
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 37, 975-990 (2021)
DOI: 10.6688/JISE.202107 37(4).0014

Efficient Evaluation of Minimum Total Cost Queries
on Heterogeneous Neighboring Objects

YUAN-KO HUANG
Department of Maritime Information and Technology

National Kaohsiung University of Science and Technology
Kaohsiung, 824 Taiwan

E-mail: huangyk@nkust.edu.tw

In recent years, many of the location-based services provide information of a single type
of spatial objects, based on their spatial closeness to the query object. However, in real-life
applications, user may be interested in obtaining information about different types of objects
(e.g., hotels, restaurants, and theaters), in terms of their neighboring relationship. Moreover,
an important aspect that has not been previously explored is the total cost of experiencing
various types of spatial objects. As a result, we present a new type of location-based queries,
named the minimum total cost query (MTCQ), which takes both the neighboring relation-
ship and the total experiencing cost of spatial objects into account. Given the n types of
spatial objects and a user-defined distance d, the MTCQ finds a set of n objects such that
the distance between any pair of objects does not exceed d and their total cost is smallest.
To efficiently process the MTCQ, we utilize an R-tree-based index, the Rc-tree, to manage
the spatial objects with their locations and costs. Then, two processing algorithms, namely
the top-k-based MTCQ algorithm and the enhanced MTCQ algorithm, are proposed to de-
termine a set of objects satisfying the constraint of distance d, whose total cost is lowest.
Finally, extensive experiments using the synthetic dataset are conducted to demonstrate the
efficiency and the effectiveness of the proposed algorithms.

Keywords: location-based services, minimum total cost query, Rc-tree, top-k-based
MTCQ algorithm, enhanced MTCQ algorithm

1. INTRODUCTION

In recent years, the location-based services focus on efficiently managing a large
number of spatial objects, and then providing various types of location-based queries
[1, 2, 3, 4]. For example, the range queries and the nearest neighbor queries can be
used to find the objects within a query range and the closest object to the query object,
respectively. There are many applications related to the location-based services, such
as location-aware advertisements, traffic control systems, and geographical information
systems. Most of the processing techniques for the location-based queries consider a
single type of objects (e.g., hotels, restaurants, or theaters). However, some users may
not be interested in obtaining information of one type of objects. Instead, they want
to know information about different types of objects. As a result, in [5], we consider

Received August 2, 2019; revised November 28, 2019 & April 7, 2020; accepted April 27, 2020.
Communicated by Hung-Yu Kao.

975

976 YUAN-KO HUANG

the different types of objects, termed the heterogeneous neighboring objects (HNOs for
short), and present the location-based aggregate queries on the HNOs. The HNOs and
the location-based aggregate queries are defined as follows.

• Consider the n types of spatial objects, O1, O2, ..., On. If there is a set of objects,
{o1, o2, ..., on}, where oi belongs to Oi and i = 1 ∼ n, and the distance between
any pair of objects in this set is less than or equal to a user-defined distance d, then
the objects set {o1, o2, ..., on} is a set of HNOs.

• Assume that there are m sets of HNOs. Given a query object q, the location-based
aggregate queries retrieve a set of objects {o1, o2, ..., on}, among the m sets of
HNOs, such that the average, min, max, or sum distance of {o1, o2, ..., on} to q is
minimal.

Fig. 1(a) shows an example of processing the location-based aggregate queries on
the HNOs, where the use-defined distance is set to 2 and the set of HNOs with the shortest
average distance to q will be retrieved. There are three types of objects in the space,
hotels h1 to h3, restaurants r1 to r3, and theatres t1 to t3. As d = 2, only the two
object sets {h2, r1, t3} and {h3, r2, t2} can be the sets of HNOs. By comparing their
average distances to the query object q, the set {h3, r2, t2} is returned as the query result
because it has the shorter distance. From the above figure, we know that the result of
the location-based aggregate queries is mainly based on the distance of the HNOs (i.e.,
hotels, restaurants, and theatres) to the query object. However, in many real applications,
the users may want to experience the facilities while keeping the total cost as low as
possible. In such applications, a set of HNOs with the minimum experiencing cost in total
is the best choice. Let us consider the example in Fig. 4(b). As we can see, although the set
{h3, r2, t2} is closer to q than the set {h2, r1, t3}, its total cost (i.e., 2200+ 800+ 500 =
3500) is much higher than that of {h2, r1, t3} (i.e., 1600 + 600+ 400 = 2600). As such,
the set {h2, r1, t3} is the better choice if the cost is a main concern in determining the
query result.

