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In this paper, we propose a multidimensional spatiotemporal modeling framework of 

data warehouse creation for tracing dynamic events in contemporary applications, like 

crowd contact tracing for Covid-19 prevention. Such a framework offers a natural and 

consistent solution for slowly changing dimension management. It provides a progressive 

evolution from traditional static data management to modern dynamic data analysis with 

spatiotemporal tracking capabilities for IoT applications. Based on such a framework, en-

tity-centered resource integration and related business intelligence applications can be rig-

orously developed, managed and properly tracked. 
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1. INTRODUCTION 
 

Data warehouse (DW) [5, 13] is a concept regarding a central repository of integrated 

data for big data analytics. Defined by Inmon [13], there are four characteristics of a DW; 

i.e., subject-oriented, integrated, time-variant, and non-volatile collection of data in sup-

port of the decision-making process for business operations. Generally, a DW is created 

from one or more disparate sources, together with historical transformations and summary 

aggregations. It has been considered as the kernel technology of business intelligence (BI) 

and big data analytics, used for creating multidimensional on-line analytical processing 

(OLAP) reports for managers throughout enterprises to assist contemporary administrative 

decision-makings for more than two decades. 

Today’s cloud applications, like social networking or Covid-19 prevention apps, 

gain continuous interests in the public domain. The inspired power thrives enough to lead 

the trend of our community. Such phenomenon inspires contemporary applications to grad-

ually move their focus from monitoring traditional static relationships to tracking dynamic 

relationships, which tend to be rapidly changing, especially when the target of analysis is 

the moving trajectory or status changing of objects or persons, as studied in [3, 11]. Should 
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the derived data be properly collected, analyzed, and utilized, it would be impossible to 

overestimate the benefits and influence for deriving intelligence from the masses [23]. As 

users today are drowning in data, but thirsty for pursuing interested or needed knowledge 

from every kind of digital footprints generated by humans or entities.  

Therefore, we are aware that it needs a spatiotemporal dimensional modeling frame-

work for recording entity- or user-centered behaviors and tracking the data interweaved by 

networks, crowds and markets; and reasoning over a highly connected world [5]. Based on 

the well-developed relational technologies, it is becoming inevitable to consider adding 

spatial and temporal features into the elements of data management and data warehousing 

methodologies. We believe such a framework can help us develop a structure with the 

following merits: 

 

1. In the era of Internet-of-Things (IoT), one can track the time and space state changes 

of specific items, objects or vehicles for various applications; integrate the related in-

formation; or predict their future trends. 

2. Netizens can integrate their own digital footprints from participating online social me-

dia for personal information integration based on their own timelines. 

3. The spatial and temporal states of disseminated information can be integrated to make 

the circulation of information more transparent, and be critically traced back to the 

original initiator based on the information provenance (such that infections of Covid-

19, fake news or disinformation dissemination can be mitigated). 

 

In Fig. 1, we depict a simple star schema (dimensional modeling of a data warehouse 

[13]) with two temporal dimension tables to illustrate such concept, where temporal di-

mension tables, D1 and D2, are modeled as a series of changing relations Di 
tj, each has their 

content status respectively corresponding to tj (e.g., t1, t2 and t3). The fact table F is used to 

store the integrated digital footprints merged from different data sources or social networks. 
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Fig. 1. Spatiotemporal multidimensional data modeling. 



SPATIOTEMPORAL DATA WAREHOUSING FOR EVENT TRACKING 1215 

2. RELATED WORKS 

To construct a data warehouse (DW), a dimensional modeling process may be con-

ducted to create cubes from several dimensions based on the data correlated in relational 

tables [5, 13-15]. In a DW, the indispensable needs are tracking the timing of changes in 

dimension attributes, together with related business activities, to create business intelli-

gence reports more accurately. That is why a time dimension is usually involved in the 

process of constructing a multidimensional cube. Over the past two decades, the research 

fields regarding data warehouse and temporal database [6, 18, 19] have emerged into the 

concept of temporal data warehouse (TDW) [9]. 

Besides, by including spatial data into consideration, Vaisman and Zimanyi [26] pre-

sented a conceptual framework using an extensible data type system to define a spatiotem-

poral data warehouse. They mainly focused on the data representation and the expressive 

power of related queries; proposed a taxonomy of different classes of queries of increasing 

expressive power; and showed how to express these queries using an extension of the tu-

ple-oriented relational calculus with aggregate functions. 

Based on the survey of Golfarelli and Rizzi [10], many tools or theories have been 

developed to support time-varying data management, such as slowly changing dimension 

(SCD) management [13], manipulation of temporal queries [19], temporal view material-

ization and TDW modeling [9]. They distinguish these researches into the following cate-

gories: 

 

1. Handling changes in the data warehouse: regarding the work of maintaining the data 

synchronization between the data sources and the data warehouse. 

2. Handling data changes in the data mart: concerning the data inconsistent problems 

when data are continuously imported into data marts, as the instances of dimensions 

and hierarchies may not always be static. 

3. Handling schema changes in the data mart: handling the situations of schema structure 

changes in response to the evolving business demands, such that new levels or meas-

ures may be added, while others may become obsolete. 

4. Temporal data queries: paying specific attention to querying temporal data, when 

schema may change. 

5. Temporal data warehouse design: conceptually designing a temporal data warehouse 

based on some ad hoc approaches to handle different kinds of temporal data [6]. 

 

Although these approaches effectively remedy parts of the problems in the ETL (Ex-

traction, Transformation, and Loading) process [2, 20], TDWs or spatiotemporal data 

warehouses, users may still miss important trends in data or infer decisions ineffectively, 

as there is no general framework to consistently capture the geo-varying and time-varying 

nature of data, such that data can be properly managed in transaction systems, and be cor-

rectly analyzed in data warehouse systems [1, 2].  

We noticed that the most common excruciations in maintaining cubes is the slowly 

changing dimensions (SCDs) management in temporal considerations. Even though there 

are many types of methodologies have been proposed to deal with issues involving SCDs 
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management [14], the processing of SCDs poses significant challenges to cube mainte-

nance and the ways to derive precise business intelligence; and users still suffer from their 

complexities and cumbersomeness [19]. 

Kimball & Ross (2002) [15] identified eight types of SCD and proposed some mainte-

nance techniques for each type as follows: 

 

1. Type 0: Retain Original: Some dimension attribute values are regarded as unchangea-

ble, like the color of a human’s eye or skin tone, and facts are always grouped by the 

original value. There is no need for SCD management.  

2. Type 1: Overwrite: the old attribute value in the dimension row is overwritten with the 

new value to reflect the most recent assignment, and therefore destroy the update his-

tory. Such type can be conducted for those attributes which won’t affect the ordinary 

business processes if they change. For example, if someone’s birth date changes: an 

update to this immutable value is most likely a data entry error (or a correction to an 

earlier error). Therefore, the entire change history of such an attribute value does not 

need to be kept. 

3. Type 2: Add a New Row: add a new row in the dimension table with the updated attrib-

ute values for recalling the update history. 

4. Type 3: Add a New Attribute: add a new attribute in the dimension table to preserve the 

old attribute value, used for recalling the update history. 

5. Type 4: Add a Mini-Dimension: when a group of attributes in a dimension rapidly 

changes and is split off into a mini-dimension. This situation is sometimes called a 

rapidly changing monster dimension. This method is advantageous for highly volatile 

or frequently used attributes in a very large size dimension. Hence, if we know there 

are attributes that fit this category, then just split it off into its own physical mini-di-

mension table. The surrogate keys of both tables are captured as foreign keys to the 

fact table. An example is separating age band or income level attributes from a cus-

tomer base dimension and including in the mini-dimension table.  

6. Type 5: Add a Mini-Dimension and Type 1 Outrigger: used to accurately preserve his-

torical attribute values, plus report historical facts according to current attribute values. 

7. Type 6: Add Type 1 Attributes to Type 2 Dimension: delivers both historical and current 

dimension attribute values. 

8. Type 7: Dual Type 1 and Type 2 Dimensions: a hybrid technique used to support both 

as-was and as-is reporting. 

9. Type N: Preserving a Complete History of Changes in a Nested Relation: a newly tech-

nique developed by Garani et al. [10], which needs no additional relations, columns or 

rows, and requires no extra join operations or surrogate keys. 

 

We realize that the most important mission of managing SCDs is the reflection of 

historical events. If the time-varying nature of data cannot be properly managed in trans-

action systems, users may miss important trends in data or may infer the trends incorrectly, 

and the real-time situations may not be correctly analyzed in data warehouse systems [1]. 

Santos & Belo (2011) [19] believe that correctly dealing with the timing changes is a crit-

ical success factor to the deployment of a data warehouse system. However, they pointed 

out that classifying SCDs into types is actually inappropriate, as these types are applied to 

attributes, and we could have dimension tables with some attributes belonging to type 1, 
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others belonging to Types 2 or 3. Therefore, they have analyzed the proposed SCD types 

and concluded that separating current data from historical data is the only feasible approach 

in terms of performance and simplicity of design and implementation. But they did not 

provide a feasible approach on this matter. 

