
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 275-294 (2022)

DOI: 10.6688/JISE.202203_38(2).0001

275

Online Judgment System

for Assessing C Program Structure*

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN

AND CHENG-YAN GUO+
Department of Computer Science

National Taichung University of Education

Taichung, 403 Taiwan

E-mail: csko@mail.ntcu.edu.tw; {bcs106119; bcs108110}@gm.ntcu.edu.tw; R04458006@ntu.edu.tw

The Online Judge (OJ) system solves many teaching problems of programming

course design in traditional teaching modes and enhances teaching quality and learning

effectiveness. Most of the OJ systems rate students by compiling and executing their code

and then comparing the output with the standard output. However, program code content

and students’ ability to program structure cannot be accessed with such design. To improve

this shortcoming, we have developed an “automatic structure assessment module” and

added it to the existing system. The module functions to check the student program struc-

ture, enabling the OJ system to measure code quality. Such extended functionalities enable

the OJ system to produce more accurate assessments of programming learning perfor-

mance. Furthermore, how the program structure can be described in the program structure

specification is another challenge. Thus, we have also developed a visual program structure

description editor. The teacher can handily specify the program structure specification re-

quired by the program structure according to the teaching topic so that the OJ system can

execute program structure checking. The functionalities of automatic program structure

assessment combined with the visual program structure description editor can be used to

rapidly generate many examinations and practice questions that require program structure

evaluation, and thus truly achieve the efficiency of automatic program structure assessment

as well as enhancing students’ quality of program structure. Finally, in the six-week teach-

ing experiment, there are a total of 61 valid samples. Using our structure comparison sys-

tem can effectively improve the learning effectiveness of low-score group students in pro-

gramming.

Keywords: program structure assessment, automatic assessment, online judge system, pro-

gramming teaching, syntax tree, programming language

1. INTRODUCTION

C language is a widely used computer language and also an introductory course in

many related departments of computer science of universities [1, 2]. However, it is not

easy to learn well for first-year students. For programming courses that involve practices,

traditional teaching modes are not sufficient. Learning setbacks often arise in the learning

process [3]. Compared with simple lecture teaching modes, exercises are more effective in

learning programming [4]. However, it is difficult for teachers to check the students’ pro-

gramming code one by one in class, and thus they find it hard to assess student learning [5,

6]. Therefore, many teachers use the “Online Judge (OJ) system” to facilitate teaching,

Received March 11, 2020; revised November 6, 2020 & January 3, 2021; accepted February 5, 2021.

Communicated by Tzung-Pei Hong.
+ Corresponding author.
* This study is supported in part by the Ministry of Science and Technology in Taiwan under contract numbers

MOST107-2511-H-142-008-MY2, 109-2511-H-142-008, and 109-2511-H-142-010-MY3.

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

276

allowing learners to quickly receive feedback and teachers to track student learning in real-

time. The OJ system has many benefits. It offers abundant opportunities for hands-on prac-

tices, improves the efficiency of scoring, provides instant feedback, and establishes objec-

tive assessment criteria [7-12]. However, it also has shortcomings. The general OJ system

only checks the executing output, not the quality of the program [7]. Therefore, it cannot

judge whether the program structure is written according to the required structure of test

questions [11]. When taking exercises, some students focus on how to pass the test cases

rather than how to use the new concepts of program structure. By using OJ system, teachers

cannot make sure whether their students learn new required programming skills [9]. It

makes such OJ systems less helpful to improve programming ability and cultivate the

knowledge of program structure. Program structure knowledge is critical because it is the

foundation of many required courses, such as data structures, algorithms, and so on. Data

structure and algorithm are the core abilities of information engineering in computer sci-

ence [13]. Learning how to write codes and algorithm are complementary [14]. The data

structure is also the introductory course of the Department of Information Science [15].

These methods and principles are the basis for learning compilation, design, system oper-

ation, and database [16]. Therefore, without a conception of program structure, students will

encounter many difficulties when taking these required courses. To solve this problem, we

have developed the automatic program structure assessment module to enhance our original

OJ system, enabling it not only to check the program output, but also the program structure.

The main concept is to convert the student’s code into a syntax tree, and then compare

the student code’s syntax tree with the required template syntax tree. This research uses

combinatorics expressions to describe our research methods, define the descriptive syntax

tree rules of program structure representation, and develop program structure comparison

algorithms. Also, the program structure description is more complicated to express in text

format, it is difficult to create a large number of program questions quickly. To assist

teachers to quickly create program structure description, we also have developed the visual

editor. The visual editor can allow teachers visually to create program structure require-

ments for examination questions.

2. RELATED WORK

2.1 Online Judge System

OJ systems have been used for many years [7, 17]. Currently, they are more widely

applied in programming courses. Such systems can immediately judge source code from

the students automatically [7]. The traditional OJ system cannot meet the practice needs of

teaching; so many researchers develop extended functionalities for the OJ system on de-

mand. The following will introduce the extended functionalities and related works.