(a) Location-based aggregate queries. (b) Min cost queries.

Fig. 1. Different types of location-based queries.

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 977

In this paper, we present a new type of location-based queries on the HNOs, named
the minimum total cost query (MTCQ for short), to find the set of HNOs having the small-
est total cost. Formally, the MTCQ is defined as follows.

• Consider the n types of spatial objects, O1, O2, ..., On, where Oi has a cost at-
tribute. Based on the user-defined distance d, there are m sets of HNOs. The
MTCQ retrieves a set of HNOs {o1, o2, ..., on}, among the m sets of HNOs, such
that the total cost of {o1, o2, ..., on} is smallest.

To efficiently process the MTCQ, we first utilize an R-tree-based index, the Rc-
tree, to manage the spatial objects with their locations and costs. Then, two processing
algorithms, namely the top-k-based MTCQ algorithm and the enhanced MTCQ algorithm,
are proposed to determine a set of objects satisfying the constraint of distance d (i.e., a set
of HNOs), whose total cost is lowest. The top-k-based MTCQ algorithm is designed based
on traversing the Rc-tree for each type of spatial objects to retrieve the top-k objects with
the smallest cost. Having constructed the kn sets of n objects, the set of HNOs with the
lowest total cost is returned as the query result. Thus, the performance of the top-k-based
MTCQ algorithm would be affected by the number of object types (i.e., the value of n).
To effectively alleviate the above effect, the enhanced MTCQ algorithm is proposed by
taking advantage of a simultaneous traversal of the Rc-trees built on the n types of spatial
objects. Moreover, three criteria, the d-pruning criterion, the d-qualifying criterion, and
the cost-pruning criterion, are devised to improve the query performance of the enhanced
MTCQ algorithm. To sum up, the major contributions of this paper are as follows.

• A new type of location-based queries, the MTCQ, is presented to provide informa-
tion of spatial objects with the better neighboring relationship and the lowest cost
in total.

• The Rc-tree is used to manage each type of spatial objects, which is built by taking
into account the spatial objects’ locations and costs.

• The top-k-based MTCQ algorithm and the enhanced MTCQ algorithm are proposed
to efficiently process the MTCQ by traversing the Rc-trees.

• Extensive experiments using the synthetic dataset are conducted to demonstrate the
efficiency and the effectiveness of the proposed algorithms.

The remainder of this paper is organized as follows. In Sections 2, we review related
work on processing the location-based queries. In Section 3, we describe the data struc-
tures of the Rc-tree and the pruning criteria used for the processing algorithms. Then,
the top-k-based MTCQ algorithm and the enhanced MTCQ algorithm are presented in
Section 4. Section 5 shows extensive experiments on the performance of the proposed
approaches. Finally, we conclude this paper in Section 6.

2. RELATED WORK

In this section, we first survey the related works for processing the location-based
queries, in which the spatial closeness of the spatial objects to the query object plays an

978 YUAN-KO HUANG

important role in query processing. Then, we discuss the processing techniques for the
location-based queries, where the neighboring relationship of spatial objects is a main
concern in determining the query result. Finally, we review some works on processing
the collective spatial keyword queries.

The K-nearest neighbor query (KNN query) [6, 7] is the most popular type of lo-
cation-based queries, which is presented to retrieve the K spatial objects with the best
spatial closeness to the query object (that is, the K spatial objects that are closest to the
query object). Recently, several variations of KNN query have been proposed to provide
information of K-nearest neighbors in numerous applications. To address the issue of
scalability, the all-nearest-neighbors query (ANN query) [8] focuses on finding the K-
nearest neighbors for all objects in a query set. The ANN query inevitably incurs more
CPU and I/O overhead because multiple KNN queries are executed. To express requests
by groups of users, the aggregate nearest neighbor query has been proposed in [9], which
is defined as follows. Given a set of query objects Q and a set of objects O, the aggregate
nearest neighbor query retrieves the spatial object in O, so that an aggregate distance
function (e.g., sum, min, or max) with respect to all objects in Q is minimized. The
nearest surrounder query [10] finds the nearest neighbor around a query object, from the
perspective of the query object’s orientation. In other words, the nearest surrounder query
retrieves the nearest neighbors of a query object at different angles. The range nearest-
neighbor query [11] is related to but different from the KNN query, where a query object
is replaced by a query region. Specifically, the range nearest-neighbor query finds the
nearest neighbors for every point in a spatial region, instead of a point. Another variation
of KNN query with asymmetric property is the reverse nearest neighbor query (RNN
query) [1, 12], where the set of objects whose nearest neighbor is the query object would
be returned as the query result. The within query is proposed in [13, 14] to maintain the
better spatial closeness of spatial objects by constraining their distance to the query object
to be within a user-defined distance d.