Therefore, we intend to present a general framework in this study, by extending our 

previous work [25], to naturally resolve the complexity of the management of SCDs. The 

approach mainly focuses on the basic elements of multidimensional modeling for a spati-

otemporal data warehouse, such that the entity-centered resource integration and spatio-

temporal business intelligence applications can be rigorously developed, managed and 

properly tracked.  

Our paper is organized as follows. We propose a spatiotemporal multidimensional mod-

eling framework of data warehouse for tracing events in various applications in Section 3. 

The basic elements of our framework are formally defined in Section 4. Some practical 

applications will be discussed in Section 5. Finally, we summarize and conclude our work 

in Section 6. 

3. A SPATIOTEMPORAL DATA WAREHOUSE FRAMEWORK 

Spatiotemporal analysis helps us describe a phenomenon in a certain location and 

period of time − for example, shipping movements across a geographic area over time. By 

envisioning how objects move in space and time, one can use spatial-temporal reasoning 

methods to solve multi-step problems [18]. The analysis can produce different results de-

pending on how space is defined (by zip code, a census tract or a state). Time can also 

provide answers in different granularities, depending on whether it is measured in second, 

minute, hour, day, month or year.  

Snodgrass [21] distinguished time into the following three types: 

 

1. User-defined time: an uninterpreted time value (to be defined and handled by the sys-

tem developers). 

2. Valid time: it captures the history of a changing reality (when a fact was true in the 

modeled real world). 

3. Transaction time: it records the sequence of states of a changing relation (when a fact 

was recorded in the database). 

 

To simplify our discussion, we ignore the user-defined time and suppose a tuple is 

valid starting from the transaction time to the next update or deletion. That is, the concepts 

of valid time and transaction time are unified into one type in the following. As these kinds 

of time are orthogonal, a table can be associated with none, one, two, or even all these 

kinds of time [21]. Therefore, our proposed model can be extended accordingly by adding 

different types of time as other dimensions. 

3.1 Preliminaries of Temporal Relation 

Traditional database systems primarily process the “current” data, i.e., no matter what 

CRUD operations have been posed, the systems always override the old data and keep the 

new data values only. Such databases are also called transient databases [10], they only 



FRANK S. C. TSENG AND ANNIE Y. H. CHOU 

 

1218 

 

store the current representation of real-world objects without any track of changes being 

logged, and there is no way to recall what the object was in the past. Under such circum-

stances, the entire data changing history will be lost.  

However, in practical applications, keeping the status and relationship changings for 

stored entities, based on different timing, is inseparable from our daily life. For example, 

to prevent the outbreak of COVID-19 effectively, it needs to gather crowd information in 

databases, with timing and geolocations, through people’s cell phones. Besides, grasping 

each customer’s status changing is also commonly employed in one-to-one marketing ac-

tivities. 

Conceptually, a traditional relational database is regarded as a collection of flat tables 

with two-dimensional data structure (although a relation is actually of one-dimension with 

n degrees). To properly manage the timing of data status changes, a relation in a database 

needs to be treated as a three-dimensional table, with time as the third dimension. A data-

base with such challenging multi-version data processing capabilities is called a temporal 

database or historical database [18]. Practically, the key points of temporal data management 

for data warehousing based on our approach are as follows:  

1. Building a user-defined function D_state(@time) and its related procedures (or triggers) for 

any traditional relation D (which is supposed to be used for dimension creation), such that 

the third dimension time can be sliced using the parameter @time, to retrieve the correct 

status of R at time @time.  

2. Joining the correct versions of all dimensions, namely Di_state(@time), with the fact 

table, based on the transaction time (represented as a parameter @time) of each fact record 

to retrieve the correct status of all dimensions. 

3. Using the joined result for multidimensional on-line analytical processing (OLAP).  

Snodgrass [21] has disclosed the fundamental elements of developing time-oriented 

database applications simply using SQL and presents many SQL techniques for a variety 

of complex applications. Following the advocating of Snodgrass [21], the primary features 

of SQL: 2011 standard (or ISO/IEC 9075:2011) [16, 29] are focus on the improvements of 

supporting new capabilities for temporal databases. 

To track entity status in a database, we need to keep a complete record about the time 

of creating an entity, the time of updating attribute values, and the time of deleting an entity. 

Suppose we have a Bookstores table as follows: 

Create Table Bookstores ( 
no int not null, 
name nchar(30) not null, 
rank tinyint not null, 
region nchar(30) not null, 
city nchar(30) not null,  
primary key (no)) 

To trace the access history of Bookstores, Snodgrass [21] suggests creating another 

table, namely Bookstores_Log, to log every access record with the following structure: 
Create Table Bookstores_Log ( 

auto_key int identity not null, 
no int not null, 

https://en.wikipedia.org/wiki/ISO_9075
https://en.wikipedia.org/wiki/Temporal_database
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name nchar(30) null, 
rank tinyint not null, 
region nchar(30) null, 
city nchar(30) null, 
when_changed datetime2(7) not null, 
who_changed char(10) not null, 
operation char(1) not null check (operation in ('I', 'D', 'S', 'U')),  
primary key (auto_key, no, when_changed)) 

 

The attributes in boldface are newly added in addition to all the attributes of Bookstores. 

Note that the primary key in Bookstores_Log now becomes a composite key (auto_key, no, 

when_changed), and all the attributes in Bookstores should be included, other than the orig-

inal primary key attribute, must be set to allow null. Then, when records are inserted/deleted 

or attribute values are updated in Bookstores, three triggers (respectively for insert, delete 

and update) should be prepared to proactively log the related details in Bookstores_Log. We 

modify the approach developed by Snodgrass [21], and construct these triggers in Trans-

act-SQL (of Microsoft SQL Server) as listed in Fig. 2: 

 
Create Trigger Bookstores_Insert on Bookstores for INSERT 
As 
Insert into Bookstores_Log (no, name, rank, region, city, when_changed, who_changed, operation)  

select no, name, rank, region, city, getdate(), suser_sname(), 'I' from inserted 
-- 
Create Trigger Bookstores_Delete on Bookstores for DELETE 
As 
Insert into Bookstores_Log (no, name, rank, region, city, when_changed, who_changed, operation)  

select no, name, rank, region, city, getdate(), suser_sname(), 'D' from deleted 
-- 
Create Trigger Bookstores_Update on Bookstores for UPDATE 
As 
Insert into Bookstores_Log (no, name, rank, region, city, when_changed, who_changed, operation)  

select no, name, rank, region, city, getdate(), suser_sname(), 'D' from deleted 
Insert into Bookstores_Log (no, name, rank, region, city, when_changed, who_changed, operation)  

select no, name, rank, region, city, getdate(), suser_sname(), 'I' from inserted 
Fig. 2. Triggers to be created for proactively log the related details in Bookstores_Log. 

 

Next, we need a reconstruction function to return the status of the Bookstores table at 

a certain time. We use SQL Server’s user-defined functions to implement it by adopting 

the SQL structure recommended by Snodgrass [21]. In Fig. 3, we illustrate the function 

Bookstores_State(@requested_date) returning the state of Bookstores at the time specified by 

@requested_date. 
 
Create function Bookstores_State(@requested_date datetime) Returns TABLE  
as RETURN( Select no, name, rank, region, city 

From Bookstores_Log AS E1 
Where E1.when_changed =  

           (Select max(E2.when_changed) 
       From Bookstores_Log AS E2 
       Where E1.no = E2.no and E2.when_changed < @requested_date) 

 And E1.operation <> 'D' and E1.operation <> 'S')) 
Fig. 3. Bookstores_State(@requested_date) returns the state of the time @requested_date. 
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Now, the function Bookstores_State(@requested_date) can be regarded as a three di-

mensional version of Bookstores, with the third dimension time, and it returns the content 

of Bookstores at any time specified by @requested_date. We illustrate this concept in Fig. 

4, where the content of table Bookstores at time t1 (returned by Bookstores_State(t1)) is shown 

at the bottom. At time t2, the following updates were performed: 

1. the names of the second and fifth tuples were respectively changed from ‘Tsutaya’ to 

‘Kinokuniya’ and ‘MCA Store’ to ‘Pubu’; and  

2. the city of the first tuple was changed from ‘Taipei’ to ‘Kaohsiung’. 

At time t3, two tuples (the sixth and seventh tuples) were inserted, and the top relation will 

be returned by Bookstores_State(t3). If there are no further update operations, the top relation 

is the content of Bookstores after time t3. That is, users can obtain any past status of the 

Bookstores by calling the function Bookstores_State(@requested_date). 

