
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 295-316 (2022)
DOI: 10.6688/JISE.202203 38(2).0002

Investigating Software Domain Impact in Requirements
Quality Attributes Prediction∗

GREGORIUS AIRLANGGA1,2 AND ALAN LIU2

1Department of Information System
Atma Jaya Catholic University of Indonesia

Jakarta, 12930 Indonesia
2Department of Electrical Engineering

National Chung Cheng University
Chiayi, 621301 Taiwan

E-mail: gregorius.airlangga@atmajaya.ac.id; aliu@ee.ccu.edu.tw

Several researchers have attempted to confront the problems in quality attributes pre-
diction using AI approaches consisting of knowledge-driven and data-driven techniques.
However, due to the lack of a shared training dataset and standardized definition of quality
attributes, inaccurate feature extraction may lead to the inconsistency and poor performance
of a prediction model. Different from prior works, we have investigated the impact of
software domain in quality attributes prediction using deep learning methods with different
datasets. From the results, we conclude with two recommendations: (i) the existing secon-
dary dataset such as PROMISE and Concordia are not enough to be used as a ground truth;
(ii) a deep learning approach should be supported from the aspects of broader domains in
order to capture a variety of natural language requirements. The contribution of this paper
is to raise the awareness of identifying the quality attributes in requirements writing and
help requirements providers understand what issues to focus. A prototype of requirements
annotator is introduced to show how the requirements are processed.

Keywords: software requirements, deep learning, quality attributes, software domain, nat-
ural language processing

1. INTRODUCTION

Software requirements are collections of description, knowledge and workflow
between entities to describe how software should work and behave. The process to
acquire and formulate software requirements is defined as requirements engineering. In
a requirements engineering practice, functional requirements (FR) are easy to define,
but the quality of the completed software system is affected by various factors such
as lack of knowledge in quality attributes, requirements priority, technical resources,
expertise, documentations, and development time. Those conditions often occur and lead
to issues related to software quality attributes including privacy and security, performance,

Received September 30, 2020; revised December 9, 2020 & February 21, 2021; accepted March 18, 2021.
Communicated by Chih-Yi Chiu.
∗ This project is partially supported by Ministry of Science and Technology, Taiwan under Grant No. MOST
109-2221-E-194-022-MY3.

295

296 GREGORIUS AIRLANGGA AND ALAN LIU

usability, etc. [1]. One of the solutions proposed is the implementation of AI techniques
to predict quality attributes in the requirements stages.

The pioneering work in quality attributes prediction was first explored in Cleland-
Huang’s work [2] by producing the PROMISE dataset and predicting quality attributes
from natural language. Based on the study, several investigations have been conducted
until recently and most of them only focus on the increasing accuracy or F1-Score as
prediction performance metric. There are two main categories of techniques: data-
driven [3–7] and knowledge-driven [8–12]. The data-driven approach is the use of
supervised learning techniques to predict quality attributes based on the statistical patterns
of requirements text. The data collection is the crucial process in order to generate a robust
prediction model. In contrast, a knowledge-driven approach is the use of combination
between prior knowledge and inference rules to do prediction with a very limited or even
no dataset available in the training process.

Even with these promising results, there are some limitations in the recent study.
First, the current works only focus on the increasing accuracy or F1-Score metric, which
means that the prediction techniques are dominantly proposed with limited or without
major focus on the dataset semantics. Second, the performance analysis was limited by
the availability of the open dataset and community tools. Third, the standard definition of
quality attributes is lacking, negatively impacting the validity of data annotation.

In this study, the main discussion is about analyzing dataset semantics using data-
driven perspective on various software domain and its impact in predicting quality
attributes. In addition, we have also developed a community based tool for collecting
and annotating software requirements texts used for research. We have named this tool
softrequest.co or the Annotator.

Moreover, in order to build comprehensive analysis, we suggest two main research
questions. First, how would the model’s performance predict quality attributes from
software requirements in various domains when the trained model is generated from a
specific domain? Second, what is the impact of data domain augmentation to classify
the PROMISE dataset? To answer these research questions, we have analyzed our
experiments with a deep learning model in the Convolutional Neural Network (CNN) to
predict quality attributes from software requirements texts in different software domains.

The result of our investigation gives a further understanding and recommendation
for other researchers to be aware of the effect of data domain. In this paper, we start
the introduction in Section 1. Section 2 defines the domain dependent problem. The
related work will be presented in Section 3; in Section 4, we present the proposed method.
Section 5 analyzes the experimental results, and the last section provides the conclusion
and future work.

2. DOMAIN DEPENDENT PROBLEM

In a text classification problem, we are given description b ∈ B of a document,
where B is the document space, along with a fixed set of classes C = {c1,c2, ...,c j}.
Classes are also called categories or labels. Using a supervised learning method, we
must approximate a classifier γ that maps documents to classes. Using this pattern,

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 297

several problems such as sentiment analysis, spam detector, language detection, etc. can
be resolved.