Higgins et al. developed an OJ system with JAVA named Course Marker and applied

it to improve the lack of network connectivity in the old system Ceilidh, and enhanced the

system’s capability of feedback [18]. The system supports the scoring of Java and C++ and

conducts testing by compiling the code and comparing the test data [18]. Following the

ACM Programming Contest model, Jianhua Wu et al. developed an online OJ system to

assist students in program coding. The system supports Assembler, C/C++, Pascal, Java,

C#, etc. It compiles, executes the code, analyzes the results, and then per-forms evaluations,

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 277

hence improving its programming ability considerably [12]. Hui Sun et al. designed the

YOJ system as a teaching assisted tool for programming courses. They considered that the

available systems only pay attention to whether problems are solved in a given time, rather

than how. Consequently, they developed an answering mode of filling in the blank. Stu-

dents need to fill in some code, and the YOJ system only can check how students under-

stand specific knowledge [8].

Siwan Tang, et al. Studied and analyzed the MOOC’s automatic scoring system tools

(Massive Open Online Course). They found that programming capability can be improved

with the online judge system. On the other hand, it can reduce the workload of teachers.

However, they found some shortcomings in long-term use: only considering the output

without checking the content, the system cannot distinguish how serious the error codes.

Therefore, they have proposed a model of keyword syntax check in the system to make up

for the shortcomings [9].

Aizu University Database System Laboratory analyzed the recorded data uploaded by

beginners to Aizuo OJ System. The results showed that many programmers hope to iden-

tify defects in the code at an early stage of writing the program to reduce the risk of errors

[19]. Zhou, et al. [20] raise some doubts about the traditional OJ system:

• Rating the program based on the number of test cases passed only, rather than compar-

ing code quality.

• Lack of personalized feedback. When a student code is incorrect, they can get the error

information of test cases only, unable to know the exact reason. Sometimes a small error

will take much time to fix, which brings great trouble to the course.

• The code plagiarism problem. The existing OJ system does not pay attention to plagia-

rism detection.

Zhou et al. have designed a new OJ system to solve these problems. They provide

code similarity checking, and code quality evaluation and personalized feedback analysis

tools are still under development [20].

Poon et al. thought that there are many forms of programming problems. Thus, it is

not appropriate if the OJ system can only support the output’s accurate matching answer.

The system may judge as an error a small difference between the output and test case due

to a minor difference after the decimal point, which may discourage learners and even

make them lose their motivation to learn. At the same time, teachers feel restricted in the

flexibility of test design. To resolve this problem, they proposed the Hierarchical Program

Output Structure (HiPOS) system, which provides more expressiveness and flexibility to

the output and can build modeling of the program output. They conducted experiments and

computed the average grades, and they compared the automatic evaluation method and ma-

nual judgment approach, which got the results of accuracy of 0.8467 [21]. It is difficult for

novices to master the syntax of programming languages. Providing enhanced compiler errors

may not help them fix syntax errors. Therefore, more evidence is required that the profes-

sionally-oriented static analysis tool does identify factual errors in beginners’ code [22-24].

The above OJ systems evaluate programs mainly by inputting test cases and compar-

ing output; some will improve their shortcomings. Such as scoring specific knowledge,

keyword verification, code quality evaluation, personalized feedback, and code similarity

checks, etc. For example, the YOJ system of Hui Sun et al. uses the mode of filling-in-the-

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

278

blank questions to check whether students can learn specific knowledge. Although it is

helpful for students to learn, we hope students can further obtain the program execution

results and code quality. Such as information about structure detection, while practicing

and submitting the code, Siwan, Tang et al. designed a system capable of checking the

program content with keyword verification.

However, we prefer to look into the program’s whole structure since keyword verifi-

cation can find what we want, but it cannot tell us where the error lies. For example, if we

want students to use nested for-loop, we hope to check whether they place one loop inside

another's body, rather than just two for-loops. The conception of Zhou, et al. [20] is differ-

ent from ours, but the code plagiarism detection is also worthy of further development.

2.2 Comparison of Current OJ System

Table 1 list the characteristics and research directions of the existing online judge

system. Including ours and other related research in recent years, these systems can mainly

support C/C++ assessment, and some systems such as that of Zhou, et al. [20] and our

system can support JAVA language. Zhou, et al. [20] can also support some interpreted

language such as Python and JavaScript. The judge mode can support general judgment,

that is, the commonly used judge method of compiling and executing, then comparing the

output results. The current studies of OJ systems are also based on this method and then

develop their features. Some systems allow deviation in comparing output results (such as

floating-point numbers) in comparing output results, making the answer more flexible.

Poon, et al. [21] and our system have the function of allowing the range of floating-point

deviation. Our system also provides a comparison mode for ignoring symbols like spaces

and line breaks for string comparison. In order to overcome the shortcomings of OJ system

that only checks program execution results, the current trend of OJ system has been shifted

to focus on checking program content and structure. Sun and Tang respectively proposed

static detection methods for filling in questions and keywords detection. Zhou, et al. [20]

proposed to use Machine Learning to analyze the code and provide personalized feedback.

Pham and Nguyen [25] research is to design a solution to prevent plagiarism. The research

of Kasahara, et al. [26] is based on calculating the value of (CC) Cyclic Complexity and

making the leaderboard of best CC value so that students would think about how to write

a better code against each other to achieve the effect of improving students’ programming

skill indirectly. The development goals of Sun and Tang are similar to ours. However, we

hope students can submit their completed code for scoring and get feedback on program

execution results and program quality (such as program structure). Our purpose is to de-

velop an automatic program structure assessment system to automatically detect the code's

content by comparing whether the student’s program has the expected structure. Personal-

ized feedback is the goal of the Machine Learning of Zhou, et al. [20]. However, it is still

uncertain how detailed the personalized feedback information currently available on their

system. For achieving the effect of personalized feedback, our system can point out what

structure is expected and where it should be when the students’ program structure is wrong.