Then, we discuss some of the location-based queries that aim at preserving the good
neighboring relationship between spatial objects. Given two data sources S1 and S2, the
K closest pair query [15] focuses on finding the K closest object pairs between S1 and
S2 (i.e., the K pairs (a, b), where a ∈ S1 and b ∈ S2, with the smallest distance between
them). The spatial join query [16] determines a set of object pairs that satisfy a user-
defined spatial predicate (e.g., overlap or coverage). In [17], the spatial join query is
extended to process the multiway spatial join query, in which the spatial predicate is a
function over m data sources (where m ≥ 2). Recently, the k nearest group query in [18]
tries to preserve the spatial closeness of objects to the query object and the neighboring
relationship between objects, by computing the sum of the minimum distance between
objects and the query object and the maximum distance among the objects. However, the
k nearest group query may return a set of objects that are close to the query object but far
away from each other, or are close to each other but far away from the query object. As
a result, the location-based aggregate queries in [5] are further presented to appropriately
keep the spatial closeness and the neighboring relationship of spatial objects.

Recently, the collective spatial keyword query [19, 20] is presented to find a set of
objects that collectively cover user-given keywords with the minimum cost. Moreover,
Su et al. [21] propose the group-based collective keyword (GBCK) query, considering
not only the spatial closeness of objects to the query object but also the neighboring

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 979

relationship between objects. The object group retrieved by the GBCK query could be
close to the query object but far away from each other, or close to each other but far away
from the query object. As the GBCK query is inherently different from the MTCQ, it
cannot be applied to find the group of objects that we address in this paper.

3. INDEX STRUCTURE AND PRUNING CRITERIA

In this section, we first describe the data structures of the Rc-tree, which is used
as the underlying index structure for the top-k-based MTCQ algorithm and the enhanced
MTCQ algorithm. Then, we discuss the three pruning criteria, the d-pruning criterion,
the d-qualifying criterion, and the cost-pruning criterion, which are devised to upgrade
the query performance of the enhanced MTCQ algorithm.

3.1 Data Structures of Rc-tree

The Rc-tree is a height-balanced index structure, where objects are recursively
grouped in a bottom-up manner according to objects’ locations and costs. Each entry
of a leaf node of a Rc-tree has the structure ((o.x, o.y), o.c, o.ptr), where (o.x, o.y)
refers to the location of spatial object o, o.c is the cost of object o, and o.ptr is a pointer
to the actual object tuple in the database. Each entry of an internal node of the Rc-tree
has the structure (MBRE , E.cm, E.ptr), where MBRE is a minimum bounding rect-
angle (represented as (xl, yd, xr, yu)) enclosing all the objects in the child node E of this
internal node, E.cm is the minimum among all costs of the objects enclosed in MBRE ,
and E.ptr is a pointer to node E.

Let us use the example in Fig. 2 to illustrate the information maintained for the
Rc-tree. As shown in Fig. 2(a), eight hotels h1 to h8 in the space are indexed by the
Rc-tree. Initially, hotels h1 to h8 are grouped according to their locations and costs into
four leaf nodes H4 to H7. Take the leaf node H4 as an example. As hotels h1 and h2

are enclosed by MBRH4
, they are the entries of the leaf node H4 and will be stored

as ((7, 15), 1800) and ((8, 12), 2000), respectively. Then, the leaf nodes H4 to H7 are
recursively grouped into two internal nodes, H2 and H3, that becomes the entries of the
root. Because the extent of MBRH2 covers hotels h1 to h4, the node H2 is maintained
in the form of (MBRH2 , 1500), where 1500 represents the minimal cost among the four
hotels. The corresponding structure of the Rc-tree (for the hotels) is shown in Fig. 2(b),
and the complete information of the leaf and internal nodes is illustrated in Fig. 2(c).