In sentiment analysis, the document space B contains the written expression of
emotion about an event or an object, and C is a collection of sentiment label such as
positive, neutral and negative. In the security problem such as spam detector, B contains
a collection of spam and non-spam text which are further labeled as spam or not spam.
In language detection, B is a collection of languages and C is the language category. In
this section, we explain about the quality attributes prediction problem as one of the text
classification problem in software engineering.

Quality attributes prediction can be categorized as a text classification problem,
in which we are given requirements text (r ∈ X) of a document, where X is a high-
dimensional space representing a semantic feature of r. A fixed set of quality attributes
can be described as Q = {q1,q2, ...,q j} where q j can be encoded as one-hot encoding
form, in R+, q j → e j, meaning that R+ denotes the set of positive real numbers, that is
R+ = {x ∈ R|x > 0}, and e j is a vector of standard base and denotes the vector with 1 in
the jth coordinate and 0 elsewhere.

The quality attributes are the labels defined by experts. Given a domain D dataset of
labeled requirements text ⟨r,q⟩, where ⟨r,q⟩ ∈ X ×Q, we can consider the other domain as
a different dataset E where E and D have semantic relation sim(D,E) in a human cognitive
point of view. Therefore, r ∈ E and r ∈ D have shared domain context. However, the high
dimensional space X representing semantic feature of r in E and D may not have similarity
characteristics to each other.

Using a certain learning method, a classifier or classification function γ that maps
high dimensional space X to quality attributes γ : X → Q will be used. This type of
learning is called supervised learning because a supervisor (e.g. the software analyst who
defines the quality attributes in training datasets) serves as a teacher directing the learning
process. The supervised learning method is denoted by τ and can be written as τ(D) = γ .

The learning method τ takes the training set D or E as input and return the prediction
model or learned classification function γ . The domain-dependent problem occurs when
the learned classification function γ from D cannot give an approaching value to predict
Q in E and vice versa.

3. RELATED WORK

Predicting quality attributes from software requirements could be classified as pro-
cessing a cross-domain problem such as mentioned in Section 2. Most of the related work
studied the sentiment analysis problem from the view point of text sourced data, and no
quality attributes prediction has been conducted on cross-domain software requirements.

This work is inspired by a comprehensive systematic literature review [13] con-
taining the methods and techniques employed in a cross-domain sentiment analysis. A
prediction model that performs well in one domain might under perform in another. We
consider this work as a baseline to our research for conducting the initial intuition of
the challenge in predicting quality attributes from software requirements texts since both
cases have similar characteristics referred in Section 2.

Different from the problems in sentiment analysis where mostly using three ground

298 GREGORIUS AIRLANGGA AND ALAN LIU

truths: positive, neutral and negative, our problem is more complicated since the quality
attributes from natural language express various technical analysis and software behavior
expectations. In addition, the quality attributes prediction does not only contain two
or three labels but it can be abundant since the software behavior itself is continuously
evolving and related to specific technical domains such as hardware, network, interface,
organizations, regulations, and user-perceived things.

Predicting quality attributes from natural language has been investigated by several
researchers using data-driven or knowledge-driven approaches. Like [2] as an initial
work, they built the PROMISE repository containing the software requirements from 15
different software domains. All requirements texts were further labeled into 12 quality
attributes.

The dataset and the initial work were utilized as the benchmark by various re-
searchers such as [3] and [7]. They proposed several preprocessing methods to extract
useful features from software requirements texts; subsequently, the processed texts were
fed into traditional classifiers such as Support Vector Machine (SVM), Naive Bayes and
Decision Tree to decide the quality attributes. Besides traditional classifiers, several recent
works have used deep learning models [6, 14, 15]. The benefit of using deep learning
is that they reduce the preprocessing effort in terms of extracting word features from
software requirements texts. Even though all prior works have performed well to classify
the quality attributes from PROMISE dataset, further investigation to measure the quality
attributes prediction performance in terms of domain dependent problem has not been
conducted.

In this work we investigate the domain dependent problem without focusing into
optimizing the classifier model. In addition, our goal is to know the effect of the cross-
domain issues for the quality attributes performance and enrich software requirements
dataset related to quality attributes. Besides using the PROMISE dataset, we have pro-
duced a dataset using our prototype system (softrequest.co) as an annotator to assign the
software domain and quality attributes by experienced software developers. Furthermore,
we have built a deep learning model to predict 12 quality attributes from different software
domain and then analyzed the results to answer the research questions.