As for the code quality assessment, Kasahara, et al. [26] uses calculating the program CC

(Cyclic Complexity) to score the quality of the code. We think this is a straightforward

concept, but a very innovative application method. Since our program structure analysis

can also quickly analyze the Cyclic Complexity of the code, we may also consider follow-

ing Kasahara, et al. [26] way to score the code quality in the future.

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 279

Table 1. Comparison of current OJ system.

Sun

(2014)

Tang

(2016)

Poon

(2018)

Zhou

(2018)

Pham

(2019)

Kasahara

(2019)

Our study

(2020)

Supported

languages
C No system C++

C/C++

JAVA

Python

JavaScript

C++ C
C

JAVA

Results

assessment
V No system V V V V V

Fuzzy

results

assessment

X No system V X X X V

Source

code content

checking

Fill

in code

sentence

Keyword

detection
X

Analysis

by machine

learning

Clone

detecting

Calculate the

value of Cyclic

Complexity

Program

structure

assessment

Clone

detecting
X X X V V X X

Personalized

feedback
X X X V X X V

Code quality

assessment
X X X X X V X

‘V’ denotes to have functionality; ‘X’ denotes to have not functionality.

3. SYSTEM DESIGN

Automatic program structure assessment is more complicated than traditional scoring

of program output. Its primary focus is on how to describe the structure of the code and

how to allow OJ-System to perform automatic assessments accordingly. To perform an

automatic structure assessment, we design a process for creating a test question, and a

visual program structure editing tool is used. The required code structure is edited visually,

and then program structure specification is generated, which is used as test cases. Then,

through the expanded program modules of the OJ-System, automatic structural assessment

is conducted. The available automatic scoring system requires a unified output format

specification before scoring. In this study, the expected program structure is converted into

a specific expression format, and so is the student’s code. The student’s code is compared

with the expected program structure in this format, and automatic structural inspection is

conducted. The Syntax tree of the program code is a specific unified format. As shown in

the example in Fig. 1, if we can convert the student’s code into a syntax tree, after simpli-

fication, it is compared with our standardized structure grammar. The system can detect

whether the student’s program structure conforms to the question specification.

3.1 The Principles of Structural Inspection

The concept of student program structure comparison is mainly to convert the stu-

dent’s code into a syntax tree, and then compare the student code’s syntax tree with the

template pattern syntax tree required by the question to validate whether the student’s pro-

gram structure meets the requirements of the question (Fig. 1). It is used to improve the

quality of student code when implementing programming teaching. We will explain in

more detail in this chapter.

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

280

 Fig. 1. The principles of structural inspection.

We define the similarity of two programs using Eq. (1). S and T are the abstract syntax

tree (AST) token set of the student program and the required template structure program.

Where Sim(S, T) can be expressed as the degree of intersection of S and T.

|{ |(,) }| |{ |(,) }|

| | | |
(,) ,0 (,) 1

s si i j i i jS s t R T s t R

S T
Sim S T Sim S T

 + 

+
   (1)

In Fig. 2, R is the AST token matching of S and T. The set is defined as R ⊂ S  T, and

when T ⊆ S, it means that there are indeed some grammatical similarities in the student

program [27].

Fig. 2. Correspondence of elements R.

The intersection between the AST token sets of the software system can only indicate

the similarity of the two software systems’ grammatical use. It cannot quantify the degree

of structural similarity between the software systems. For the degree of structural similarity,

the Eq. (2) is a subtree matching algorithm can detect the maximum length matching of

the AST subtree that meets the template program in the student program AST. The tiles

are the set of matching intersections of all subtrees of AST of S and T [28]. The maxi-

mal_matching is the maximum length of subtree matching in [28], where tiles are the set

of matching of all subtrees Jiang, et al. [29]. When the maximal_matching(S, T) of the

AST intersection of S and T is 1, then S = T, 0 ≤ maximal_matching(S, T) ≤ 1.

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 281

_ (, ,)

2 tiles
| | | |

_ (,) ,0 _ (,) 1

subtree matching s t length tiles

S T
maximal matching S T maximal matching S T

tiles length



+

=  

= 
 (2)

If Eq. (3) are equal, the student program AST has all the elements in the specified

template structure program AST, and the degree of structural similarity is precisely the

same. If unequal indicates that the maximum length of the AST subtree matches, and it is

not equal to the size of all tokens in the template structure program AST, the structure is

considered to be different.

| |

| | | |

| |

| | | |

_ (,) , is a subtree of

_ (,) , is not a subtree of

T

S T

T

S T

maximal matching S T T S

maximal matching S T T S

+

+

 =


=

 (3)

3.2 Comparison Algorithm for Program Structure

To achieve automatic structure scoring and keep coding flexibility, we use parser

Bendersky [30] to convert the program into a syntax tree. Then, through the function of

tree reduction developed, it is converted into an intermediate format defined by our system.

The required structure representation is also expressed in our defined intermediate format,

Table 2 is used to indicate the node of the rule; each node can be divided into three parts:

level of a node, type, and secondary attributes.

Table 2. Structural rule keyword table.