3.2 Three Pruning Criteria

Consider the n types of spatial objects, O1, O2, ..., On, which are separately in-
dexed by the n Rc-trees, termed the Rc

1-tree, the Rc
2-tree, ..., and the Rc

n-tree. Let
{s1, s2, ..., sn} be a set of entries to be considered, where entry si corresponds to a MBR
Ei or an object oi indexed by the Rc

i -tree. The goal of the first criterion, the d-pruning
criterion, is to prune the set {s1, s2, ..., sn} that cannot satisfy the constraint of distance
d, without the need to compute all pairwise distances between entries. Two parameters,
dx and dy , are used in the d-pruning criterion. The parameter dx refers to the minimal
distance between the two entries that are furthest apart on the x-dimension. As for dy , it
is the minimal distance between the two entries that are furthest apart on the y-dimension.

980 YUAN-KO HUANG

(a) Hotels in space. (b) Rc-tree for hotels. (c) Information of nodes.

Fig. 2. Data structures of the Rc-tree.

Assume that R` and La are the left boundary of the rightmost entry and the right bound-
ary of the leftmost entry, respectively. Then, the distance dx is computed as:

dx =

{
R` − La if R` > La,
0 otherwise.

Similarly, let U⊥ and D> be the lower boundary of the uppermost entry and the upper
boundary of the lowermost entry, respectively. Then, the distance dy can be obtained
using the following equation:

dy =

{
U⊥ −D> if U⊥ > D>,
0 otherwise.

With the two distances dx and dy , the set of entries {s1, s2, ..., sn} can be pruned using
the d-pruning criterion if max(dx, dy) > d.

The second criterion, the d-qualifying criterion, is used to efficiently determine a set
of entries {s1, s2, ..., sn} satisfying the constraint of distance d, without computing the
distance between all pairs of entries. To achieve this, a rectangle R, whose lower-left cor-
ner and upper-right corner are (xl, yd) and (xr, yu) respectively, is constructed to tightly
enclose the extents of all entries. With the rectangle R, the distance between any two
objects enclosed in R does not exceed the distance between the two points (R.xl, R.yd)
and (R.xr, R.yu). As such, the set of entries {s1, s2, ..., sn} must satisfy the constraint
of distance d if the following equation holds: (R.xr −R.xl)

2 + (R.yu −R.yd)
2 ≤ d2.

The third criterion is the cost-pruning criterion, which is designed to prune the non-
qualifying object set, no matter whether it is a set of HNOs or not. Let {o′1, o′2, ..., o′n}
be a set of HNOs found so far, whose total cost, defined as TC(o′1, o

′
2, ..., o

′
n), is equal

to
∑n

i=1 o
′
i.c. Consider a set of MBRs {E1, E2, ..., En}. As mentioned in Section 3.1,

Ei.cm is the minimum among all costs of the objects enclosed in the MBR Ei. Thus, the
cost of an object enclosed in Ei must be greater than or equal to Ei.cm. It means that if
the sum of Ei.cm for 1 ≤ i ≤ n, defined as TCm(E1, E2, ..., Ei) (i.e.,

∑n
i=1 Ei.cm),

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 981

is greater than the total cost TC(o′1, o
′
2, ..., o

′
n), then all the object sets consisting of the

objects enclosed in MBRs E1, E2, ..., En cannot be the query result. Motivated by
this, a set of entries {s1, s2, ..., sn} can be pruned using the cost-pruning criterion when
(1) TCm(E1, E2, ..., Ei) > TC(o′1, o

′
2, ..., o

′
n) for si corresponds to a MBR Ei or (2)