4. PROPOSED APPROACH

4.1 Overview

We propose a framework to analyze software requirements for quality attributes
prediction as a domain-dependent problem. The proposed approach is presented in Fig. 1,
in which three main processes are proposed to answer research questions. Requirements
elicitation depends on the Requirements Gathering process, which is explained in Section
4.2, and the Annotator system (softrequest.co) utilizing the results from the modeling and
prediction parts of the framework has been built and described in Section 4.3. Modeling
the prediction model generated from three datasets is explained in Section 4.4. Finally,
a machine learning pipeline is explained in Section 4.5. The pipeline contains three
sub-phases: categorizing, predicting, and assessing. The assessment contains domain-
dependent and data augmentation evaluation to answer research questions.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 299

Fig. 1. Proposed framework.

4.2 Requirements Gathering

Requirements gathering is the crucial step in our experiment. There are two sub-
phase to collect software requirements data: (i) Data Collection Process and (ii) Data-
set Domain Labeling; The data collection process describes the process to define a
requirements text using softrequest.co application and to label it with appropriate quality
attributes. After the collection process has been conducted, the domain labeling process
will be executed as a process to categorize, vote and argue the requirements text into
specific domain.

4.2.1 Data collection process

The source requirements to analyze come from two datasets. The first is from the
PROMISE repository [3] which comprised twelve software quality attributes categories,
including eleven sets of nonfunctional requirements and one set of functional requirement
(NFR and FR). Data was generated by Cleland-Huang from fifteen master students
projects as mentioned previously. The dataset contains 625 rows, in which each row
is a piece of independent requirements text.

The second dataset was gathered through our Annotator system (http://softrequest.
co/); the data was gathered from 25th May until 5th June 2020 from 10 developers who
were working on five software projects in Indonesia, including education information
system, boutique e-commerce, smart home for elderly, smart farming system and police
department information system. Each piece of requirements is then manually labeled
by them into several quality attributes including 12 categories: functional, scalability,
performance, usability, reliability, availability, security, operational, portability, language
support, policy, and interoperability. The collected dataset consists of 3473 requirements
texts. Some examples of those dataset are presented in Tables 1 and 2.

In order to guarantee the labeling quality, the first author of this paper gave the
briefing about quality attributes in two hours of online meeting. The author gave
quiz to make sure that the developers understood about the annotation process, and

300 GREGORIUS AIRLANGGA AND ALAN LIU

then the author and developers did a cross-checking process in order to re-annotate
the requirements text into 12 requirements categories. To ensure the validity of the
an- notations, the interpreter agreement is computed by means of the Cohen’s Kappa,
resulting in k = 0.91, indicating an almost perfect agreement. The score definition is based
on the following qualitative measures associated to the different ranges of the Cohen’s
Kappa: k < 0, no agreement; 0 ≤ k ≤ 0.20, slight; 0.21 ≤ k ≤ 0.40, fair; 0.41 ≤ k ≤ 0.60,
moderate; 0.61 ≤ k ≤ 0.80 substantial; and 0.81 ≤ k ≤ 1 almost perfect agreement.

4.2.2 Dataset domain labeling

Both data from [2] and softrequest have same number of categories and quality
attributes labels, and the diversity is about the data quantity and the natural language style
pattern. In the [3] dataset, the natural language pattern follows the IEEE standard 830-
1998 while softrequest data is provided by the developers in any style. The requirements
texts were further doubled-checked by the system analysts in order to label and validate
the quality attributes.

In order to label the requirements domain, both developers and software analyst
executed labeling and domain verification process to a developers community using the
Annotator tool. First, we posted all labeled requirements text in the system, in which
the labels contained the domain label and quality attributes label. We then invited
experienced developers in various domains such as e-commerce and enterprise system,
health information system, IoT system, mobile based applications, media and information
system, education information system and security application as domain experts. The
invitation was sent to 300 developers, but the total of registered developers ended up only
189.

We asked the developers to verify the quality attributes labels and domain labels for
the posted requirements. If they agreed, they had to make a positive vote; otherwise
comments regarding the reasons for a negative vote were collected. Interestingly, in
this process, the developers were very enthusiastic to verify and comment, and most
developers agreed with initial labels defined by the requirements providers.

Some constructive discussion sessions took place in processing ambiguous labels
such as the smart home system requirements for the elderly presented in the item 5 of
Table 2, “Smart Home should have an automatic medicine injection machine.” Fifty-nine
developers argued that the requirements text belonged to a health information system
domain since they assumed health information including medical history, medicine, and
hospital was to be processed while the technology concerning safety and hospital standard
was to be observed.

However, the arguments were refuted by other developers, since the concern of the
application itself was an automatic system, so the automatic medical injection system
itself was only viewed as one of IoT devices. Moreover, the data associated with
automatic injection was just used by the system to decide if the injection was needed
or not. If the time was close, then the IoT device would send the notification to the elderly
through a smart watch, and when the elderly got ready for a proper body position, then the
machine would inject the medicine automatically. After majority voting, the requirements
text was labeled as a smart home system for elderly.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 301

Fig. 2. Annotator system https://softrequest.co.