Types Description example

ArrayDecl Declare array int s[100];

Assignment Assign variable i=0;

BinaryOp Operator，ex.>,<,==,>=,!=, etc. x<100;

Break Break statement if(a>b) break;

Case Case statement in switch case 'A':

Compound Code block{} int main(){ … }

Constant Constant or string a = 100;

Continue continue statement if(a<b) continue;

Decl Declare variables int a;

DeclList Declare variables in the for loop for(int i=0; …)

Default Default statement in switch default: …

DoWhile do while statement do{...}while(…)

For for statement for(int i=0;i<=10;i++)

FuncCall Call function printf("Hello world!");

FuncDecl Define function int sum(int a, int b){...}

ID Use variable printf("%d",sum);

IdentifierType Variable type int i;

If if statement if(a>b) {…};

Return return statement return 0;

Struct struct statement struct person{…}

Switch switch statement switch(a){…}

TypeDecl Declare variable, use with Identi-

fierType

int i;

UnaryOp Unary operators, ex.&,,--,etc. scanf("%d",&a); i++;

While while statement while(…){…}

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

282

According to the combinatorics in the previous section, in order to detect whether the

student’s program meets the requirements of the program structure of the test question, we

have designed an algorithm for structure comparison, which mainly uses recursive meth-

ods to compare the nodes of the syntax tree, as shown below in Algorithm I. The pseudo-

code is shown below. Each grammar node has several significant attributes for comparison.

It contains:

• mainValue (primary attribute): to store the main identity information of the node,

such as Binary Operation, IdentifierType, for, while, etc.

• subValue (secondary attribute): to store secondary data of the node, such as Binary

Operation may be the comparison symbol >=, IdentifierType may be int type etc.

• Parent node: to record the upper node of the node.

• Child node: to record which lower nodes the node has.

• nodeCompare(A, B): Compare data between A and B, when the mainValue and sub-

Value of the two nodes are the same, return true; otherwise, return false. When B’s

mainValue is "ANY," any data of the A node can be matched must return true. When

B’s mainValue is "NOT," it means that the mainValue of A is not in the subValue of B.

If it does not have it, it will return true; otherwise, it will return false.

• setTarget(targetNode): When a node that does not meet the expectations is detected,

this function will store the node in a global variable targetNode. The subtree matching

algorithm will determine the unmatched node after the execution.

Algorithm I: Structure Compare

1. Input:

2. nodeA  node of the student code tree.

3. nodeB  node of the except code tree.

4. FUNCTION treeComparator(nodeA,nodeB) :

5. global targetNode

6. R  'init'

7. IF len(nodeB.children) > 0 :

8. index  0

9. FOR B in nodeB.children :

10. IF len(nodeA.children) > index :

11. FOR A in nodeA.children[index:] :

12. index += 1

13. IF nodeCompare(A,B):

14. R  treeComparator(A,B)

15. IF R is True:

16. targetNode  None

17. break

18. ELSEIF R is False:

19. setTarget(targetNode)

20. RETURN False

21. ELSE: # R  None

22. continue

23. ENDIF

24. ELSEIF B.mainValue = "NOT" AND

(A.mainValue in B.subValue OR B.subValue in A.mainValue):

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 283

25. IF setTarget(targetNode)

26. RETURN False

27. ELSEIF index = len(nodeA.children):

28. setTarget(targetNode)

29. RETURN None

30. ENDIF

31. ENDFOR

32. ELSE:

33. setTarget(targetNode)

34. RETURN None

35. ENDIF

36. ENDFOR

37. ENDIF

38. IF R is None AND nodeB.mainValue = 'root':

39. RETURN False

40. ELSEIF R is None :

41. RETURN None

42. ELSE:

43. RETURN True

44. ENDIF

For an AST of N nodes, this comparison process is O(N3), and empirically, an exten-

sive software system of M lines of code has N = 10*M AST nodes [31].

3.3 Inspection Example Demonstration

We illustrate with practical examples. The test questions require students to practice

using the double-layer for loop to print the nine-nine multiplication table. As shown in

Figs. 3 and 4, it is a practical case of the correct student answer. It is implemented with a

double-layer for-loop, and it passes the automatic structure inspection. As shown in Figs.

5 and 6, it is an actual case of the incorrect student answer. It is implemented with one

layer of for-loop and adds the printf() instruction. The automatic structure scoring system

will check for errors, as shown in Fig. 6. The general OJ system cannot detect such errors.

Fig. 3. Correctly structured code. Fig. 4. Code with correct structure will pass the inspec-

tion.

FuncDef:

Decl: main, [], [], []

FuncDecl:

TypeDecl: main, []

IdentifierType: ['int']

Compound:

For:

DeclList:

Decl: i, [], [], []

TypeDecl: i, []

IdentifierType: ['int']

Constant: int, 1

BinaryOp: <=

ID: i

Constant: int, 9

UnaryOp: p++

ID: i

Compound:

For:

….

PyCparser

Tree

Reduction

1,FuncDef,

2,Decl,main,[],[],[]

3,FuncDecl,

4,TypeDecl,main,[]

5,IdentifierType,[int]

2,Compound,

3,For,

4,DeclList,

5,Decl,i,[],[],[]

6,TypeDecl,i,[]

7,IdentifierType,[int]

6,Constant,int,1

4,BinaryOp,<=

5,ID,i

5,Constant,int,9

4,UnaryOp,p++

5,ID,i

4,Compound,

5,For,

…

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

284

Fig. 5. Code with incorrect structure. Fig. 6. Code with incorrect structure will not pass the

inspection.