TC(o1, o2, ..., oi) > TC(o′1, o
′
2, ..., o

′
n) for si corresponds to an object oi, without the

need to check for the constraint of distance d.
Fig. 3 shows how to prune the non-qualifying object sets using the three pruning

criteria. As shown in Fig. 3(a), the d-pruning criterion is imposed on a set of MBRs
{H,R, T} and a set of objects {h, r, t}, respectively. As the MBRs H and R are the
rightmost and leftmost entries, respectively, the distance dx is equal to the minimal hori-
zontal distance between H and R. Similarly, the distance dy is represented as the minimal
vertical distance between H and R because they are also the lowermost and uppermost
entries, respectively. When the set of objects {h, r, t} is considered, the distance dx (dy)
is computed as the minimal horizontal (vertical) distance between objects h and t (h and
r). If one of the two distances dx and dy of the set {H,R, T} (or {h, r, t}) exceeds the
distance d, then it is pruned by the d-pruning criterion. Consider the example in Fig. 3(b),
in which the d-qualifying criterion is used to check whether the sets of MBRs {H,R, T}
and objects {h, r, t} satisfy the constraint of distance d. A rectangle whose length of diag-
onal is equal to

√
(xr − xl)2 + (yu − ud)2 is constructed to enclosed the set {H,R, T}

(or {h, r, t}). Once the diagonal length is less than or equal to d, {H,R, T} (or {h, r, t})
is guaranteed to satisfy the constraint of distance d. Fig. 3(c) shows that {h′, r′, t′} is a
set of HNOs found so far, whose total cost TC(h′, r′, t′) = 2400. According to the cost-
pruning criterion, the set of MBRs {H,R, T} can be pruned by the HNOs set {h′, r′, t′}
as its TCm(H,R, T) is greater than TC(h′, r′, t′). Also, a set of objects {h, r, t} is
pruned in the same way because of TC(h, r, t) > TC(h′, r′, t′).

4. PROCESSING ALGORITHMS

Given the n types of spatial objects, O1, O2, ..., On, where Oi has a cost attribute,
and the user-defined distance d, the MTCQ is used to find a set of HNOs {o1, o2, ..., on},
such that the total cost of {o1, o2, ..., on} is smallest. To efficiently process the MTCQ, we
propose two processing algorithms, the top-k-based MTCQ algorithm and the enhanced
MTCQ algorithm, which are described separately as follows.

Algorithm 1: Top-k-based MTCQ algorithm
Input : The n types of objects indexed by the Rc-trees and a distance d
Output: The HNOs set with the smallest total cost

foreach type of objects do
traverse the Rc-tree to find the top-k objects with the smallest cost;

construct the kn sets of n objects;
foreach set of n objects do

compute the distances between two objects to compare with the distance d;
return the HNOs set with the smallest total cost;

982 YUAN-KO HUANG

(a) d-pruning criterion. (b) d-qualifying criterion.

(c) Cost-pruning criterion.

Fig. 3. Illustration of the pruning criteria.

4.1 Top-k-based MTCQ Algorithm

The top-k-basedMTCQ algorithm consists of the following three steps: (1) for each
type of spatial objects, the top-k objects with the smallest cost are retrieved, so as to
construct the kn sets of n objects; (2) for each set of n objects, the distance between any
two objects is computed and compared to the distance d; (3) the set of n objects satisfying
the constraint of distance d and with the lowest total cost is returned as the MTCQ result.

To improve the performance of Step 1 (i.e., finding the top-k objects for each object
type), we perform a depth-first traversal of the Rc-tree built on each type of objects to
filter the non-qualifying objects. The procedure of Step 1 begins with the root node of
the Rc-tree and proceeds down the tree. When a MBR MBRE is encountered, the
following pruning criterion is used to determine whether MBRE can be pruned or not.
If E.cm of the MBR MBRE is greater than the largest value in the costs of the top-k
objects considered so far, then all the objects enclosed in MBRE can be pruned, because
their costs exceed that of the top-k objects. Consider again Fig. 3, where k is set to
2 (i.e., finding the top-2 objects). Assume that hotels h3 and h4 are the top-2 objects
considered so far. For the MBR MBRH4

, as its H4.cm is greater than h3.c and h4.c (i.e.,

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 983

1800 > 1600 and 1800 > 1500), hotels h1 and h2 enclosed in MBRH4
can be filtered

using the designed pruning criterion.
For Step 2 (i.e., checking whether a set of n objects satisfies the constraint of distance

d), we design the following criterion to determine a set of n objects that must be a set
of HNOs, without the need to exhaustively check all pairs of objects for whether their
distances exceed the distance d. Let {o1, o2, ..., on} be a set of n objects to be considered.
Then, {o1, o2, ..., on} must be a set of HNOs if

(xr − xl)
2 + (yu − yd)

2 ≤ d2,

where

xr = max{oi.x|i = 1 ∼ n}, xl = min{oi.x|i = 1 ∼ n},
yu = max{oi.y|i = 1 ∼ n}, yd = min{oi.y|i = 1 ∼ n}.