 

Bookstores_State(t1) 

no name Region rank city 

1 Eslite Asia 20 Taipei 

2 Tsutaya Asia 10 Tokyo 

3 Barnes & Noble America 30 New York 

4 Shakespeare & Company Europe 20 Paris 

5 MCA Store Oceania 30 Sydney 

 

t1 < t2 < t3 <⸱⸱⸱ 

Bookstores_State(t2) 

no name Region rank city 

1 Eslite Asia 20 Kaohsiung 

2 Kinokuniya Asia 10 Tokyo 

3 Barnes & Noble America 30 New York 

4 Shakespeare & Company Europe 20 Paris 

5 Pubu Oceania 30 Sydney 

 

Bookstores_State(t3) 

no name Region rank city 

1 Eslite Asia 20 Kaohsiung 

2 Kinokuniya Asia 10 Tokyo 

3 Barnes & Noble America 30 New York 

4 Shakespeare & Company Europe 20 Paris 

5 Pubu Oceania 30 Sydney 

6 Readings Oceania 50 Carlton 

7 Brattle Book Shop America 30 Boston 

 

t1

t2

t3

t3   tk  
 

Fig. 4. The Function Bookstores_State(@requested_date) is a 3-dimensional version of Bookstores. 

 

Besides, in addition to this function, we can also create a view to retrieve all the rec-

ords that have appeared in Bookstores, as well as their life cycles. The SQL statement is 

elaborated in Fig. 5.  
Create View Bookstores_lifecycle (no, name, rank, region, city, start_date, stop_date) 
As 
Select E1.no, E1.name, E1.rank, E1.region, E1.city, E1.when_changed, E2.when_changed 
From Bookstores_Log AS E1, Bookstores_Log AS E2 
Where E1.no = E2.no and E1.when_changed < E2.when_changed and E1.operation <> 'D'  
and NOT EXISTS (Select * From Bookstores_Log AS E3 

 Where E1.no = E3.no and E1.when_changed < E3.when_changed 
                    and E3.when_changed < E2.when_changed) 

Union 
Select no, name, rank, region, city, when_changed, getdate() From Bookstores_Log AS E1 
Where E1.operation <> 'D' and NOT EXISTS (Select * From Bookstores_Log AS E3 

            Where E1.no = E3.no  
            and E1.when_changed < E3.when_changed) 

Fig. 5. Defining the view Bookstores_ lifecycle for Bookstores. 
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By following the scenarios in Fig. 4, we experimentally inserting the following tuples 

at '2021-09-28 14:32:27' into Bookstores:  

id name region rank City 

1 Eslite Asia 20 Taipei 
2 Tsutaya Asia 10 Tokyo 
3 Barnes & Noble America 30 New York 
4 Shakespeare & Company Europe 20 Paris 
5 MCA Store Oceania 30 Sydney 

Then update attribute values of the first, second, and fifth tuples as described in Fig. 4 at 

'2021-09-28 14:40:58': 

id name region rank City 

1 Eslite Asia 20 Kaohsiung 

2 Kinokuniya Asia 10 Tokyo 

3 Barnes & Noble America 30 New York 

4 Shakespeare & Company Europe 20 Paris 

5 Pubu Oceania 30 Sydney 

Finally, insert two tuples (the sixth and seventh tuples) at '2021-09-28 14:43:18'. 

id name region rank City 

6 Readings Oceania 50 Carlton 

7 Brattle Book Shop America 30 Boston 

After completion, the result returned by the SQL statement “select * from Bookstores_ 

lifecycle” at '2021-09-28 15:10:39' is as Fig. 6 lists. The content of Bookstores_Log is as 

Fig. 7 depicts. 

id name region rank City Start_date Stop_date 

1 Eslite Asia 20 Kaohsiung  2021-09-28 14:40:58 2021-09-28 15:10:39 

1 Eslite Asia   20 Taipei 2021-09-28 14:32:27 2021-09-28 14:40:58 

2 Kinokuniya Asia 10 Tokyo 2021-09-28 14:40:58 2021-09-28 15:10:39 

2 Tsutaya Asia 10 Tokyo 2021-09-28 14:32:27 2021-09-28 14:40:58 

3 Barnes & Noble America 30 New York 2021-09-28 14:32:27 2021-09-28 15:10:39 

4 Shakespeare & Company Europe 20 Paris  2021-09-28 14:32:27 2021-09-28 15:10:39 

5 MCA Store Oceania 30 Sydney 2021-09-28 14:32:27 2021-09-28 14:40:58 

5 Pubu Oceania 30 Sydney 2021-09-28 14:40:58 2021-09-28 15:10:39 

6 Readings Oceania 50 Carlton 2021-09-28 14:43:18 2021-09-28 15:10:39 

7 Brattle Book Shop America  30 Boston 2021-09-28 14:43:18 2021-09-28 15:10:39 

Fig. 6. The result returned by the SQL “select * from Bookstores_lifecycle”. 

Auto_key no name region rank city when_changed who_changed operation 

1 5 MCA Store Oceania 30 Sydney 2021-09-28 14:32:27 sa I 

2 4 Shakespeare & Company Europe 20 Paris 2021-09-28 14:32:27 sa I 

3 3 Barnes & Noble America 30 New York 2021-09-28 14:32:27 sa I 

4 2 Tsutaya Asia 10 Tokyo 2021-09-28 14:32:27 sa I 

5 1 Eslite Asia 20 Taipei 2021-09-28 14:32:27 sa I 

8 1 Eslite Asia 20 Taipei 2021-09-28 14:40:58 sa D 

9 1 Eslite Asia 20 Kaohsiung 2021-09-28 14:40:58 sa I 

10 2 Tsutaya Asia 10 Tokyo 2021-09-28 14:40:58 sa D 

11 2 Kinokuniya Asia 10 Tokyo 2021-09-28 14:40:58 sa I 

12 5 MCA Store Oceania 30 Sydney 2021-09-28 14:40:58 sa D 

13 5 Pubu Oceania 30 Sydney 2021-09-28 14:40:58 sa I 

14 6 Readings Oceania 50 Carlton 2021-09-28 14:43:18 sa I 

15 7 Brattle Book Shop America 30 Boston 2021-09-28 14:43:18 sa I 

Fig. 7. The content of Bookstores_Log. 
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Note that in Fig. 6, a tuple with a stop_date of '2021-09-28 15:10:39' (i.e., the time 

the SQL query was issued, can be obtained by selecting max(stop_date)) indicates that the 

tuple currently exists in Bookstores. Therefore, we can generate the current content of 

Bookstores relation from the following query posed on Bookstores_lifecycle: 
 
select no, name, region, rank, city 
from Bookstores_lifecycle  
where stop_date >= (select max(stop_date) from Bookstores_lifecycle) 

The returned result is exactly the same as the result of issuing the following statement: 

 

select no, name, region, rank, city from Bookstores 

3.2 A Demonstrative Example  

To explain the importance of utilizing temporal tables to keep updated history for 

precise data analysis, we present a demonstrative example in the following. This example 

is based on three tables:  

1. Bookstores(no, name, region, rank, city), with primary key (no) 

2. Orders(tid, no, id, quantity), where no and id are foreign keys reference Bookstores.no 

and Books.id, respectively. Its primary key is a composite attribute (tid, no, id). 

3. Books(id, bookname, category, author, price, publisher), with primary key (id).  

Based on the status changes of Fig. 8, suppose there are four time spots, namely t1, t2, 

t3 and t4. Before t1, suppose the content of relations Bookstores and Books are as listed above 

the dotted line indicated by t1; i.e., on top of the diagram, there are 5 bookstores and 6 

books. Right at t1, there are 17 orders inserted into Orders. Then, after t1, the following SQL 

statements have been executed: 
 
update Bookstores set city = 'Kaohsiung' where no = 1; 
update Bookstores set name = 'Kinokuniya' where no = 2; 
update Bookstores set name = 'Pubu' where no = 5; 
update Books set publisher = 'Oxford University' where id = 1;  

After executing these statements, the contents of Bookstores and Books are as listed 

below t1, with new attribute values shown in gray areas. Then, things happen at t2, t3 and 

t4, which we explain as follows: 

1. The following SQL statements are executed at t2. (Two bookstores are inserted): 
insert into Bookstores (no, name, region, rank, city)  
values (6, 'Readings', 'Oceania', 50, 'Carlton'), (7, 'Brattle Book Shop', 'America', 30, 'Boston') 

2. The following SQL statements are executed at t3 (Five orders are inserted into Orders): 
insert into Orders (tid, no, id, quantity) values (getutcdate(), 1, 1, 60), (getutcdate(), 2, 1, 70),  
(getutcdate(), 6, 3, 80), (getutcdate(), 7, 3, 30), (getutcdate(), 7, 5, 50) 