3.4 Visual Editor for Program Structure Description

The structure rule statement has a specific format, and the required program structure

description file must be writhed in this format before a comparison can be performed. In

order to allow teachers to edit the desired structure rules conveniently and quickly, we

developed a visual structure rule editor, which can be used in the visual syntax tree mode

or the programming mode to write structure rules. The visual syntax tree editor is shown

in Fig. 7. The left is the edit area, and the right is the structure rule preview area; the pro-

gramming mode and visual syntax tree mode can be switched, the structure syntax tree can

be previewed, and the new/add/delete node functions are provided. The current visual syn-

tax tree model can support the generation of grammar nodes related to process control.

FuncDef:

Decl: main, [], [], []

…

Compound:

For:

...

Compound:

FuncCall:

ID: printf

ExprList:

Constant: string, "%d*1=%d\n"

ID: i

BinaryOp: *

ID: i

Constant: int, 1

FuncCall:

ID: printf

ExprList:

Constant: string, "%d*1=%d\n"

ID: i

BinaryOp: *

ID: i

Constant: int, 2

…

Constant: string, "%d*1=%d\n"

ID: i

BinaryOp: *

ID: i

Constant: int, 9
PyCparser

Tree

Reduction

1,FuncDef,

2,Decl,main,[],[],[]

...

2,Compound,

3,For,

...

4,Compound,

5,FuncCall,

6,ID,printf

6,ExprList,

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,1

5,FuncCall,

6,ID,printf

6,ExprList,

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,2

...

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,9

Tree

Comparator

1,FuncDef,

2,Decl,main,

2,Compound,

3,For,

4,Compound,

5,For,

1,FuncDef,

2,Decl,main,[],[],[]

...

2,Compound,

3,For,

...

4,Compound,

5,FuncCall,

6,ID,printf

6,ExprList,

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,1

5,FuncCall,

6,ID,printf

6,ExprList,

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,2

...

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,9

1,FuncDef,

2,Decl,main,[],[],[]

...

2,Compound,

3,For,

...

4,Compound,

5,FuncCall,

6,ID,printf

6,ExprList,

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,1

5,FuncCall,

6,ID,printf

6,ExprList,

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,2

...

7,Constant,string,"%d*1=%d\n"

7,ID,i

7,BinaryOp,*

8,ID,i

8,Constant,int,9

X

Do not pass

structure checking

Node structure:

Decl,main,

Compound,

For,

Compound,

For,← error node!

 Fig. 7. Visual editor for program structure description.

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 285

4. SYSTEM DEMONSTRATION AND EXAMPLE

4.1 The Assessment Process

We have embedded the automatic structure assessment module into the previously

developed OJ System to strengthen the functionalities. We have also developed a user in-

terface for teachers to write structural answers. The following are the introduction to our

system’s assessment process and the functional description of the module.

The automatic assessment process is shown in Fig. 8. When the student submits the

code once, the system will perform test case comparison and structure comparison if the

compilation is successful. The test case comparison will calculate the score according to

the number of cases passed. The source code will be converted into a structure tree for

structure comparison and compared with the “expected structure” tree to detect its ex-

pected structure. When the structure is correct, we will report the message that the code

passes the structure check, but if the structure is wrong, we will find out what the error is

and output an analysis report to the student.

Fig. 8. The process of structural assessment.

4.2 The System Modules of Automatic Structure Assessment

 Automatic structure assessment module is mainly composed of the Structure Assess-

ment Module and Visual Structure Assessment Module (Fig. 9). The two modules are de-

scribed as follows:

Is it a
.c extension file

or not?

Compile the codes

If compilation
Successful or not?

Run exe file Parse codes

Input test data

Compare results

Generate
code structure tree

Compare structure

Structure
correct or not?

Calculate score

Output result log file

No

No

No

Yes

Yes

Submit source codes
from students

Generate analysis result

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

286

Fig. 9. Automatic structure assessment module.

(A) Structure Assessment Module

The primary function is to compare students’ source code captured by the automatic

assessment system and the required structure to check whether the structure is correct and

return the result to the automatic assessment system. “Assessment Process Management

Module” is responsible for controlling the incoming data and the output of results. The

incoming code will first be parsed into “Syntax tree” and via “Tree Reduction Module”

the parts we need are analyzed, and the “Student source code Structure tree” is generated.

“Assessment Pattern Rule Management Module” will find the “Structure Assessment Rule”

of the test question from the database and convert it to “Assessment Tree” for comparison

through the “Pattern Transformer Module”. “Assessment Tree” and “Student source code

Structure tree” are sent to and compared in “Tree Comparison module”. Thus, the entered

code structure tree can be checked, whether it contains the expected tree structure. And the

comparison result will be passed to “Judgment Module” to judge whether the tested code

passes the structure comparison. With “Assessment Process Management Module”, the

information will be sent back to the OJ system for users to view the inspection results.

