detection

As discussed in the definition, the rigid template requires two corresponding nodes
in two trees should reside in the same position (denoted by index numbers), hence, the
two input trees are scanned concurrently to extract all matched pairs of nodes. Since
template nodes are usually located at the top (eg. header, banner, navigation bar, etc.)
and the bottom (eg. footer) of web pages, the matching algorithm should perform in two
directions, top-down and bottom-up. First, the algorithm scans the level from the right to
pick up template nodes from the bottom. The scanning steps from the right are terminated
right after a pair of nodes cannot be matched. The last matching point is stored as endR
as a reference for further steps, as shown in Fig. 5 (a).

384 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

Fig. 5. Rigid template identification from right (a) and from left (b).

Algorithm 3: RigidLevelMatching

Input: NP,NC

Output: templateNodes: List of rigid template nodes of current level
begin

K←
∣∣∣∣NP

∣∣∣∣ ;
L←

∣∣∣∣NC
∣∣∣∣ ;

j = 0 ;
templateNodes← Ø ;
//matching from right
while (j < K and j < L) do

if NodeMaching(nP
i,K− j,n

C
i,L− j) then

templateNodes.add(nP
i,K− j);

if K < L then
endR← K− j;

else
endR← L− j;

end
else

break;
end
j++;

end
//matching from left
j← 1 ;
for j = 1 to endR do

if NodeMaching(nP
i, j,n

C
i, j) then

templateNodes.add(nP
i, j);

end
end
return templateNodes;

end

IDENTIFICATION AND VALIDATION OF WEB THEMES 385

Then the matching process is restarted from the leftmost node to detect template
nodes from the top. The matching procedure is repeated until the node endR is reached,
as shown in Fig. 5 (b). All matching nodes output of the template nodes of the current
level. As the algorithm only needs to traverse the DOM trees twice, one for top-down
and one for bottom-up, in the worse case, the time complexity and space complexity
of the rigid template matching algorithm is O(n) and O(log(n)), respectively. Steps of
RigidLevelMatching are described in Algorithm 3.

3.2.2 Soft template detection

Soft templates can be identified using matching methods based on the concept of
LCS. Given two DOM trees, a soft template is resulted by finding LCSs between them.
To find out the LCSs, first, the DOM trees should be flattened to be sequences of strings
(HMTL tags) by traversing in Node-Left-Right order (called PreOrder in short); then the
matching procedures are run on these sequences. With each level, we use the array V (P,C)
to store the length of LCSs obtained after each comparison, in which Vi, j(P,C) is the
length of LCS between the ith subtree of DOM tree P and jth subtree of DOM tree Q.
As shown in Fig. 6, when matching the two [body] nodes of two trees, the comparison
between nP

1 and nP
1 gave us V1,1(P,C) = 1, and the comparison between nP

2 and nP
1 gave

us V2,1(P,C) = 5. The maximum value in V (P,Q) lets us determine the length and the
position of longest sequence of matched nodes at the current level.

In general, we can easily identify soft templates by matching all possible pairs of
nodes of the current level using LCSs. However, after the DOM trees have been flattened
by PreOrder traversal, the hierarchical information of nodes is lost and error cases arouse.
In practice, we found and addressed two error cases as follows:

Error case 1: When two different tree structures produce the same tag sequences, the
two trees can be mismatched. For example, the tag sequences [div, li,a] generated by both
two DOM trees in Fig. 7 lead to a mismatch. To address this wrong matching, we add
level numbers into the tags when traversing the tree. For instance, after level numbers

Fig. 6. Soft template identified by using LCS.

386 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

Fig. 7. Soft template error matching when different tree structures generate the same tag sequences.

Fig. 8. Soft template wrong order matching: after nP
2 and nC

2 were matched, matching between nP
3

and nC
1 lead to wrong order matching.

were added, the tag sequence of the tree T P becomes [div1, li2,a3] and that of the tree TC

becomes [div1, li2,a2], so that the error case of mismatching on a2 and a3 is avoided.