No. Requirements Label Domain
1 The system shall be

intuitive to the Pro-
gram Administrators/
Nursing Staff Mem-
bers.

Usability Health
Information

System

2 The vehicle data shall
include vehicle year
make and model

Functional Vehicle
System

3 The product shall con-
form to the Americans
with Disabilities Act.

Usability Disabilities
Feature in

Conference
System

4 Website must be fully
operational with MSN
TV2

Operational Media Based
Application

5 The website should
appeal to all Africans
not only Nigerians

Look & Feel News
Website

Table 1. Jane Cleland Huang et al. [2] dataset example.

4.3 Annotator System (Softrequest.co)

Softrequest.co or the Annotator system is a web-based application system to
gather, annotate, communicate and predict requirements text for software engineering

302 GREGORIUS AIRLANGGA AND ALAN LIU

No. Requirements Label Domain
1 Guest should be able to browse

Product (Catalogues) and Other
Users (Boutiques) but NOT be
able to add product directly.
That will require herself to have
her own boutique (Cavern) first.

Functional Boutique Web
E-Commerce

2 The air temperature in Smart
Home also needs to be guarded,
and then before we take a bath,
we can first raise the temperature
high enough. This is especially
important for old people and
patients

Security Smart Home System

3 The Navigation module of the
Police Information System (PIS)
provides role based landing
pages which help in navigating
through the (PIS) application.
It shows information such as
cases assigned, alerts, pending
tasks etc hence helping police
personnel to plan better and
execute with greater efficiency.

Functional Police Information
System

4 The software will interoperate
with other software applications
which are being developed un-
der National e-Governance Pro-
gram, in particular Central Agri-
culture Portal and Android/IOS
Applications in Playstore

Interoperability Smart Farming

5 Smart Home should have an au-
tomatic medicine injection ma-
chine. Some of the medicines
need to be injected to occupant’s
body. And if elder live alone,
there are no people who can help
the user to do it. Hence, the
system needs the feature.

Usability Smart Home System
For Elderly

Table 2. Softrequest.co dataset example.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 303

stakeholders. To use the Annotator, a stakeholder first needs to register and sign in to
share software requirements with the labels through the all requirements menu form, for
input like requirements texts, domain, and quality attributes. The stakeholders also could
add multiple requirements in a CSV form to be used by the system.

After the requirements are posted, other stakeholders could give comments and
agreement scores and also propose the corrected quality attributes in conjunction with
the reason. If the other stakeholders give higher voting scores than the original quality
attributes score, then the corrected quality attributes will be selected. The user interface
and the use case of the all requirements menu form could be seen in Figs. 2 and 3.

Fig. 3. Softrequest.co use case diagram.

For just gathering the opinions from the community, a stakeholder could also add
only a requirements text without quality attributes. The scenario is compatible with
the situation in which the developer seeks a suggestion from the community for a
requirements text with vague characteristics like design constraints. The feature is similar
with the all requirements menu form except for quality attributes labeling.

Another important feature is the capability to predict quality attributes from
requirements texts using a pre-trained model. We have built the online deep learning
model using TensorFlow that could train the model from all inputs periodically, and the
best model will be used as a prediction function in the next application release. The
prediction function can be seen in Fig. 4.

304 GREGORIUS AIRLANGGA AND ALAN LIU

Fig. 4. Predicting the quality attributes.

4.4 Modeling

In this section we explain the deep learning based model called CNN and the
overview predicting process from a raw requirements text into quality attributes. Also, the
definition of training and evaluation metrics as indicators to answer the research questions
are also revealed.

4.4.1 CNN model

We use notations from Section 2 in order to explain more precisely the model used
in this experiment. As previously mentioned, the CNN method (τ) is used to acquire
the classification function (γ). The requirements text (q) is tokenized and preprocessed
into 300 dimension vector size. Using the vector embedding mechanism, we acquire
the collection of high-dimensional space X representing a collection feature of the
requirement text. Then, each of the outputs of these spaces will be reduced using the max
pooling function before concatenating into a single tensor. In the last layer, the nonlinear
softmax activation function will be used to decide the label, in which (q) is encoded by
one-hot encoder, and each label space contains the prediction value probability between
0 to 1. A detail parameter setting used in this experiment can be seen in Table 3.

4.4.2 Training and evaluation

We have built three prediction models. The first model is the A model generated
from the [3] dataset; the second model is the B model produced from the softrequest.co
dataset; and the last model is the C model generated from the merged dataset from [3]
and softrequest.co. Each model was generated using the CNN model and the word2vec
approach that gave promising results in [6,15,16]. The information about the architecture

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 305

Fig. 5. CNN model architecture.

used is defined in Table 3. Each model has been generated by using 80% training data and
20% testing data. The evaluation metrics comprise four measurements: accuracy, macro
average precision, macro average recall and the macro average F1-score.