(B) Visual Structure Assessment Rule Generator Module

To execute structural comparison, OJ systems must work with Structure Assessment

Rule. However, it is more challenging to generate Structure Assessment Rule than tradi-

tional test data. To allow teachers to design “Assessment Rule” quickly and conveniently,

we have also developed an online user interface, “Visual Structure Assessment Rule Gen-

erator Module”. With an interactive menu, teachers can easily create Assessment Rule,

which is icon-based. Fig. 9 shows the major function of “Interactive UI Management Mod-

ule” is to manage web components that provide teachers with an interactive visual user

interface. “Rule Element Manager Module” is mainly to create and manage Assessment

Rule components, such as if, while, for, etc. “Rule Graph Generator Module” is in charge

of the relations among the components of “Assessment Rule”, allowing several compo-

nents to compose “Visual Structure Tree” that is “Assessment Rule” itself. The “Interac-

tive UI Management Module” controls “Rule Element Manager Module” and “Rule Graph

Generator Module” simultaneously so that the teachers can design and set the structure

rules. When “Visual Structure Tree” is edited by the teachers, intermediate format data

“Graph Representation Form” is created. “Graph Representation Form” will be converted,

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 287

and via “Rule Graph Module” and “Rule Generator”, text-based “Structure Assessment

Module” will be generated and stored in the database for later evaluation.

4.3 System Demonstration

The following is the screen display when our system is executed. Here are the expla-

nations:

Step 1: On the answer page, the questions will be displayed here, and students can answer

them here, view the previous detailed answer records etc. in Fig. 10 (a).

Step 2: Online writing mode: students can write code directly on the webpage, and assess-

ment is conducted. In addition, the code can be submitted in the mode of uploading files

in Fig. 10 (b).

Step 3: After the code is submitted, the system will display the results of the evaluation of

test cases and structural inspection in Fig. 10 (c).

Step 4: If the structure check is not passed, the system will inform students of the result of

non-conformity. The example is that a double-layer for-loop needs to be written, but only

a single layer is detected in Fig. 10 (d).

Step 5: The teachers can use the visual structure description editor to specify the required

program structure specification, and add or delete the required program structure by click-

ing on the component in Fig. 10 (e).

Step 6: The picture shows an example of editing. When the editing is completed, the sys-

tem will generate a syntax tree on the right, which is used to check a test question’s struc-

ture in Fig. 10 (f).

(a) The screenshot of the test question for pro-

gram structure.

(b) The screenshot of the student’s answer.

(c) The screenshot of the automatic assessment

result.

(d) The screenshot of the structural inspection re-

sult.

Fig. 10. The screenshot of system demonstration.

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

288

(e) Visual program structure description editor.

(f) Syntax tree pattern generated from system.

Fig. 10. (Cont’d) The screenshot of system demonstration.

5. EXPERIMENT AND DISCUSSION

This experiment examines whether the students’ concept of program structure im-

proved after the automatic structure comparison system was added to the OJ system. The

experiment’s design shown in Fig. 12, including the control variable, includes the teacher,

teaching materials, and exercise questions; the independent variable is whether there is a

structure comparison system; the dependent variable is the students’ learning effectiveness.

The experiment process is as Fig. 11. We first teach the first-year student in the C-

language program structure for three weeks and then conduct the pre-test after students

practice. There are 19 questions in total, and s-type grouping into two groups according to

the pre-test scores from high to low. Then a two weeks review was conducted. The exper-

imental group used an OJ system with structural inspection, and the control group used an

OJ system without a structural inspection. The difficulty of the content is the same, and

experts have checked the questions.

The experimental results are 61 valid samples, 32 valid samples in the control group,

29 valid samples in the experimental group. According to the improved scores between the

pre-test and post-tests, the whole independence sample T-test showed no significant dif-

ference between the two groups.

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 289

Fig. 11. Experiment flow chart.

Further analysis, the control group and the experimental group were divided into high-

score group (top 33%), middle-score group (middle 34%), and low-score group (bottom

33%) according to the pre-test results.

Based on the improved scores to do an independent sample T-test, there is no signif-

icant difference between the control and experimental groups for the high-score and mid-

dle-score groups. It can be seen that the system has less effect on improving the learning

effectiveness of students with high-score group and middle-score group learning achieve-

ments.

However, for the low-score group 11 students in the control group, 10 students in the

experimental group. Independent sample T-test, the p-value is 0.0213*, indicating that the

two groups’ average improved scores are significantly different. The control group has an

average improvement of 2.0909 questions and a standard deviation of 2.1659. The exper-

imental group made an average improvement of 4.1 questions, with a standard deviation

of 1.3703, as shown in Table 3. The experimental group’s significance is greater than that

of the control group, which means that the program structure inspection system can im-

prove the learning effectiveness of low-group groups after the program structure inspection

system is used for students’ review.

This result is similar to Wu, et al. [11]. Low-score group students have poor basic

knowledge and autonomy. Therefore, when they do not use structure testing, they may use

standard methods to solve problems while avoiding learning new knowledge and concepts.

Using structure comparison will allow students to write according to the topic's structural

requirements and then promote them to learn new knowledge.

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

290

Fig. 12. Experimental design.

Table 3. The t-test result of learning effect for high, middle and low score group.
Group n Mean SD p-value

High

Control 11 0.2727 1.4206
0.4793

Experimental 10 0.1 1.792

Median

Control 10 2.2000 1.8135
0.4952

Experimental 9 1.4444 2.2973

Low

Control 11 2.0909 2.1659
0.0213*

Experimental 10 4.1 1.3703
*: p < 0.05, **: p < 0.01, ***: p < 0.001

6. CONCLUSIONS

The general OJ system only checks the executing output, not the quality of the pro-

gram structure. To ensure the basic requirements of software structure quality and to solve

the problem that the OJ system cannot judge the program structure, we have developed an

automatic structure assessment module to analyze the program submitted by students. This

module can also highlight where the student program does not conform to the required

program structure. In our research uses combinatorics expressions to describe our research

methods, define the descriptive grammar rules of program structure representation, and

develop program structure comparison algorithms. We have also developed the visual ed-

itor for program structure description, allowing teachers to visually specify the program

structure specification of the expected program structure so that the OJ system can auto-

matically perform structural inspections.