Error case 2: Since soft template requires the order of template nodes must be main-
tained, but the LCS based matching procedure may encounter errors when the matched
nodes have wrong orders in the corresponding DOM trees. As shown in Fig. 8, after
matching all possible pairs of descendants of [body] node in two trees, we have a total
nine LCSs whose lengths are stored in the matrix V (P,C). To identify the soft template,
we iteratively select the maximum number in the matrix and add corresponding nodes
(denoted by the index of the selected number) to the template, until all nodes were exam-
ined. In the example, we first select the longest matched sequence given by LCS(nP

2 ,n
C
2)

with V2,2(P,C) = 5 into template nodes. If we then select the second-longest sequence
given by LCS(nP

3 ,n
C
1) with length V3,1(P,C) = 3, the wrong order matching would occur

because the order of newly added template nodes is conflict to the previous ones.
To avoid this, after selecting an LCS as template nodes, we must eliminate such pairs

that can lead to wrong order matching by utilizing the matrix V (P,C). As shown in Fig.
8, after LCS(nP

2 ,n
C
2) was selected, certainly we must eliminate all pairs containing nP

2 and
nP

2 . In V (P,C) we mark all elements on 2th row and 2th column of V (P,C) to be −1. In
addition, such pairs (nP

i ,n
C
j) which have indexes (i < 2 and j >2) or (i>2 and j<2) also

IDENTIFICATION AND VALIDATION OF WEB THEMES 387

need to be marked as −1 in the matrix V (P,C), since they lead to wrong order matching.
The resulted V (P,C) matrix after this post-processing step is shown in Fig. 8.

The algorithm So f tLevelMatching describes steps of the soft template identification
procedure. First, all LCSs of possible pairs of nodes in the two DOM trees are discovered
and stored in the 2-D array LCSs. Their lengths are also stored in the 2-D array V , respec-
tively. Then, the current longest LCS will be added to the list of templateNodes based on
the current maximum value of V (P,C). After an LCS is selected, the post-processing step
is executed to remove such LCSs that can generate wrong order templates. Concurrently,
corresponding values of those LCSs in V (P,C) are also set to −1. The selection step is
repeated until all elements of V equals −1. The resulting templateNodes after all LCSs
examined is the soft template of the current level. The time and space complexities of

Algorithm 4: SoftLevelMatching

Input: NP,NC

Output: templateNodes: List of soft template nodes of current level
begin

LCSs← [][]; //2-D arrays for LCSs
V ← [][]; //2-D arrays for length of LCSs
templateNodes← Ø
//Determining all possible LCSs
foreach nP

i ∈ NP do
seqi← PreOrder(nP

i);
foreach nC

j ∈ NC do
seq j← PreOrder(nC

j);
lcsi j← LCS(seqi,seq j);
LCSs[i, j]← lcsi j;
V [i, j]← ||lcsi j|| ;

end
end
//Select soft template using longest LCS
while max(V)> 0 do

[k, l]← argmax(V);
templateNodes.add(LSC[k, l]);
// Post processing to avoid wrong order template
for i = 1 to ||NP|| do

for j = 1 to ||NC|| do
if ((i <= k) and (j >= l)) or ((i >= k) and (j <= l)) then

V [i, j] =−1;
end

end
end

end
return templateNodes;

end

388 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

So f tLevelMatching algorithm are O(mn), where m and n are the numbers of nodes in the
two DOM trees. This estimation is inferred from those of the LCS problem when it is
implemented by using dynamic programming.

3.3 Template Validation

After web templates were identified, the TemplateValidation algorithm was proposed
to inspect if newly added web pages conform to the detected templates. With the same
workflow and procedures as template identification, the validation steps also try matching
the DOM tree of the input HTML document with templates extracted and output a set of
missing nodes called loss. According to two kinds of web templates, which are rigid tem-
plate and soft template, two kinds ofloss templates can be outputted by the algorithm, as
shown in Fig. 9. Processing steps of web template validation are described in Algorithm
5.

Fig. 9. The workflow of Web template validation.

Algorithm 5: Template validation.

Input: A DOM trees TV , web template T P

Output: template loss containing missing nodes
begin

lossNodes←{};
matchedNodes← LevelMatching(T P,TV);
//get the missing nodes
lossNodes←{T P–matchedNodes};

end

IDENTIFICATION AND VALIDATION OF WEB THEMES 389

4. EXPERIMENTAL RESULTS

In this section, we present the results of experiments conducted by using proposed
identification and validation methods on two sets of input web pages obtained from Stack-
Overflow [34] and W3Schools [3]. To set up the baseline for the comparison, we first
identified the web templates from input web pages manually. We use the Chrome Dev-
Tools [35] to manually inspect and identify elements that belong to the templates, such
as header, footer, banner, sidebars, navigation bars, etc. Then we did the same procedure
using the tool Difflib [36]. The rigid template and soft template identification algorithms
were executed in the same manner. With the soft template, we investigate both two tree
matching methods using LCS and Suffix Tree [13]. The number of nodes in the DOM
trees of resulting template pages is counted and compared. Overall, we have five result-
sets for each experiment as discussed in the following sub-sections.