3. The following SQL statements are executed at t4 (Two orders are inserted into Orders): 
insert into Orders (tid, no, id, quantity) values (getutcdate(), 5, 6, 15), (getutcdate(), 5, 1, 25) 
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no name reg ion  rank  c i t y  

1 Esl i t e  Asia  20 Taipe i  

2  Tsutaya  Asia  10 Tokyo  

3 Barnes & Noble  America  30 New York  

4  Shakespea re & Compan y  Europe  20 Par i s  

5  MCA Store  Oceania  30 Sydney  
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t2
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t
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t
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t
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t
1  4  4  30 

t
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 no name reg ion  rank  c i t y  

1 Esl i t e  Asia  20 Kaohsiung  

2 Kinokuniya  Asia  10 Tokyo  

3 Barnes & Noble  America  30 New York  

4  Shakespea re & Compan y  Europe  20 Par i s  

5  Pubu Oceania  30 Sydney  

 
no name reg ion  rank  c i t y  

1 Esl i t e  Asia  20 Kaohsiung  

2 K inokuniya  Asia  10 Tokyo  

3 Barnes & Noble  America  30 New York  

4  Shakespea re & Company  Europe  20 Par i s  

5  Pubu Oceania  30 Sydney  

6 Readings Oceania  50 Carl ton  

7 Brat t le  Book Shop  America  30 Boston  

 t
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t
3  2  1  70 

t
3  6  3  80 

t
3  7  3  30 

t
3  7  5  50 

 

t4

t
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t
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no name reg ion  rank  c i t y  

1 Esl i t e  Asia  20 Kaohsiung  

2 K inokuniya  Asia  10 Tokyo  

3 Barnes & Noble  America  30 New York  

4  Shakespea re & Company  Europe  20 Par i s  

5  Pubu Oceania  30 Sydney  

6 Readings  Oceania  50 Car l ton  

7 Brat t l e  Book Shop  America  30 Boston 

 no name reg ion  rank  c i t y  

1 Esl i t e  Asia  20 Kaohsiung  

2 K inokuniya  Asia  10 Tokyo  

3 Barnes & Noble  America  30 New York  

4  Shakespea re & Compan y  Europe  20 Par i s  

5  Pubu Oceania  30 Sydney  

6 Readings  Oceania  50 Car l ton  

7 Brat t l e  Book Shop  America  30 Boston  

 

i d  bookname  category  author  pr i ce  publ i sher  

1 War and Peace  L i terature  Leo Tols toy  120  Oxford Univers i t y  

2  Hamlet  L i terature  Wi l l i am Shakespeare  170  S imon & Schuster  

3  The Catcher in  the Rye  L i terature  J .D.  Sal inger  170  L i t t l e ,  Brown & Company 

4 A Br ie f  H is tory o f  T ime  Science  Steven Hawking  140  Random House  

5 Fermat ' s  Last  Theorem  Science  S imon S ingh  120  Harperco l l i ns  

6  The Language of  God  Phi losophy  Francis  S.  Col l i n s 190  Free Pre ss  

 

update bookstores 
     set city = 'Kaohsiung' where no = 1
update bookstores 
    set name = 'Kinokuniya' where no = 2
update bookstores 
    set name = 'Pubu' where no = 5
update books
    set publisher = 'Oxford Universi ty' where id = 1

insert into bookstores (no, name, region, rank, city) 
values (6, 'Readings', 'Oceania', 50, 'Carlton')

insert into bookstores (no, name, region, rank, city) 
values (7, 'Bra ttle Book Shop', 'America', 30, 
'Boston')
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4 A Br ie f  H is tory o f  T ime  Science  Steven Hawking  140  Random House  

5 Fermat ' s  Last  Theorem  Science  S imon S ingh  120  Harperco l l i ns  

6  The Language of  God  Phi losophy  Francis  S.  Col l i n s 190  Free Pre ss  
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3  The Catcher in  the Rye  L i terature  J .D.  Sal inger  170  L i t t l e ,  Brown & Company 

4 A Br ie f  H is tory o f  T ime  Science  Steven Hawking  140  Random House  

5 Fermat ' s  Last  Theorem  Science  S imon S ingh  120  Harperco l l i ns  

6  The Language of  God  Phi losophy  Francis  S.  Col l i n s 190  Free Pre ss  
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3  The Catcher in  the Rye  L i terature  J .D.  Sal inger  170  L i t t l e ,  Brown & Company 

4 A Br ie f  H is tory o f  T ime  Science  Steven Hawking  140  Random House  

5 Fermat ' s  Last  Theorem  Science  S imon S ingh  120  Harperco l l i ns  

6  The Language of  God  Phi losophy  Francis  S.  Col l i n s 190  Free Pre ss  

 

i d  bookname  category  author  pr i ce  publ i sher  

1 War and Peace  L i terature  Leo Tols toy  120  V intage 

2 Hamlet  L i terature  Wi l l i am Shakespeare  170  S imon & Schuster  

3  The Catcher in  the Rye  L i terature  J .D.  Sal inger  170  L i t t l e ,  Brown & Company 

4 A Br ie f  H is tory  o f  T ime Science  Steven Hawking  140  Random House  

5 Fermat ' s  Last  Theorem  Science  S imon S ingh  120  Harperco l l i ns  

6  The Language of  God  Phi losophy  Francis  S.  Col l i n s 190  Free Pre ss  

 

5 orders inserted at t3

2 orders inserted at t4

Timeline

Bookstores

Books

Orders Foreign key
reference

Foreign key reference

 
Fig. 8. A demonstrative example. 

 

After executing these statements, the contents of Bookstores and Books are listed below 

t2, t3 and t4, at the left-hand-side and right-hand-side, respectively, with new attribute val-

ues shown in gray areas. For relation Orders, we gradually extend its content to show its 

data evolution. Based on the timeline, the foreign key reference relationships are linked as 

shown by the corresponding arrows. That means, for example, the following two tuples 

links to the same tuples of Bookstores and Books, but with different attribute values at dif-

ferent time spots of t1 and t4 (attribute values are shown in boldface to show the differences): 

1. On the top of Fig. 8, the fifth tuple from the last, i.e., (t1, 5, 1, 20), in relation Orders 

represents an order issued by the bookstore  

(5, 'MCA Store', 'Oceania', 30, 'Sydney') 

with the book  

(1, 'War and Peace', 'Literature', 'Leo Tolstoy', 120, 'Vintage'), 

based on the status of Bookstores and Books at t1.  

2. On the bottom of Fig. 8, the newly inserted tuple (t4, 5, 1, 25) in Orders represents an 

order sent by the bookstore  
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(5, 'Pubu', 'Oceania', 30, 'Sydney') 

with the book  

(1, 'War and Peace', 'Literature', 'Leo Tolstoy', 120, 'Oxford University'), 

based on the content of Bookstores and Books at t4.  

 

Traditionally, if we build a cube without using temporal tables for dimensions, then 

the contents of dimension tables Bookstores and Books, together with the fact table Orders 

and related foreign key references; i.e., the database status after t4, can be shown as Fig. 9 

depicts. Some data changing histories are lost in such a situation. 
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t
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t
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no name reg ion  rank  c i t y  

1 Esl i t e  Asia  20 Kaohsiung  

2 K inokuniya  Asia  10 Tokyo  

3 Barnes & Noble  America  30 New York  

4  Shakespea re & Company  Europe  20 Par i s  

5  Pubu Oceania  30 Sydney  

6 Readings  Oceania  50 Car l ton  

7 Brat t l e  Book Shop  America  30 Boston  

 

i d  bookname  category  author  pr i ce  publ i sher  

1 War and Peace  L i terature  Leo Tols toy  120  Oxford Univers i t y  

2  Hamlet  L i terature  Wi l l i am Shakespeare  170  S imon & Schuster  

3  The Catcher in  the Rye  L i terature  J .D.  Sal inger  170  L i t t l e ,  Brown & Company 

4 A Br ie f  H is tory o f  T ime  Science  Steven Hawking  140  Random House  

5 Fermat ' s  Last  Theorem  Science  S imon S ingh  120  Harperco l l i ns  

6  The Language of  God  Phi losophy  Francis  S.  Col l i n s 190  Free Press  

 

Bookstores

Books

Orders

Foreign Key reference: Orders.id " Books.id

Foreign Key reference: Orders.no " Bookstores.no

 
Fig. 9. The status of an example database with related reference key references after t4. 

 

Therefore, any on-line analytical processing (OLAP) would get imprecise result due 

to the loss of status changing histories of all dimension tables. For instance, by employing 

the pivot table technique of Excel to analyze the data in Fig. 9, using “publisher  book-

name” as the row hierarchy, and “region  city  bookname” as the column hierarchy, we 

obtain the result shown in Fig. 10 (to make the result more concise, we hide some sub-

aggregations). Such report reveals only part of the history and should be regarded as dis-

torted and ineffective, as some facts are lost. We list just a few examples in the following: 

1. The order (t1, 1, 1, 30) issued at t1 actually comes from the bookstore ‘Eslite’ located 

in ‘Taipei’. But we cannot find any ‘Taipei’-related information in this report. 