As a significant advantage of our system, such a design makes it handy to set test

questions and save the setting time, enabling the instructors to quickly create more test

questions. Now, we have made this OJ System available online. Finally, in the six-week

teaching experiment of programming course, the result shows that using our structure com-

parison system can effectively improve the learning effectiveness of low-score group stu-

dents in programming.

In the future, we will conduct a large number of experiments on program structure as

a reference for improving programming teaching, and we will further expand the applica-

tion to compare more programming languages.

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 291

REFERENCES

1. D. Budny, L. Lund, J. Vipperman, and J. Patzer, “Four steps to teaching C program-

ming,” in Proceedings of IEEE 32nd Annual Frontiers in Education, 2002, Vol. 2, pp.

F1G-F1G.

2. J.-B. Xie, “Problems in teaching of C programming language and their solutions [J],”

Journal of Chongqing University of Posts and Telecommunications (Social Science

Edition), Vol. 2, 2008, pp. 137-140.

3. A. J. Gomes and A. J. Mendes, “A study on student performance in first year CS

courses,” in Proceedings of the 15th ACM Annual Conference on Innovation and

Technology in Computer Science Education, 2010, pp. 113-117.

4. Á . Matthíasdóttir, “How to teach programming languages to novice students? Lectur-

ing or not,” in Proceedings of International Conference on Computer Systems and

Technologies-CompSysTech, Vol. 6, 2006, pp. 15-16.

5. H. Gao, Z. Qiu, D. Wu, and L. Gao, “Research and reflection on teaching of C pro-

gramming language design,” in Proceedings of International Conference of Young

Computer Scientists, Engineers and Educators, 2015, pp. 370-377.

6. C. A. Higgins, G. Gray, P. Symeonidis, and A. Tsintsifas, “Automated assessment and

experiences of teaching programming,” Journal on Educational Resources in Compu-

ting, Vol. 5, 2005, p. 5.

7. A. Kurnia, A. Lim, and B. Cheang, “Online judge,” Computers & Education, Vol. 36,

2001, pp. 299-315.

8. H. Sun, B. Li, and M. Jiao, “YOJ: An online judge system designed for programming

courses,” in Proceedings of the 9th IEEE International Conference on Computer Sci-

ence and Education, 2014, pp. 812-816.

9. S. Tang, L. Zou, and X. Liao, “A research on online judge technology based on MOOC

platform,” DEStech Transactions on Engineering and Technology Research, 2016, No.

iect2016/3720.

10. G. P. Wang, S. Y. Chen, X. Yang, and R.-Y. Feng, “OJPOT: Online judge & practice

oriented teaching idea in programming courses,” European Journal of Engineering

Education, Vol. 41, 2016, pp. 304-319.

11. H. Wu, Y. Liu, L. Qiu, and Y. Liu, “Online judge system and its applications in c

language teaching,” in Proceedings of IEEE International Symposium on Educational

Technology, 2016, pp. 57-60.

12. J. Wu, S. Chen, and R. Yang, “Development and application of online judge system,”

in Proceedings of IEEE International Symposium on Information Technologies in

Medicine and Education, Vol. 1, 2012, pp. 83-86.

13. N. Wirth, Algorithms and Data Structures, Pearson Education, PA, 1986.

14. R. A. Baeza-Yates, “Teaching algorithms,” ACM SIGACT News, Vol. 26, 1995, pp.

51-59.

15. R. Lawrence, “Teaching data structures using competitive games,” IEEE Transactions

on Education, Vol. 47, 2004, pp. 459-466.

16. Y.-S. Gu and J.-Y. Zhu, “Teaching research on data structure based on knowledge

structure,” in Proceedings of IEEE International Conference on Computer Science

and Software Engineering, Vol. 5, 2008, pp. 404-406.

17. S. Wasik, M. Antczak, J. Badura, A. Laskowski, and T. Sternal, “A survey on online ju-

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

292

dge systems and their applications,” ACM Computing Surveys, Vol. 51, 2018, pp. 1-34.

18. C. A. Higgins, G. Gray, P. Symeonidis, and C. Tsintsifas, “Automated assessment and

experiences of teaching programming,” Journal on Educational Resources in Com-

puting, Vol. 5, 2005, pp. 5-es.

19. C. M. Intisar and Y. Watanobe, “Classification of online judge programmers based on

rule extraction from self organizing feature map,” in Proceedings of the 9th IEEE In-

ternational Conference on Awareness Science and Technology, 2018, pp. 313-318.

20. W. Zhou, Y. Pan, Y. Zhou, and G. Sun, “The framework of a new online judge system

for programming education,” in Proceedings of ACM Turing Celebration Conference,

2018, pp. 9-14.

21. C. K. Poon, T.-L. Wong, C. M. Tang, J. K. L. Li, Y. T. Yu, and V. C. S. Lee, “Auto-

matic assessment via intelligent analysis of students’ program output patterns,” in Pro-

ceedings of International Conference on Blended Learning, 2018, pp. 238-250.