4.1 Experiment 1: StackOverflow Template

With input web pages from StackOverflow, we select two pages which are a typical
question-answer page in Fig. 10 (a) and a member registration page in Fig. 10 (b). The
number of extracted template nodes by different identification methods is shown in Table
2.

Table 2. The experimental results with StackOverflow website.
Method Number of nodes identi-

fied in the template

Manual identification 427
Rigid template 420
Soft template with LCS 431
Soft template with Suffix Tree 427
Difflib tool 346

The numbers of template nodes extracted by proposed methods are comparable with
that of manual identification. In Fig. 11, the blue boxes are GUI elements that are iden-
tified as web template nodes, and the red boxes mark elements that were missed in the
rigid template but were well identified in the soft template. Since the registration form in
Fig. 10 (a) appears at the top and shift the index of the following nodes, some blocks were

(a) (b)
Fig. 10. Input web pages from StackOverflow.

390 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

(c) (d)
Fig. 11. Identified web templates from StackOverflow: (a) Manual template; (b) Rigid template;
(c) Soft template with LCS; (d) Soft template with SuffixTree.

missing the identified rigid template in Fig. 11 (b) in comparison to the soft templates
shown in Figs. 11 (c) and (d). The soft template with LCS was quite different from the
soft template with Suffix Tree. Since the matching procedure with Suffix Tree tries to
find longest matching subtrees, the tag sequences should be continuous. If there are extra
nodes inserted between template nodes, the matching methods with Suffix Tree cannot be
matched, like the central text in Fig. 11 (d). Overall, the soft template with LCS produced
outperformed other methods in template identification results, due to its flexibility in the
matching method.

4.2 Experiment 2: W3Schools Template

In the second experiment, we conducted the same procedure as in Experiment 1 with
input pages from the W3Schools website (Fig. 13). The number of discovered template
nodes in Table 3 shows the advancement of the soft template with LCS in comparison
with other methods. The template nodes in the central block also better recognized by the
soft template with LCS than the soft template with Prefix Tree, as shown in Fig. 13 (c).

Table 3. The experimental results with W3Schools website.
Method Number of nodes identi-

fied in the template

Manual identification 656
Rigid template 656
Soft template with LCS 664
Soft template with Suffix Tree 656
Difflib tool 591

IDENTIFICATION AND VALIDATION OF WEB THEMES 391

(a) (b)
Fig. 12. Input web pages from W3Schools.

(c) (d)
Fig. 13. Identified web templates from W3Schools: (a) Manual template; (b) Rigid template;
(c) Soft template with LCS; (d) Soft template with SuffixTree.

Finally, we tested the validation function of our approach with the input web pages
from W3School in Fig. 14 (a) accordingly to the template shown in Fig. 14 (b). It can be
seen that the blue mark on Fig. 14 (b) is the template nodes missed in Fig. 14 (a).

The above experimental results demonstrate the performance of our method for iden-
tification and validation of web templates. Our method surpasses the Difflib [36] tool in
all test cases. The rigid template identification method has a comparable performance to
the manual identification. With the flexible mechanism in DOM tree matching, the soft
method with LCS-based matching provides the most acceptable results, which were sig-
nificantly better than themselves with the Suffix Tree-based matching. With the fruitful
results obtained, our approaches are certainly suitable for integration into web GUI testing
systems.

392 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

(a) (b)
Fig. 14. Validation web templates from W3Schools: a) The input web page; b) Result of template
validation.

5. CONCLUSION

In this paper, we come up with an automatic system for identifying and verifying
web theme templates using DOM tree analysis and matching algorithms. Two types of
web templates and their identification algorithms were presented. The rigid template is
suitable for websites with fixed layouts, where the positions of GUI elements are often
pinned. The soft template can be applied in web development in a more flexible manner,
where GUI elements can be occasionally added to web pages under the same ordered
framework. Our proposed system can drastically reduce the labor costs of web developers
in verifying the conformity of newly developed web pages with pre-defined web themes.
With our system, developers no longer have to manually check the web template to ensure
the consistency of the website. Besides, our template identification algorithms can be
applied in web mining or information retrieval tasks, as it can easily extract web content
by eliminating the web templates from the DOM trees. Nevertheless, our approach is
limited in the condition that a base tree T P is required as input for template identification.
Currently, the web templates cannot identify without a base tree. In future work, we
will study the fully automatic identification of web templates directly from a set of input
pages. In addition, we will integrate continuous integration techniques into our system to
facilitate automatic validation of website quality when new changes are committed.