2. The orders (t1, 2, 1, 30) and (t3, 2, 1, 70) respectively issued at t1 and t3 should be 

separated, as they come from different bookstore names, namely ‘Tsutaya’ and ‘Ki-

nokuniya’. But they are all aggregated into ‘Kinokuniya’, and we cannot find any ‘Tsu-

taya’-related information in this report. 

3. Similarly, the orders (t1, 5, 1, 20) and (t4, 5, 1, 25) should be separated based on the 

bookstores named ‘MCA Stores’ and ‘Pubu’, respectively. But they are all aggregated 

into ‘Pubu’, and all ‘MCA Store’-related information is lost in this report. 
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Fig. 10. A distorted and ineffective report for the demonstrative example. 

 
Fig. 11. A precise report of the demonstrative example. 

 

In Fig. 11, we present a meaningful report using the same aggregated temporal hierarch-

ies, and use gray areas to highlight the primary different parts between this report and Fig. 10. 

Such a report precisely retains all the data changing histories, and we can switch the 

analytical result back to any time spot instantly, by introducing the Time dimension (i.e., 

the tid, which includes all time spots) as a pivot table slicer. In Fig. 12, we list the sliced 

snapshots (a), (b) and (c) respectively for t1, t3, and t4. These reports honestly reflect the 

correct situations for our analysis.  

 

 
(a) The sliced snapshot at t1. 

Fig. 12. The sliced snapshots for t1, t3, and t4. 
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(b) The sliced snapshot at t3. 

 
(c) The sliced snapshot at t4. 

Fig. 12. (Cont’d) The sliced snapshots for t1, t3, and t4. 

4. THE FORMAL DEFINITION OF OUR FRAMEWORK 

The framework of our solution has been illustrated by Fig. 1, where each record in a 

fact table will use the value (ti) of the time key (T) to link to the target version of a dimen-

sion table Dti. To formally illustrate the concept of temporal data warehousing, we define the 

basic elements of a temporal data warehouse in the following. Some of these elements are de-

fined as the extended counterparts of the elements of traditional data warehouses as presented 

in our previous work [24]. Our previous work defines the elements of a document warehouse, 

which can be regarded as a multidimensional indexing structure of a document set. By combin-

ing the proposed framework and our previous work [29], a document warehouse can be ex-

tended with temporal features for the version control of each document in a document set. 

4.1 Temporal Dimensional Modeling 

To illustrate the proposed temporal dimensional modeling for temporal data ware-

house creation, we depict a star schema in Fig. 13 with three temporal dimension tables 

(D1
tj, D2

tj, and D3
tj) linked to a fact table F, where each Di

tj (i  {1, 2, 3}) is modeled as a 

series of status changing relations of the same schema, with the content status respectively 

corresponding to tj (e.g., t1, t2, and t3 in Fig. 13). Similar to traditional dimensional model-

ing, each primary key (PKi) of a dimension tables Di
tj is introduced into F as a foreign key 

FKi (i  {1, 2, 3}).  

Periodically, records will be inserted into F with different T values (i.e., the transac-

tion times, t1, t2, and t3), together with some measures (e.g., m1, m2, …). A measure is an 

attribute of a fact table on which aggregation functions (e.g., sum, count, average, mini-

mum, maximum) can be applied for calculations. Based on different T values, namely tj, 

the join operations of F with Di
tj should be performed as the arrows indicate in Fig. 13; i.e., 

different tuples with different tj should be linked to the correct version of Di
tj We call such 

operation temporal join and formally define it in Definition 1. 
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Tid
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t3
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...
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PK3  Att31  Att32

fk31

fk32

fk33

...

t3

PK3  Att31  Att32

fk31

fk32

fk33

...

t2

PK3  Att31 Att32

fk31

fk32

fk33

...

t1

tj tj

tj

T

t1

t2

t3

t4

t5

...

T

Year  Quarter  Month  Day

 
Fig. 13. The proposed temporal dimensional modeling concept. 

 

Definition 1: A temporal join, denoted F(T, K, A)⧖KDt(K, B), is a binary operation for 

joining a relation F(T, K, A) with a temporal relation Dt(K, B), where T stores time points, 

K is the join key and both A and B are the remaining (composite) attributes of F and Dt, 

respectively, such that for each f(t, k, a)F, select the tuple d(k, b) contained in the version 

of Dt at time t, and then compose a naturally-joined tuple r(t, k, a, b) as a result. To state 

this in a formal way by relational algebraic notations, a temporal join is defined as: 

F(T, K, A)⧖KDt(K, B) = {r(t, k, a, b) | (f(t, k, a)F)  (d(k, b)Dt),  

r(t, k, a, b) = t, k, a, b({f(t, k, a)}⋈f.k=d.k{d(k, b)})}. 

Currently, none of the mainstream commercial database management systems (DBMSs) 

support this temporal join operation directly. Fortunately, contemporary SQL statements, like 

Transact-SQL of Microsoft SQL Server, provide enough capabilities to implement this tem-

poral join operation. 

Based on Definition 1, the temporal dimensional modeling process can be imple-

mented by temporally-joining a fact table F(T, K1, K2, …, Ki, …, Kn, A) with all involved 

temporal dimensions Di
t
(Ki, B), 1  i  n: 

(…((F⧖K1 D1
tj ⧖K2 D2

tj)⧖Ki Di
tj)⧖Kn Dn

tj). 

Basically, the join key F.Ki is a foreign key references Di
t
.Ki. Therefore, every tuple 

(t, …, ki, …, a)F is able to find a matched tuple (ki, b)Di
t
, when performing these tem-

poral joins. In Fig. 8, the first tuple of F inserted at t1 should be joined with D1
t1, D2

t1, D3
t1 by 

the key values fk11, fk21 and fk31, respectively. Likewise, the second tuple of F inserted at 

t2 should be linked with D1
t2, D2

t2 and D3
t2 by the key values fk12, fk22 and fk32, respectively. 

To achieve this, F.T should be projected and regarded as a traditional time dimension T 

(Please notice that, since T is invariant, there is no need to create it as a temporal dimen-

sion). Then, all we need is finding a correct and efficient way to match each target tuple in 

the right version of each Di
tj based on a time instance tj in T through a series of temporal 

joins:  
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(…((F⧖K1 D1
tj) ⧖K2 D2

tj)⧖Ki Di
tj)⧖Kn Dn

tj). 

We start with defining the concept of temporal dimension. 

 

Definition 2: A temporal dimension D
tj is a multi-versioned tree structure of h levels, h  

1, with versions respectively indexed by the time instance tj selected from a time dimension 

T. It is used to represent the hierarchical relationships among a set of keywords. A node in 

D
tj is called a member and each internal node contains a special child called summary 

member, denoted ‘*’, which is used for denoting the total concept of the other children of 

the internal node. 

 

Definition 3: An aggregated temporal dimension DT, is the complete data association col-

lected and aggregated from all temporal dimensions of all versions of D
tj, where tj is an 

instance of the time dimension T.  

A traditional dimension can be regarded as a special case of temporal dimension with 

only one version (current status). When drawing a version of a temporal dimension D
tj for 

t, we usually leave out a summary member, since it has the same meaning with its parent 

node at t.  

 

Definition 4: For a temporal dimension D
tj, the ith-level member set of a version, denoted  

D
tj(i), is defined as D

tj(i) = {a | a is a member in the ith level of D
tj, but a is not a summary 

member}. We use D
tj(0) to denote the union of all non-summary members in D

tj, which is 

the union of all ith level member sets in D
tj. That is, D

tj(0) = 1  i  h D
tj(i), where h is the 

height of D
tj. In practice, each D

tj(i) has a specific name, which will be called the ith-level 

name. All versions of D
tj use the same ith-level name; however, the members of the same 

level in different versions of D
tj may be different.   

Practically, a temporal dimension can be constructed from a temporal relation, with 

each level corresponding to an attribute in the relation, and these attribute names are usu-

ally used as the corresponding level names. To illustrate the above definitions, we give an 

example as follows. 

 

Example 1: Suppose there is a temporal relation Ranges representing the continental re-

gions of the world as shown in Fig. 14. This relation can be used to construct a temporal 

dimension, denoted R
tj as depicted in Fig. 15, where the first level corresponds to the di-

mension itself, which is commonly denoted “(All Ranges)”, and the second and third levels 

are derived from the attributes Region and City, respectively. Practically, the dimension 

data of all versions in Ranges should be collected and associated together by the time key 

(T), as shown in the right-hand-side of Fig. 14, for creating the aggregated temporal di-

mension RT.  