Accuracy =
True Positive

True Positive+True Negative
(1)

Precision =
True Positive

True Positive+False Positive
(2)

Recall =
True Positive

True Positive+False Negative
(3)

F1 = 2× Precision×Recall
Precision+Recall

(4)

In order to calculate the evaluation scores, we use scikit-learn code in Python environ-
ment. The generated prediction model was then further used to investigate the impact
of software domain in requirements quality prediction. First, we investigate the software
domain effect by comparing the prediction performance between Model B and Model C
to predict the [2] dataset and Model A to predict the softrequest dataset.

The domain of Model B is different from the domain of Model A, and the domain
of Model C is partially different from Model A since the dataset [2] is also partially fed
into Model C, constructing a model from mixed domains. Secondly, we also investigate
the effect of data augmentation to show that prediction performance will increase if the
trained data containing various domains by analyzing the results through Experiments I to
V which are explained next.

4.5 Machine Learning Pipeline

The purpose of experiments is to investigate the quality attributes prediction per-
formance in cross-domain condition. We predict unseen data from a different domain
dataset. The classification performance was evaluated on multi-classification problem

306 GREGORIUS AIRLANGGA AND ALAN LIU

containing 12 quality attributes as target classes. Performance measurement was condu-
cted by analyzing the model’s F1-score to predict quality attributes in the new domain.
There were five experiments conducted in this work such as described in Table 4, the
experiments contain five variants.

In Experiment I, we used Model A to predict the [2] test dataset. In Experiment II,
we utilized Model A to predict the softrequest.co dataset, and Experiment III uses Model
B to predict the [2] test dataset. Those experiments were very crucial to answer research
questions about the performance of the trained model in terms of classifying the quality
attributes from various software domains when the trained model itself was limited into a
specific domain.

In Experiment IV, we generated Model C from mixed dataset to predict the [2] test
dataset, and the experiment was also used as a supplementary result to investigate the
impact of the partial domain in the prediction model. Furthermore, the F1-score and the
testing accuracy results from Experiments I and V are compared to answer the second
research question about the impact of data augmentation from various domains. Then a
conclusion is drawn from analyzing the accuracy and F1-score results.

Layer Name Parameter Value
Input Layer Shape=(Number of Data x 300)
Embedding Layer Shape=(Number of Data x 300 x 300)

Convolution 1D (a) Kernel Size=3
Padding=Same
Activation=Relu

Convolution 1D (b)
Convolution 1D (c)
Max Pooling 1D (a) Padding=same

Activation=Relu
strides=1

Max Pooling 1D (b) strides=1Max Pooling 1D (c)
Concatenate Layer
Flatten Layer
Dropout Layer Rate=0.4
Dense Layer Neuron=12

Table 3. Deep learning model architecture and parameter setting.

Experiment Model used To Predict/To Evaluate
I A [2] dataset (Baseline)
II A Softrequest dataset
III B [2] dataset
IV C [2] dataset
V C Merging dataset between [2] and softrequest

Table 4. Experiments summary.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 307

5. RESULT AND ANALYSIS

5.1 Answering Research Questions

Tables 5 and 6 report the experiment results. In these experiments, deep learning
approaches were conducted on the three different software requirements datasets.
The tables show the number of correct predictions made by the model with the
evaluation metrics such as F1-score, precision, recall and the testing accuracy. For each
dataset/metric, the best results are highlighted in bold except the baseline model labeled as
“[]”. In the following, we discuss the results aiming to answer our research question (RQ)
about the trained model’s performance to classify the quality attributes from different
software domain requirements text.

Experiment F1-
Score

Precision Recall Accuracy

I 0.723 0.781 0.73 0.808
V 0.934 0.961 0.945 0.963

Table 5. Prediction results to show the biased result.

Experiment F1-Score Precision Recall Accuracy
[I] [0.723] [0.781] [0.73] [0.808]
II 0.061 0.103 0.073 0.201
III 0.100 0.091 0.090 0.424
IV 0.408 0.413 0.382 0.624

Table 6. Prediction result to prove domain-dependent.

Both of Models B and C were used to predict the [3] dataset as presented in Table
6 for Experiments III and IV. From these results, Model C achieves a better precision,
recall and F1-score compared to Model B. In addition, Experiments II and III present low
prediction results to predict quality attributes from the datasets of different domains. By
analyzing those evaluation metrics, the main findings concerning the RQ include (i) From
the comparison result between Experiments II and III, we conclude that the prediction
accuracy of Model A in Experiment I is biased towards the quality attributes labels even
if the accuracy and F1-score are 80% ; (ii) Since Model C gives better results compared to
Model B, we assume that adding more dataset related to the software domain can improve
data-driven prediction performance significantly as presented by Experiment IV in Table
6.