REFERENCES

1. M. Stal, “Web services: beyond component-based computing,” Communications of
the ACM, Vol. 45, 2002, pp. 71-76.

2. S. Souders, “High performance web sites,” Queue, Vol. 6, 2008, pp. 30-37.
3. W3Schools, “Html5 semantic elements,” https://www.w3schools.com/html/html5

semantic elements.asp, 2020.
4. A. A. Ozok and G. Salvendy, “How consistent is your web design?” Behaviour &

Information Technology, Vol. 20, 2001, pp. 433-447.
5. M. J. Escalona, M. Urbieta, G. Rossi, J. A. Garcia-Garcia, and E. R. Luna, “Detecting

web requirements conflicts and inconsistencies under a model-based perspective,”
Journal of Systems and Software, Vol. 86, 2013, pp. 3024-3038.

IDENTIFICATION AND VALIDATION OF WEB THEMES 393

6. D. Gibson, K. Punera, and A. Tomkins, “The volume and evolution of web page tem-
plates,” in Special Interest Tracks and Posters of the 14th International Conference
on World Wide Web, 2005, pp. 830-839.

7. A. Arora and M. Sinha, “Web application testing: A review on techniques, tools and
state of art,” International Journal of Scientific & Engineering Research, Vol. 3, 2012,
p. 1.

8. S. Doğan, A. Betin-Can, and V. Garousi, “Web application testing: A systematic
literature review,” Journal of Systems and Software, Vol. 91, 2014, pp. 174-201.

9. P. Bille, “A survey on tree edit distance and related problems,” Theoretical Computer
Science, Vol. 337, 2005, pp. 217-239.

10. P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia, “A tree-edit-distance algorithm for
comparing simple, closed shapes,” in Proceedings of the 11th Annual ACM-SIAM
Symposium on Discrete Algorithms, 2000, pp. 696-704.

11. S. S. Chawathe et al., “Comparing hierarchical data in external memory,” in Proceed-
ings of the 25th Very Large Database Conference, Vol. 99, 1999, pp. 90-101.

12. K.-C. Tai, “The tree-to-tree correction problem,” Journal of the ACM, Vol. 26, 1979,
pp. 422-433.

13. R. Grossi, “On finding common subtrees,” Theoretical Computer Science, Vol. 108,
1993, pp. 345-356.

14. A. Lozano and G. Valiente, “On the maximum common embedded subtree problem
for ordered trees,” String Algorithmics, 2004, pp. 155-170.

15. S. Mozes, D. Tsur, O. Weimann, and M. Ziv-Ukelson, “Fast algorithms for computing
tree lcs,” Theoretical Computer Science, Vol. 410, 2009, pp. 4303-4314.

16. T. Gowda and C. A. Mattmann, “Clustering web pages based on structure and style
similarity,” in Proceedings of IEEE 17th International Conference on Information
Reuse and Integration, 2016, pp. 175-180.

17. G. Gupta and I. Chhabra, “Optimized template detection and extraction algorithm for
web scraping of dynamic web pages,” Global Journal of Pure and Applied Mathe-
matics, Vol. 13, 2017, pp. 973-1768.

18. G.-S. Yin, G.-D. Guo, and J.-J. Sun, “A template-based method for theme information
extraction from web pages,” in Proceedings of IEEE International Conference on
Computer Application and System Modeling, Vol. 3, 2010, p. V3-721.

19. K. Vieira, A. S. Da Silva, N. Pinto, E. S. De Moura, J. M. Cavalcanti, and J. Freire,
“A fast and robust method for web page template detection and removal,” in Pro-
ceedings of the 15th ACM International Conference on Information and Knowledge
Management, 2006, pp. 258-267.

20. K. Bringmann, P. Gawrychowski, S. Mozes, and O. Weimann, “Tree edit distance
cannot be computed in strongly subcubic time (unless apsp can),” ACM Transactions
on Algorithms, Vol. 16, 2020, No. 48.

21. D. Buttler, “A short survey of document structure similarity algorithms,” in Proceed-
ings of International Conference on Internet Computing, Vol. 1, 2004, pp. 3-9.

22. S. Pushpa and D. Kanagalatchumy, “A study on template extraction,” in Proceedings
of IEEE International Conference on Information Communication and Embedded
Systems, 2013, pp. 109-115.