 

All nodes in Fig. 15 with label ‘*’ are summary members. A summary member groups 

its siblings into a set as a whole to represent the upper level of summary within a dimension 

hierarchy. That is, the summary member in the second level has the same meaning as re-

gions in the World, which represents {Asia, America, Europe, Oceania} based on the cur-

rent content. Besides, the summary members in Rt1 under Asia, America, Europe and Oce-

ania have the same corresponding meaning with Asia, America, Europe and Oceania, 



SPATIOTEMPORAL DATA WAREHOUSING FOR EVENT TRACKING 1229 

which denote {Taipei, Tokyo}, {New York}, {Paris} and {Sydney}, respectively. Likewise, 

the summary members in R
t2 under Asia, America, Europe and Oceania have the same 

corresponding meaning with Asia, America, Europe and Oceania, which denote {Kao-

hsiung, Tokyo}, {New York}, {Paris} and {Sydney}, respectively. Please kindly allow us 

to ignore the illustration of R
t3 for concise presentation.  

 

Region city 

Asia Kaohsiung 

Asia Taipei 

Asia Tokyo 

America New York 

America Boston 

Europe Paris 

Oceania Sydney 

Oceania Carlton 

 

Ranges

Region city 

Asia Kaohsiung 

Asia Tokyo 

America New York 

America Boston 

Europe Paris 

Oceania Sydney 

Oceania Carlton 

 

t3Rangest3

Region city 

Asia Taipei 

Asia Tokyo 

America New York 

Europe Paris 

Oceania Sydney 

 

t1
Rangest1

Region city 

Asia Kaohsiung 

Asia Tokyo 

America New York 

Europe Paris 

Oceania Sydney 

 

t2
Rangest2

The dimension data for all times.

t2 t3

t1

t2 t3t1

t2 t3t1

t3

t2 t3t1

t2 t3t1

t3

T

T

T 

t1 

t2 

t3 

 

T

 
Fig. 14. A time-related relation region for constructing the temporal dimension Rtp. 

Level

1

2

3

(All Ranges)

Asia Oceania

Taipei Sydney

*

* *

t1R

America

New 

York *Tokyo

Europe

Paris *

(All Ranges)

Asia Oceania

Kaohsiung Sydney

*

* *

t2R

America

New 

York *Tokyo

Europe

Paris *

 
Fig. 15. An illustration of temporal dimensions Rt1 and Rt2. 

 

By omitting all the summary members of R
tp, Fig. 15 can be concisely redrawn in Fig. 

16. According to the illustration of R
tp, we know that: 

 

1. R
t1(1) = {(All Ranges)}, R

t1(2) = {Asia, America, Europe, Oceania}, and R
t1(3) = {Tai-

pei, Tokyo, New York, Paris, Sydney}, and R
t1(0) = {(All Ranges), Asia, America, Eu-

rope, Oceania, Taipei, Tokyo, Taipei, New York, Paris, Sydney};  

2. R
t2(1) = {(All Ranges)}, R

t2(2) = {Asia, America, Europe, Oceania}, and R
t2(3) = 

{Kaohsiung, Tokyo, Taipei, New York, Paris, Sydney}, and R
t2(0) = {(All Ranges), Asia, 

America, Europe, Oceania, Kaohsiung, Tokyo, Taipei, New York, Paris, Sydney}.  

3. R
t3(1) = {(All Ranges)}, R

t3(2) = {Asia, America, Europe, Oceania}, and R
t3(3) = 

{Kaohsiung, Tokyo, New York, Boston, Paris, Sydney, Carlton}, and R
t3(0) = {(All 

Ranges), Asia, America, Europe, Oceania, Kaohsiung, Tokyo, New York, Boston, Paris, 

Sydney, Carlton}.  

4. The aggregated temporal dimensions RT can be illustrated in Fig. 17.  
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Level name

(All Ranges)

Region

City

(All Ranges)

Asia Oceania

Kaohsiung Sydney

t2R

America

New 

YorkTokyo

Europe

Paris

(All Ranges)

Asia Oceania

Taipei Sydney

t1R

America

New 

YorkTokyo

Europe

Paris

Level

1

2

3

 
Fig. 16. A concise illustration of temporal dimensions R

t1 and R
t2. 

Level name

(All Ranges)

Region

City
Kaohsiung

(All Ranges)

Asia Oceania

Taipei Sydney

T
R

America

New 

YorkTokyo

Europe

Paris

Level

1

2

3
Carlton

t2 t3
t1

t2 t3t1 t2 t3t1 t3t2 t3t1

t2 t3t1 t3

Boston

t2 t3t1 t2 t3t1 t2 t3t1
t2 t3t1

 
Fig. 17. The aggregated temporal dimensions RT. 

 

For a temporal dimension Dtj, there are two basic operations called drill-down and roll-

up, which are formally defined as follows. 

 

Definition 5: For each version (for time t) of a temporal dimension D
tj, expanding an in-

ternal node to obtain all of its children is called drill-down at t, and shrinking of a set of 

children to obtain their common parent is called roll-up at t.  

This can be further clarified by the following definitions. 

 

Definition 6: For any two n-tuple of keywords At = (a1, a2, …, ai, …, an) and Bt = (b1, 

b2, …, bi, …, bn) defined on the versions for time t of n temporal dimensions (D1
tj, D2

tj, …, 

Di
tj, …, Dn

tj), where ai and bi  Di
t
(0), we define Bt is a member of drilling down At along Di

t
 

at t (or At is a member of rolling up Bt along Di
t
 at t), denoted At ≺i Bt, if and only if there 

exists exactly an i, 1  i  n, such that bi is a child of ai in Di
t
, and bk = ak, for all k  i. 

For an aggregated temporal dimension DT, when users are concerning the accumulated 

structure of all times in T. Then, expanding an internal node to obtain all of its children is 

also called drill-down, and shrinking of a set of children to obtain their common parent is 

likewise called roll-up. 

The basic component of a temporal cube is called a t-cell, which is defined as follows. 

 

Definition 7: A t-cell ct = (t, C, V) of time t defined by  

 a fact table F(T, K1, K2, …, Ki, …, Kn, M),  

 a time dimension T, projected from F.T, 

 n aggregated temporal dimensions D = (D1
t
, D2

t
, …, Di

T
, …, Dn

T
), such that each Di

T
 

contains a foreign key Ki references F.Ki, 1 i  n, 
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where  

 t  T,  

 C = (c1, c2, …, ci, …, cn), ci  Di
t
(0)  {‘*’}, 1 i  n, and  

 V = (v1, v2, …, vk) = (f1(C, M1), f2(C, M2), …, fk(C, Mk)) is a tuple of values returned 

by respectively applying aggregate functions fj(C, Mj) on each measure in M = {M1, 

M2, …, Mj, …, Mk}, 1 j  k, such that the result of the temporal joins at time t 

(…((F⧖K1 D1
t
)⧖K2 D2

t
)⧖Ki Di

t
)⧖Kn Dn

t) is non-empty.  

 

Definition 8: A t-cell ct is called an m-d t-cell of time t, 0  m  n, if and only if there are 

exactly m non-summary member ci (i.e., ci  ‘*’). If m = n and ciDi
T
(hi), where hi is the 

height of Di
T
, for all 1 i  n, then ct is also called a base t-cell; otherwise ct is called a non-

base t-cell. 

 

Definition 9: A temporal cube CT = (T, D, M), where D = (D1
T
, D2

T
, …, Di

T
, …, Dn

T
), and M 

= {M1, M2, …, Mj, …, Mk}, defined on a time dimension T, n aggregated temporal dimen-

sions (D1
T
, D2

T
, …, Di

T
, …, Dn

T
), and k measures {M1, M2, …, Mj, …, Mk}, is an (n+1)-

dimensional structure composed of all t-cells ct = (t, C, V), ct  T(0)  ( ×
1𝑖𝑛

𝐷𝑖 
𝑇(0)). 

Based on the above definitions, a temporal cube is a multidimensional structure with 

each temporal dimension can be indexed by a time point t in a traditional dimension T. It 

allows users to browse cells by rolling up and drilling down along some temporal dimen-

sions, at some time intervals of different granularities. That helps us obtain further insight 

into time-dependent relationships.  

A sample illustration of a temporal cube CT = (T, D, M), with D = (B, RT) and M = 

(quantity), consisting of a measure of the quantity of books sold in different regions, is 

shown in Fig. 18, where T is a time dimension, B represents a traditional dimension Books, 

RT stands for the aggregated temporal dimension of Ranges discussed in Example 1. 
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America
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Fig. 18. A sample illustration of a temporal cube. 

4.2 Spatial Dimensions 

Miller & Han [17] distinguish three types of spatial dimensions for cube construction. 