Although the top-k-based MTCQ algorithm can be used to retrieve the MTCQ result,
it needs to traverse the Rc-trees for the n types of spatial objects to construct the kn sets
of n objects. As a result, its performance must be dominated by the number of object types
(i.e., the value of n). To further improve the performance of processing the MTCQ, the
enhanced MTCQ algorithm is proposed by taking advantage of a simultaneous traversal of
the Rc-trees built on the n types of spatial objects. The pseudo code for the top-k-based
MTCQ algorithm is given in Algorithm 1.

Algorithm 2: Enhanced MTCQ algorithm
Input : The n types of objects indexed by the Rc-trees and a distance d
Output: The HNOs set with the smallest total cost

initialize a sorted list L;
insert information of the root nodes of Rc-trees into L;
while (L is not empty) do

retrieve ({s1, s2, ..., sn}, f lag, TC(s1, s2, ..., sn)) from L;
if each si corresponds to MBR Ei then

decompose into the m sets of child entries;
foreach set of child entries {sj1, s

j
2, ..., s

j
n} do

impose the d-pruning criterion;
impose the d-qualifying criterion to update flag;
compute TC(sj1, s

j
2, ..., s

j
n);

/* each si corresponds to object oi */
else

if {o1, o2, ..., on} is a HNOs set then
return {o1, o2, ..., on};

4.2 Enhanced MTCQ Algorithm

Recall that the n types of spatial objects, O1, O2, ..., On are separately indexed by
the Rc

1-tree, the Rc
2-tree, ..., and the Rc

n-tree. The procedure of the enhanced MTCQ

984 YUAN-KO HUANG

algorithm begins with the root nodes of the Rc
1-tree, Rc

2-tree, ..., and Rc
n-tree and pro-

ceeds down the trees simultaneously. During the traversal of the n Rc-trees, a sorted list
L is used to maintain information of the sets of n entries considered so far. Note that each
set of n entries consists of either n MBRs or n objects. Each element of L stores a set
{s1, s2, ..., sn}’s information, in the form of ({s1, s2, ..., sn}, f lag, TC(s1, s2, ..., sn)),
where flag indicates whether {s1, s2, ..., sn}must satisfy the constraint of distance d, and
TC(s1, s2, ..., sn) refers to (1) the minimal total cost TCm(E1, E2, ..., En) if each si cor-
responds to a MBR Ei or (2) the total cost TC(o1, o2, ..., oi) if each si corresponds to an
object oi. The elements of L are sorted in ascending order of their TC(s1, s2, ..., sn).
Initially, L only contains information of the set {s1, s2, ..., sn}, where si corresponds to
the root node of the Rc

i -tree, and its flag and TC(s1, s2, ..., sn) are both set to 0. In each
iteration, the first element of L (i.e., the set {s1, s2, ..., sn} whose TC(s1, s2, ..., sn) is
the smallest among the sets in L) is retrieved. According to the entries comprising the
set {s1, s2, ..., sn}, there are two cases to be considered: (1) each entry si corresponds to
MBR Ei and (2) each entry si corresponds to object oi.

For the case that the set {s1, s2, ..., sn} consists of the n MBRs, each entry si is
decomposed into its child entries, so as to construct the m sets of entries {s11, s12, ..., s1n},
{s21, s22, ..., s2n}, ..., {sm1 , sm2 , ..., smn }. Then, the following three steps are processed se-
quentially. The first step is to impose the d-pruning criterion on the m sets of entries.
Once a set {sj1, s

j
2, ..., s

j
n} is pruned by the d-pruning criterion, it can be immediately

discarded. Having checked the m sets of entries, the procedure proceeds to the next step,
in which the remaining sets of entries are checked for the d-qualifying criterion to update
their flag. If a set {sj1, s

j
2, ..., s

j
n} passes the d-qualifying criterion, its flag is set to 1

(meaning that it must satisfy the constraint of distance d). Otherwise, its flag is equal to
0. Note that flag of all the remaining sets can directly be set to 1 without running the
d-qualifying criterion when their parent set {s1, s2, ..., sn}’s flag = 1. The third step is
to compute the value of TC(sj1, s

j
2, ..., s

j
n) for each remaining set {sj1, s

j
2, ..., s

j
n}. Then,

each remaining set is inserted into the list L with its flag and TC(sj1, s
j
2, ..., s

j
n).