23. S. Joshi, N. Agrawal, R. Krishnapuram, and S. Negi, “A bag of paths model for
measuring structural similarity in web documents,” in Proceedings of the 9th ACM

394 B.-A. NGUYEN, H.-M. CHEN, C.-R. DOW, Y.-T. CHEN, H.-T. DUONG

SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003,
pp. 577-582.

24. H. Wang and Y. Zhang, “Web data extraction based on simple tree matching,” in
Proceedings of IEEE WASE International Conference on Information Engineering,
Vol. 2, 2010, pp. 15-18.

25. J. Alarte, D. Insa, J. Silva, and S. Tamarit, “Temex: The web template extractor,”
in Proceedings of the 24th International Conference on World Wide Web, 2015, pp.
155-158.

26. J. Alarte, D. Insa, J. Silva, and S. Tamarit, “Site-level web template extraction based
on dom analysis,” in Perspectives of System Informatics, 2016, pp. 36-49.

27. S. Brisset, R. Rouvoy, R. Pawlak, and L. Seinturier, “Sftm: Fast comparison of
web documents using similarity-based flexible tree matching,” arXiv Preprint, 2020,
arXiv:2004.12821.

28. S. R. Choudhary, H. Versee, and A. Orso, “Webdiff: Automated identification of
cross-browser issues in web applications,” in Proceedings of IEEE International Con-
ference on Software Maintenance, 2010, pp. 1-10.

29. A. Mesbah, A. Van Deursen, and D. Roest, “Invariant-based automatic testing of
modern web applications,” IEEE Transactions on Software Engineering, Vol. 38,
2011, pp. 35-53.

30. A. Roudaki, J. Kong, and K. Zhang, “Specification and discovery of web patterns: a
graph grammar approach,” Information Sciences, Vol. 328, 2016, pp. 528-545.

31. K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk, “Automated re-
porting of gui design violations for mobile apps,” in Proceedings of the 40th ACM
International Conference on Software Engineering, 2018, pp. 165-175.

32. V. Chvatal and D. Sankoff, “Longest common subsequences of two random se-
quences,” Journal of Applied Probability, Vol. 12, 1975, pp. 306-315.

33. Selenium, https://www.seleniumhq.org, 2020.
34. StackOverflow, https://www.stackoverflow.com, 2020.
35. Chrome DevTools, https://developer.chrome.com, 2020.
36. Difflib, https://docs.python.org/3/library/difflib.html, 2020.

Bao-An Nguyen received B.S. in Hanoi University of Sci-
ence and Technology in 2005 and the M.S. and the Ph.D. degrees
in Information Engineering and Computer Science from Feng
Chia University, Taiwan, in 2011 and 2021, respectively. He
is currently a faculty of Department of Information Technology,
Tra Vinh University, Vietnam. His research interests include data
mining, software engineering and education technology.

IDENTIFICATION AND VALIDATION OF WEB THEMES 395

Hsi-Min Chen received the B.S. and Ph.D. degrees in com-
puter science and information engineering from National Cen-
tral University, Taiwan, in 2000 and 2010, respectively. He is
currently an Associate Professor with the Department of Infor-
mation Engineering and Computer Science, Feng Chia Univer-
sity, Taiwan. His research interests include software engineer-
ing, programming education, object-oriented technology, ser-
vice computing, and distributed computing.

Chyi-Ren Dow was born in 1962. He received the B.S. and
M.S. degrees in information engineering from National Chiao
Tung University, Taiwan, in 1984 and 1988, respectively, and
the M.S. and Ph.D. degrees in computer science from the Uni-
versity of Pittsburgh, PA, in 1992 and 1994, respectively. He is
currently a Distinguished Professor with the Department of In-
formation Engineering and Computer Science, Feng Chia Uni-
versity, Taiwan. His research interests include mobile comput-
ing, ad-hoc wireless networks, agent techniques, fault tolerance,
and learning technology.

Yan-Ting Chen received his M.S. degree in the Depart-
ment of Information Engineering and Computer Science, Feng
Chia University, Taiwan. His research interests include software
engineering, software quality assurance and web technologies.

Hoang-Thanh Duong received his B.S. degree in the De-
partment of Information Technology, Tra Vinh University, Viet-
nam in 2018. He is currently a master student in the the Depart-
ment of Information Engineering and Computer Science, Feng
Chia University, Taiwan. His research interests include software
engineering, web technologies, IoT and mobile applications.