These three types of dimension are as follows: 



FRANK S. C. TSENG AND ANNIE Y. H. CHOU 

 

1232 

 

1. Nongeometric spatial dimension: contains only nominal or ordinal location of the di-

mension members, such as place names (e.g., National Taiwan University), street ad-

dresses (University Rd.), or hierarchically structured boundaries (e.g., Kaohsiung→ 

South→Taiwan). Neither shape nor geometry nor cartographic data are used. This type 

of spatial dimension is fully supported by nonspatial data warehousing technology. 

2. Geometric spatial dimension: contains a vector-based cartographic representation for 

every member of every level of a dimension hierarchy to allow the cartographic visu-

alization, spatial drilling, or other spatial operation of the dimension members [1]. For 

instance, every city in Taiwan would be represented by a point, and every country 

would be represented as polygons. 

3. Mixed geometric spatial dimension: contains a cartographic representation for some 

members of the dimension, and nominal/ordinal locators for the other members. A 

mixed spatial dimension can also contain a cartographic representation for only some 

members of the same hierarchy level (e.g., all cities in South Taiwan, but not all cities 

in East Taiwan). The mixed spatial dimension offers some benefits of the geometric 

spatial dimension while suffering from some limitations of the nongeometric spatial 

dimension, all this at varying degrees depending on the type of mixes involved. 

 

We only consider the nongeometric spatial dimension in our study to keep our frame-

work neat and concise. Although this can offer only a fraction of the analytical richness of 

the other types of spatial dimensions [1], it is sufficient to capture digital geographic foot-

prints for most of the cloud applications, like social networking and related analytics. 

When a user check-ins at some places during surfing in a social network site, the latitude 

and longitude can be translated into a nominal location or an approximate address (e.g., by 

Google Map API) to help us build a spatial dimension. The slowly changing dimension 

problem of a spatial dimension, like city or country name changings, can be easily solved 

by our framework if it is built as a temporal dimension (interestingly, it is actually a spati-

otemporal dimension). That is, by introducing the nongeometric spatiotemporal dimension, 

our framework is consistently applicable to both temporal and spatial dimensional model-

ing. 

To illustrate the concept of our spatiotemporal model, we depict a graph to show the 

participants of a conference (namely, 2020 ICDE conference) in Fig. 19. For a concise 

presentation, we suppose there are totally 7 scholars. During the conference days (i.e., from 

2020/04/20 to 2020/04/24), each scholar chooses their convenient durations (represented 

in a square bracket) to attend the conference. There are two participants with slowly chang-

ing attributes (from times t1 to t2):  

 

1. The city where Luna (UUID 2) was located was once called ‘Taipei County’ (time t1), 

but it was renamed into ‘New Taipei’ at the conference time. Therefore, if the city is 

regarded as a temporal dimension, then ‘New Taipei’ should be used at t2 for on-line 

analytical processing. 

2. Suppose Tom (UUID 5) had a master’s degree (time t1), but when he participates in the 

conference (time t2), he has already got a PhD degree. 

 

By employing our spatiotemporal model, the following operations:  

 

Conferences(cid, name, ...)⋈cid Participate(date, sid, cid) ⧖sid Scholars
t
(sid, name, …) 
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generate all the participation information as listed in Fig. 20. Then, we can correctly con-

duct the multidimensional analysis as Fig. 21 illustrates, where the number of participants 

in each conference day can be counted based on the two hierarchies: “Affiliation  Degree” 

and “City  Gender”, respectively used for horizontal and vertical axes. 

 

Cid: 101

Cname: 2020 ICDE Conference

Start_Date: 2020/4/20

End_Date: 2020/4/24

City: Dal las, TX

t2

2

Sid: 2
Sname: Luna
Gender: F
City: Taipei County
Affi liation: NTPU
Degree: MS

t1

Sid: 2
Sname: Luna
Gender: F
City: New Taipei
Affi liation: NTPU
Degree: MS

t2

3

Sid: 5
Sname: Tom
Gender: M
City: Changhua
Affi liation: NCUE
Degree: PhD

t2

Sid: 5
Sname: Tom
Gender: M
City: Changhua
Affi liation: NCUE
Degree: MS

t1

5

6
Sid: 6
Sname: May
Gender: F
City: Tainan
Affi liation: NCKU
Degree: MS

t2

Sid: 7
Sname: Ling
Gender: F
City: Tainan
Affi liation: NCKU
Degree: PhD

t2

Sid: 8
Sname: Ren
Gender: M
City: Kaohsiung
Affi liation: NKUST
Degree: PhD

t2

7

8

101

Sid: 3
Sname: Lora
Gender: F
City: Taipei
Affi liation: NTU
Degree: PhD

t2

 
Fig. 19. A sample illustration of ICDE 2020 Conference and the participants. 

 

sid sname gender city affiliation degree participate_date cname 

2 Luna F New Taipei NTPU MS 2020-04-20 2020 ICDE 

2 Luna F New Taipei NTPU MS 2020-04-21 2020 ICDE 

2 Luna F New Taipei NTPU MS 2020-04-22 2020 ICDE 

2 Luna F New Taipei NTPU MS 2020-04-23 2020 ICDE 

3 Lora F Taipei NTU PhD 2020-04-20 2020 ICDE 

3 Lora F Taipei NTU PhD 2020-04-21 2020 ICDE 

3 Lora F Taipei NTU PhD 2020-04-22 2020 ICDE 

3 Lora F Taipei NTU PhD 2020-04-23 2020 ICDE 

5 Tom M Changhua NCUE PhD 2020-04-22 2020 ICDE 

5 Tom M Changhua NCUE PhD 2020-04-23 2020 ICDE 

5 Tom M Changhua NCUE PhD 2020-04-24 2020 ICDE 

6 May F Tainan NCKU MS 2020-04-22 2020 ICDE 

6 May F Tainan NCKU MS 2020-04-23 2020 ICDE 

6 May F Tainan NCKU MS 2020-04-24 2020 ICDE 

7 Ling F Tainan NCKU PhD 2020-04-20 2020 ICDE 

7 Ling F Tainan NCKU PhD 2020-04-21 2020 ICDE 

7 Ling F Tainan NCKU PhD 2020-04-22 2020 ICDE 

7 Ling F Tainan NCKU PhD 2020-04-23 2020 ICDE 

7 Ling F Tainan NCKU PhD 2020-04-24 2020 ICDE 

8 Ren M Kaohsiung NKUST PhD 2020-04-21 2020 ICDE 

8 Ren M Kaohsiung NKUST PhD 2020-04-22 2020 ICDE 

8 Ren M Kaohsiung NKUST PhD 2020-04-23 2020 ICDE 

Fig. 20. All the participation information of 2020 ICDE. 
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(a) The sliced result of the numbers of participants of 2020 ICDE (using 2020/4/20). 

 
(b) The sliced result of the numbers of participants of 2020 ICDE (using 2020/4/21).  

 
(c) The sliced result of the numbers of participants of 2020 ICDE (using 2020/4/22). 

 
(d) The sliced result of the numbers of participants of 2020 ICDE (using 2020/4/23). 

 
(e) The sliced result of the numbers of participants of 2020 ICDE (using 2020/4/21). 

Fig. 21. Multidimensional analysis of the participants of ICDE 2020 Conference. 
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5. THE PERFORMANCE EXPERIMENTS OF OUR FRAMEWORK 

To test the feasibility of our approach, we have conducted a performance experiment 

by designing a BOB (including three relations: Bookstores, Orders and Books) database, 

where Bookstores and Books can be regarded as the temporal dimension tables, and the 

relation Orders be considered as the fact table. The data source of Bookstores and Books 

were received from the open data published in the official Website of National Central 

Library, Taiwan: 

 

1. The publisher data in Taiwan were used as the data source for Bookstores, which can be 

found at http://isbn.ncl.edu.tw/NCL_ISBNNet/opendata/isbnpub.csv. In total, we re-

ceived 963 tuples.  

2. All recently published books in Taiwan were used as the data source for Books, which 

can be found at http://isbn.ncl.edu.tw/NCL_ISBNNet/opendata/isbn.xml. We obtained 

3448 tuples after converting the XML data into flat records. 

 

We then randomly generated orders (within the period between 1900/1/1 and 2021/12/31) 

into the relation Orders, intermixed with some attribute updates of the tuples in Bookstores 

and Books to simulate slowly changing dimensions.  

To conduct the performance evaluation with different volumes, the data in Orders 

were partitioned into 12 sets, cumulatively every ten years. In total, there were 927,354 

transactions from 1900/1/1 to 2021/12/31 in the fact table Orders. Using SQL Server 2019 

as the database engine running on a PC Server of Intel(R) Xeon(R) E-2124G 4-Core CPU, 

3.40GHz with 32GB memory, we tested the execution times for building the BOB cube, 

and the temporal dimensions Books and Bookstores, and found the performance of these 

primitive operations were underperforming.  