22. P. Denny, A. Luxton-Reilly, and D. Carpenter, “Enhancing syntax error messages ap-

pears ineffectual,” in Proceedings of Conference on Innovation and Technology in

Computer Science Education, 2014, pp. 273-278.

23. P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, “Understanding the syntax

barrier for novices,” in Proceedings of the 16th Annual Joint Conference on Innova-

tion and Technology in Computer Science Education, 2011, pp. 208-212.

24. R. S. Pettit, J. Homer, and R. Gee, “Do enhanced compiler error messages help stu-

dents? Results inconclusive,” in Proceedings of ACM SIGCSE Technical Symposium

on Computer Science Education, 2017, pp. 465-470.

25. M. T. Pham and T. B. Nguyen, “The DOMJudge based online judge system with pla-

giarism detection,” in Proceedings of IEEE-RIVF International Conference on Com-

puting and Communication Technologies, 2019, pp. 1-6.

26. R. Kasahara, K. Sakamoto, H. Washizaki, and Y. Fukazawa, “Applying gamification

to motivate students to write high-quality code in programming assignments,” in Pro-

ceedings of ACM Conference on Innovation and Technology in Computer Science Ed-

ucation, 2019, pp. 92-98.

27. T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue, “Measuring similarity of large

software systems based on source code correspondence,” in Proceedings of Interna-

tional Conference on Product Focused Software Process Improvement, 2005, pp. 530-

544.

28. S.-Y. Noh, “An XML plagiarism detection model for procedural programming lan-

guages,” Technical Report No. TR03-14, Computer Science Department, Iowa State

University Digital Repository, 2003.

29. L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-

based detection of code clones,” in Proceedings of the 29th IEEE International Con-

ference on Software Engineering, 2007, pp. 96-105.

30. E. Bendersky, “pycparser: C parser and AST generator written in python,” https://git

hub.com/eliben/pycparser, 2011.

31. I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone detection using

abstract syntax trees,” in Proceedings of IEEE International Conference on Software

Maintenance, 1998, pp. 368-377.

32. A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained localization in

ad-hoc networks of sensors,” in Proceedings of the 7th Annual International Confer-

OJ SYSTEM FOR ASSESSING C PROGRAM STRUCTURE 293

ence on Mobile Computing and Networking, 2001, pp. 166-179.

33. J.-P. Sheu, P.-C. Chen, and C.-S. Hsu, “A distributed localization scheme for wireless

sensor networks with improved grid-scan and vector-based refinement,” IEEE Trans-

actions on Mobile Computing, Vol. 7, 2008, pp. 1110-1123.

34. M. L. Sichitiu and V. Ramadurai, “Localization of wireless sensor networks with a

mobile beacon,” in Proceedings of IEEE International Conference on Mobile Ad-hoc

and Sensor Systems, 2004, pp. 174-183.

35. K.-F. Ssu, C.-H. Ou, and H. C. Jiau, “Localization with mobile anchor points in wire-

less sensor networks,” IEEE Transactions on Vehicular Technology, Vol. 54, 2005,

pp. 1187-1197.

36. M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor localization system using

RSSI measurement of wireless sensor network based on zigbee standard,” Wireless

and Optical Communications, Vol. 538, 2006, pp. 1-6.

37. G. Wang and K. Yang, “A new approach to sensor node localization using RSS meas-

urements in wireless sensor networks,” IEEE Transactions on Wireless Communica-

tions, Vol. 10, 2011, pp. 1389-1395.

38. Y.-H. Wu and W.-M. Chen, “Localization using a mobile beacon with directional an-

tenna for wireless sensor networks,” IEICE Transactions on Information and Systems,

Vol. 94, 2011, pp. 2370-2377.

39. B. Xiao, H. Chen, and S. Zhou, “Distributed localization using a moving beacon in

wireless sensor networks,” IEEE Transactions on Parallel and Distributed Systems,

Vol. 19, 2008, pp. 587-600.

40. M. Boushaba, A. Hafid, and A. Benslimane, “High accuracy localization method using

AoA in sensor networks,” Computer Networks, Vol. 53, 2009, pp. 3076-3088.

Chorng-Shiuh Koong (孔崇旭) received M.S. and Ph.D. de-

gree in Computer Science and Information Engineering from Na-

tional Chiao-Tung University, Taiwan in 1995 and 2000 respec-

tively. Currently, he is a Professor in the Department of Computer

and Information Science at National Taichung University of Educa-

tion, Taiwan. His research interests include software testing, object-

oriented computing, software component technology, visual pro-

grammming, and E-learning technologies.

Zih-Yu Wei (魏子裕) received his M.S. from the National Tai-

chung University of Education in 2020. His research interests in-

clude software testing, game-based learning, computer assisted in-

struction, and website technologies.

CHORNG-SHIUH KOONG, ZIH-YU WEI, CHUN-HSIEN CHEN, CHENG-YAN GUO

294

Chun-Hsien Chen (陳俊憲) received his B.S. from the Na-

tional Chung Hsing in 1991. His research interests include game-

based learning, computer assisted instruction, IoT application, and

big-data in healthcare.

Cheng-Yan Guo (郭承諺) received his M.S. from National

Taiwan University College of Medicine in 2017, and B.S. from the

National Taichung University of Education in 2014. His research

interests include software testing, robotics, computer vision, bio-sig-

nal processing, and embedded systems.