Although there is a significant improvement result from Experiment III compared
to Experiment IV, the result is generally still inferior especially when compared to
Experiment I. The detail explanation is given in Section 5.2. The inferiority is caused by
the variation of requirements texts, the prediction model’s incapability to catch semantic
meaning, and the appropriateness of features from requirements texts. The detailed
discussion is given below with the figures based on the results from the experiments. Fig.
6 (a) presents Model A’s accuracy in predicting the test dataset in [2] requirements. The

308 GREGORIUS AIRLANGGA AND ALAN LIU

accuracy is 80% to classify 12 quality attributes. Fig. 7 (a) shows Model A’s accuracy
to predict the test dataset in softrequest.co and Fig. 7 (b) presents Model B’s accuracy
to predict the test dataset in [2] requirements. The accuracy is inferior at 20.12% and
42.4% respectively. Fig. 6 (b) presents Model C’s accuracy to predict the dataset in [2]
requirements. The accuracy is higher compared to Model B but lower compared to Model
A; in Model C, we get an accuracy of 62.4%.

Therefore, from the experiment IV, we can answer the additional RQ about the
impact of data augmentation from different domains to classify the PROMISE dataset.
It indicates that using data augmentation can generalize a better classifier to handle the
variation of requirements highly, especially in a broad domain when the data training
itself contains a similar domain with the test dataset. The biased conclusion about the
result of Experiment I is in line with the results from Experiment V. According to the
procedure in Section 4.4.2, we randomly split 20% of dataset containing domain from [2]
and softrequest.co. As presented in Fig. 9, the accuracy of Model C to predict the mixed
dataset is higher compared to Model C when only predicting the [2] dataset. The higher
accuracy occurred since the validation dataset of softrequest.co is larger than the [2]
dataset. In addition, there is an imbalance problem in the dataset that makes the word
embedding vector mostly generated by the largest portion of dominant quality attributes
such as functionality, security, usability and performance. Section 5.2 will provide detail
explanation by observing the confusion matrix.

5.2 Confusion Matrix Analysis

In order to improve the analysis, we use macro average F1, precision, recall instead
of weighted or micro average. The main reason is because each quality attribute has
equal priority to detect. For example, the developers who stress the importance of
“performance” will not expect “usability” more frequently. We expect the classifier
function to detect any test dataset even the training and testing dataset is imbalanced.
We do not use micro average since we cannot guarantee whether training and testing
dataset are separated and the frequency distribution between each quality attributes will
be equal or not. If it is not equal, we cannot use the total number of dataset labels in
each evaluation metric. We also use a confusion matrix to find the reason about model
performance. A confusion matrix, also known as an error matrix, is a specific table layout
that allows visualization of the performance of an algorithm. In this work, each row of
the matrix represents the instances in an actual class, while each column represents the
instances in a predicted class.

Model C (0.624 accuracy) yields worse performance comparing to Model A (0.808
accuracy) when both models are used to predict the [3] test dataset as shown in
Experiments I and IV. From the confusion matrix in Figs. 6 (a) and (b), Model A
only misclassified 1 data with true label “availability” into “functionality” compared
to Model C that misclassified 3 data with true label “availability” into “functionality”.
The “functionality” quality attributes data in Model A are misclassified into operator (1),
security (3) and usability (1) and about 51 data can be correctly classified as functional.
However, Model C can classify 55 data correctly into functional requirements and only
1 data that misplaced as “operational”. The attribute, “fault tolerance”, in Model A was
perfectly classified into ground truth. However, in Model C, only one data is correctly
classified as “performance” and one other misclassified as “scalability”. The quality

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 309

attribute, “Legal” is classified correctly in Model C; however in Model A only 2 data can
be correctly classified, and the rest is classified as functional requirements. Interestingly,
the quality attribute, “look and feel”, can be correctly classified in Model A with almost
78% accuracy (about 7 out of the total of 9 test data), in which one data is misclassified
as operational requirements and one other is misclassified as functional requirements. On
the other hand, Model C only can correctly classify 2 data as ground truth, the rest are
classified as functional, operational, portability, scalability and security with values like
1,1,1,2,2 respectively.

The performance concerning “maintainability” is worse in both models, in which
none in Model C and only one in Model A produced a correct label. Model A achieves
good performance in the operational quality attributes with almost 78% accuracy (7 out
of 9) and only one data is misclassified as “performance” and the rest is misclassified as
“look and feel”. For Model C, only one data can be correctly classified as operational
requirements, while misclassifying as availability, functional and legal with values of 2.
Also, one data is misclassified as “look and feel” and one as “performance”.