To boost the performance, we tried to materialize the temporal dimensions Books and 

Bookstores, and then create indices on the transaction time attributes (Tid) of these materi-

alized temporal dimension tables. The index creation execution time cost is extremely low 

and can be ignored, and the time for building the BOB cube can be extensively reduced by 

employing these indices (as indicated in the last two columns of Table 1). We finally illus-

trate the visualized performance evaluation result in Fig. 22. 

The traditional slowly changing dimension processing suffers from labor-intensive 

and time-consuming problems for a long time. That’s why R. Kimball recommends using 

SQL MERGE statement as a design tip in the official site1. However, although the MERGE 

statement is powerful and multifunctional, yet it can be hard to master2. That’s why we 

design and define the temporal join operation to advocate its applications. 

Even the time for building a temporal dimension seems costly, it can be achieved in 

parallel or incrementally. That is, by partitioning the transactions based on equal intervals, 

T = T1  T2 … Ti … Tn, the construction of all temporal dimensions can be separately 

achieved on each Ti (or in parallel) using almost the same time cost. Based on the con-

ducted performance test, we conclude that: if the temporal dimensions can be indexed by 

their transaction time keys and constructed incrementally, then the performance of cube 

construction is hopefully acceptable and feasible for industrial applications.  

1 https://www.kimballgroup.com/2008/11/design-tip-107-using-the-sql-merge-statement-for-slowly-changing-

dimension-processing 
2 https://www.mssqltips.com/sqlservertip/2883/using-the-sql-server-merge-statement-to-process-type-2-slowly-

changing-dimensions 
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Table 1. The performance evaluation of different data sets. 
Data Set No. of transactions in  

Orders (in thousands) 
Time for building the 
BOB cube (second) 

Time for building 
Books Dimension 
(3448) (second) 

Time for building 
Bookstores Dimension 
(963) (second) 

time for indexing Books & 
Bookstores (cost can be 
omitted in Fig.19) 

Time for building the 
BOB cube with indices 
(second) 

1900~2021 927.354 1196 893 193 1 21 

1910~2021 850.981 1105 847 167 2 20 

1920~2021 774.978 939 700 152 1 16 

1930~2021 698.691 891 623 133 2 14 

1940~2021 622.377 729 536 117 2 11 

1950~2021 546.538 621 470 102 0 (< 1 sec.) 10 

1960~2021 470.460 495 406 89 0 (< 1 sec.) 8 

1970~2021 394.852 407 329 73 0 (< 1 sec.) 7 

1980~2021 319.371 333 267 60 0 (< 1 sec.) 6 

1990~2021 243.560 260 209 45 0 (< 1 sec.) 4 

2000~2021 167.186 182 146 32 0 (< 1 sec.) 4 

2010~2021 91.526 100 77 17 0 (< 1 sec.) 3 

 

  
Fig. 22. The performance evaluation diagram for different data sets. 

6. APPLICATIONS BASED ON OUR FRAMEWORK 

We are witnessing an unprecedented growth of location-related and time-related data, 

which underscores the vital role of spatiotemporal processing in our society. We realize 

big data processing systems with spatiotemporal features, together with their data ware-

housing, are now underpinning many emerging data management ecosystems, in many 

areas of societal interest. Our spatiotemporal model can be used to model many practical 

applications with abstractions. In Fig. 23, we depict an IoT network consisting of different 

sensors, where blue vertices are used for detecting water levels in the underpasses of a 

mega city, and gray vertices are used to monitor hill landslides of some geolocations. As-

suming their status can be divided into normal, warning and dangerous. When their status 

changes continuously along the timeline, a spatiotemporal data warehousing system can 

be built by deriving the t-cells of a temporal cube for each t moment, such that the number 

of dangerous spots can be visualized and calculated instantly for administrative decision 

making. If the number of dangerous spots run over a threshold, then by drilling through to 

target the dangerous sensors, the city government can activate the alarm system for traffic 

control or an emergency procedure for possible evacuation.  
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Id: 101

Type: water level

Status: Warning

t2

Id: 101

Type: water level

Status: Normal

t1

Id: 211

Type: landslide

Status: Dangerous

t12

Id: 211

Type: landslide

Status: Warning

t10

Id: 111

Type: water level

Status: Dangerous

t4

Id: 111

Type: water level

Status: Normal

t3

 
Fig. 23. An example IoT network consisting of different sensors. 

 

By combining with the location-based service supported by mobile devices and utilizing 

a resource multiplexer, various multidimensional analyses for different kinds of spatiotemporal 

business intelligence can be conducted. For instance, to prevent the Covid-19 pandemic, each 

vertex in Fig. 23 can also be regarded as a branch of some chain stores. By gathering the cell-

phone check-in information (arriving at irregular intervals) of all customers in a branch, our 

framework can help enterprise administrators derive the status of each branch, to grasp the 

number of customers at different timestamps of each branch located at different geolocations. 

If a customer (with the cellphone number) is notified as suspected of being infected, then the 

multidimensional summarization result may effectively help administrators make a correct de-

cision to fit the official epidemic prevention policy. 

7. RESOLVING THE SCD PROBLEMS WITH EFFECTIVENESS 

Based on the type definitions of SCD [13, 19], we may verify how our method re-

solves different types of the SCD problem with effectiveness as follows. 

1. Type 0−Retain Original: as the dimension attribute value never changes, so the dimen-

sion D has only one version and facts are always grouped by this original value.  

2. Type 1−Overwrite: the old and new attribute values in the temporal dimension can be 

kept to reflect the status, and therefore our approach will keep everything to be retrieved 

by a time index and the history is not destroyed. 

3. Type 2−Add New Row: there is no need to add a new row in the temporal dimension 

with the updated attribute values, as our approach can keep every status for each chang-

ing time by the dimension modeling process. 

4. Type 3−Add New Attribute: there is no need to add a new attribute in the temporal di-

mension to preserve the old attribute value, as our approach keeps every status for each 

value changing. 

5. Type 4−Add Mini-Dimension: when a group of attributes in a dimension rapidly changes, 

all the status can be captured in all the versions of a temporal dimension, and there is no 

need to split off to a mini-dimension. 
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6. Type 5−Add Mini-Dimension and Type 1 Outrigger: the temporal dimension can be used 

to accurately preserve historical attribute values, and all historical facts can be linked to 

the correct attribute values. 

7. Type 6−Add Type 1 Attributes to Type 2 Dimension: every temporal dimension delivers 

both historical and current dimension attribute values, as it keeps exactly one version 

for each changing time. 

8. Type 7−Dual Type 1 and Type 2 Dimensions: we now unify the traditional hybrid tech-

nique of supporting both as-was and as-is reporting into a single temporal dimensional 

modeling approach. 

9. Type N−Preserving a Complete History of Changes in a Nested Relation: Although the 

proposed approach needs no additional relations, columns or rows, and requires no extra 

join operations or surrogate keys, it still cannot be implemented in a relational database 

management system directly (unless additional relations and surrogate keys are intro-

duced, which induce extra join operations are also needed). Our approach has no such 

problem.  

8. CONCLUSION AND FUTURE DIRECTIONS 

We have proposed a general framework of dimensional modeling for spatiotemporal 

data warehouse creation. The approach also mitigates the cumbersome problems of SCD 

management. 

The integration of data from different sources may be object-centric or people-centric. 

The former identifies objects with their unique identifiers, and their engaged persons, lo-

cations, times and events. If every object has a unique identifier (UID), then this work is 

easy to achieve, as objects are “honest” and do not hide themselves. The latter links differ-

ent personal identifiers in different networks together, and collects the resources, together 

with the corresponding locations, time and events, which is no trivial task, as people may 

deliberately use different identifiers to hide themselves in cyberspace. That is why entity 

resolution [22, 25, 28] is important in the whole process, and we believe our framework 

helps developers cultivate user-centered technologies for the needs of digital footprints 

integration and social business intelligence for various domains, if the entity resolution 

problem can be resolved. 

Based on the experimental result, the construction of temporal dimensions costs a lot 

of times, which is proportional to the quantity of transactions without any index creation. 

However, by adding indices on the transaction time keys of materialized temporal dimen-

sions, the cube creation can be boosted and constructed in an acceptable situation. Basi-

cally, although an index creation takes space proportional to the number of transactions 

and the granularity of the time key, the execution time cost is extremely low and can be 

omitted, which makes our approach acceptable and feasible for industrial applications.  

Currently, thanks to the temporal table functionalities that comply with the ANSI SQL: 

2011 standard, spatiotemporal data management and data warehousing in commercial da-

tabase management systems is becoming feasible. Although we have explored the ele-

ments of a spatiotemporal data warehouse and formally established the structure, it still 

needs more elaboration on defining an extended query language for the implementation of 
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such a system, our future work will be primarily focused on defining such language fea-

tures and developing feasible approaches to realize our framework. Besides, the proposed 

method keeps every change of status. In the future, we aim to tackle the challenge of alle-

viating too much information being stored, organized and processed to make our approach 

more feasible for IoT applications under edge computing environments. 
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