Model A can achieve a better result in the “performance” quality attributes. Eight are
correctly classified, 2 as “scalability”, one as “look and feel” and one as “fault tolerance”.
For Model C, only five were classified correctly, one is classified as “availability”, one
as “fault tolerance”, one as “legal”, one as “look and feel”, one as “maintainability”, and
2 as functional requirements. For the “portability” quality attribute, both model did not
provide reasonable results due to lack of data. For “scalability”, both models can only
classify 2 each.

Model A misclassified one data as “usability” and one as “availability” while Model
C misclassified one data as “maintainability” and one as “look and feel”. The “security”
test dataset can be correctly classified in Model A with a 75% accuracy (9 out of 12).
There are 3 misclassified as functional. In Model C, only one is correctly classified
as “security”, 9 are misclassified as functional and 2 as “fault tolerance”. The quality
attribute, “usability”, has same performance on two models: 7 correctly classified and
one misclassified as ”operational” and “look and feel” in Model A, but as functional and
operational in Model C.

Since we use a deep learning approach which is black-box, it is hard to understand
the classifier behaviour exactly. However, based on our results, we can see that the
misclassification occurred the most belongs to the functionality quality attribute which
contained the largest proportion of dataset (about 40.4% of [3] dataset and 83% of
softrequest dataset). A decision of false negative to “functional” happened 19 times
with Model C and 6 times with Model A. The dominant number of false negatives in
this finding indicates that the classifier in this experiment is trapped into high volume of
dominant label. Therefore, it is hard for a classifier to predict data that has a small portion
of training data. Instead of capturing the semantics of data, the classifier tends to capture
the probability of word occurrence in each label.

The main reason why Model C is worse than Model A is because when the C dataset
is expanded, the probability density function of Model C became large and also the
word vector embedding was expanded. The condition made some important features
to affect the prediction. Moreover, since the increment of dataset is tend to gravitate on
functional quality attributes, the smaller proportions of training dataset are mostly mixed
into functional quality attributes. Therefore, we can see the phenomenon that most of the

310 GREGORIUS AIRLANGGA AND ALAN LIU

(a) Model A to predict [3] testing dataset.

(b) Model C to predict [3] testing dataset.
Fig. 6. Confusion matrix result to compare Experiments I and IV.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 311

(a) Model A to predict softrequest testing dataset.

(b) Model B to predict [3] testing dataset.
Fig. 7. Confusion matrix result for answering research Question 1.

312 GREGORIUS AIRLANGGA AND ALAN LIU

(a) Model B to predict [3] testing dataset.

(b) Model C to predict [3] testing dataset.
Fig. 8. Confusion matrix result for answering research Question 2.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 313

Fig. 9. Model C to predict mixed testing dataset.

[3] dataset would be classified as functionality comparing to others using Model C
classifier.

From Experiments II and III, both test validation dataset has totally different word
embedding. The confusion matrix in Figs. 7 (a) and (b) achieve the result that Model A
mostly classifies the softrequest.co testing dataset as functional, operational, performance,
security and usability. Interestingly, it is related to the number of dataset in each quality
attributes which are functional (40.4%), security (10.5%), usability (10,2%), operational
(9.9%) and performance (8.8%), in which the functional quality attribute is covered in the
largest proportion of data. This condition is also similar in Model B when predicting with
the [2] dataset. The text is mostly classified as the “functional” quality attributes, and this
condition is similar to the phenomenon in Experiment IV which are already explained
previously.

By analyzing the confusion matrix of Experiments I and V, obviously the results
are biased. Both models cannot really capture semantics since they depend on the
label distribution of dataset. Therefore, each word domain in training dataset must be
considered carefully since it affects the word embedding that contributes for classification
performance.

314 GREGORIUS AIRLANGGA AND ALAN LIU

6. CONCLUSION

Based on our observation, the data-driven approach depends on the text semantic
behavior between training and testing from the machine point of view. The experiments
have shown that a prediction model cannot give precise classification to unforeseen
variation such as disparate domain. Based on our findings, we recommend two awareness
issues to other researchers in the related areas. First, adding more datasets may benefit
from building a practical model, and the second, collecting a broader domain may improve
the performance since the number of unique tokens and semantics might capture more
robust text features than only one dataset. Accumulating experiences in requirements
analysis concerning quality attributes remains challenging, and a useful annotator like
the proposed prototype may benefit the requirements providers to focus more on quality
attributes issues while collecting data for future usage.

We will investigate the fusion of data-driven and knowledge-driven approaches in
online learning behavior for further research. The knowledge-driven approach may be
able to resolve the prediction problem with the limited dataset and software domain in
training data. The combined techniques can make the model adopt the specific rules
and ontology to coordinate with data preprocessing and weight optimization in the deep
learning methods. To support more reliable prediction systems in real-time, online
learning should be implemented robustly to handle enormous text requirements dataset
with unforeseen domain and natural language styles.

REFERENCES

1. F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Çevikol, “Requirements classifi-
cation with interpretable machine learning and dependency parsing,” in Proceedings
of IEEE 27th International Requirements Engineering Conference, 2019, pp. 142-
152.

2. J. C. Huang, R. Settimi, X. Zou, and P. Solc, “Automated classification of non-fun-
ctional requirements,” Requirements Engineering, Vol. 12, 2007, pp. 103-120.

3. Z. Kurtanovic and W. Maalej, “Automatically classifying functional and non-fun-
ctional requirements using supervised machine learning,” in Proceedings of IEEE
25th International Requirements Engineering Conference, Vol. 25, 2017, pp. 490-
495.

4. R. Jindal, R. Malhotra, and A. Jain, “Automated classification of security require-
ments,” in Proceedings of IEEE International Conference on Advances in Computing,
Communications and Informatics, 2016, pp. 2027-2033.

5. L. Toth and L. Vidacs, “Comparative study of the performance of various classifiers in
labeling non-functional requirements,” Information Technology and Control, Vol. 48,
2019, pp. 433-445.

6. V. Fong, “Software requirements classification using word embeddings and convo-
lutional neural networks,” Master’s thesis, Faculty of California Polytechnic State
University, San Luis Obispo, 2018.

INVESTIGATE SOFTWARE DOMAIN IMPACT IN REQUIRE QUALITY ATTRIBUTES PREDICT 315

7. Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider, “What
works better? A study of classifying requirements,” in Proceedings of IEEE 25th
International Requirements Engineering Conference, Vol. 25, 2017, pp. 497-501.

8. P. Singh, D. Singh, and A. Sharma, “Rule-based system for automated classification
of non-functional requirements from requirement specifications,” in Proceedings of
IEEE International Conference on Advances in Computing, Communications and
Informatics, 2016, pp. 620-626.

9. H. Alrumaih, A. Mirza, and H. Alsalamah, “Domain ontology for requirements cla-
ssification in requirements engineering context,” IEEE Access, Vol. 8, 2020, pp.
89899-89907.

10. T. H. Nguyen, J. Grundy, and M. Almorsy, “Rule-based extraction of goal-use case
models from text,” in Proceedings of the 10th ACM Joint Meeting on Foundations of
Software Engineering, Vol. 10, 2015, pp. 591-601.

11. A. Rashwan, O. Ormandjieva, and R. Witte, “Ontology-based classification of non-
functional requirements in software specifications: A new corpus and SVM-based
classifier,” in Proceedings of IEEE 37th Annual Computer Software and Applications
Conference, Vol. 37, 2013, pp. 381-386.

12. T. Li and Z. Chen, “An ontology-based learning approach for automatically classi-
fying security requirements,” The Journal of Systems and Software, Vol. 165, 2020,
pp. 1-12.

13. T. Al-moslmi, N. Omar, S. Abdullah, and M. Albared, “Approaches to cross-domain
sentiment analysis: A systematic literature review,” IEEE Access, Vol. 5, 2017, pp.
16173-16192.

14. J. Winkler and A. Vogelsang, “Automatic classification of requirements based on
convolutional neural networks,” in Proceedings of IEEE 24th International Require-
ments Engineering Conference Workshops, Vol. 24, 2017, pp. 39-45.

15. M. A. Rahman, M. A. Haque, M. N. A. Tawhid, and M. S. Siddik, “Classifying non-
functional requirements using RNN variants for quality software development,” in
Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning
Techniques for Software Quality Evaluation, Vol. 3, 2019, pp. 25-30.

16. F. Petcuşin, L. Stănescu, and C. Bădică, “An experiment on automated requirements
mapping using deep learning methods,” in Proceedings of International Symposium
on Intelligent and Distributed Computing, 2019, pp. 86-96.

316 GREGORIUS AIRLANGGA AND ALAN LIU

Gregorius Airlangga is pursuing Ph.D. degree in De-
partment of Electrical Engineering of National Chung Cheng
University in Taiwan. He is currently an Assistant Professor
with the Department of Information System, Atma Jaya Catho-
lic University of Indonesia. His research interest in artificial
intelligence and software engineering include machine learning,
natural language processing, deep learning, software require-
ments and architecture.

Alan Liu received his Ph.D. degree from the Department of
Electrical Engineering and Computer Science of the University
of Illinois, Chicago, in 1994. He is currently a Professor with the
Department of Electrical Engineering, National Chung Cheng
University, Taiwan. His research interests in artificial intelli-
gence and software engineering include knowledge acquisition,
requirements analysis, intelligent agents, case-based reasoning,
service computing, and applications in smart home systems and
robotic systems. He is a member of IEEE, ACM, Taiwanese
Association for Artificial Intelligence, Software Engineerig
Association of Taiwan, and Robotics Society of Taiwan.