For the case that each entry of the set {s1, s2, ..., sn} is an object (i.e., an object set
{o1, o2, ..., on}), the procedure consists of the following two steps. The first step is to
determine whether {o1, o2, ..., on} is a set of HNOs by looking up its flag. If its flag is
equal to 0, then the distance between any two objects is compared to the distance d. Once
the distance between a pair of objects exceeds the distance d, {o1, o2, ..., on} is discarded
and the next iteration starts by retrieving the first element of L. Otherwise (i.e., flag =
1), {o1, o2, ..., on} must satisfy the constraint of distance d. Only if {o1, o2, ..., on} is
found as a set of HNOs, the procedure proceeds to the next step. In the second step,
all of the elements in L can be pruned by the set {o1, o2, ..., on}, based on the cost-
pruning criterion. Finally, {o1, o2, ..., on} is reported as the query result and the MTCQ
is terminated. Algorithm 2 describes the pseudo code for the enhanced MTCQ algorithm.

5. PERFORMANCE EVALUATION

In this section, we conduct three sets of experiments to measure the efficiency of
the top-k-based MTCQ algorithm and the enhanced MTCQ algorithm, by investigating
the effects of three important factors on the performance of processing the MTCQ. These

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 985

factors are the number of spatial objects, the number of object types (i.e., the value of n),
and the value of distance d. Moreover, we study the perfomance of the proposed methods
using three real datasets. We first describe the performance settings and then show the
experimental results with detailed discussions.

5.1 Performance Settings

All the experiments are performed on a PC with Intel 2.70 GHz CPU and 16GB
RAM. The top-k-based MTCQ algorithm and the enhanced MTCQ algorithm are imple-
mented in JAVA. A synthetic dataset and three real datasets are used in our simulation.
The synthetic dataset has n types of spatial objects (where n varies from 1 to 5). Each
type of spatial objects contains O (ranging from 1K to 300K) objects whose locations are
spread over a region of 1, 000, 000 × 1, 000, 000 with uniform distribution. For the real
datasets, the Beijing, Manchester, and Pittsburgh files (consisting of about 400K, 1000K,
and 1200K objects, respectively) are obtained from the OpenStreetMap [22]. The cost
of each object in synthetic and real datasets ranges between 100 and 2000. Based on the
locations and costs of spatial objects, the Rc

1-tree, the Rc
2-tree, ..., and the Rc

n-tree, are
built to index the n types of objects. In the experimental space, we randomly generate
30 query objects issuing the MTCQ, where the distance d changes from 0.01% to 5% of
the entire space. The performance is measured by the average CPU time and the average
number of node accesses of the Rc-trees in performing workloads of the 30 queries. To
compare the performance of the proposed algorithms, we present a baseline algorithm to
process the MTCQ, in which the m sets of HNOs are first determined by computing the
distances between any two objects to compare with the distance d, and then the HNOs
set with the smallest total cost is returned as the query result. Table 1 summarizes the
parameters under investigation, along with their default values and ranges.

Table 1. System parameters.
Parameter Default Range

Number of objects (K) 100 1, 10, 50, 100, 300
Number of object types 3 1, 2, 3, 4, 5

Distance d (%) 0.1 0.01, 0.05, 0.1, 1, 5

5.2 Effect of Number of Objects

In this subsection, we measure the CPU time and the number of node accesses for
the baseline algorithm, the top-k-based MTCQ algorithm and the enhanced MTCQ al-
gorithm under various numbers of spatial objects (varying from 1K to 300K). As shown
in Fig. 4(a), using a logarithmic scale for the y-axis, the curve for the enhanced MTCQ
algorithm first decreases and then increases with the increase of object number. This is
because for a smaller number of objects, fewer object sets can satisfy the constraint of dis-
tance d, and thus more distance computations are required for finding the sets of HNOs.
For the baseline algorithm and the top-k-based MTCQ algorithm, the CPU time grows
drastically because an increasing number of objects leads to more processing cost in find-
ing the m sets of HNOs for the baseline algorithm and in determining the top-k objects

986 YUAN-KO HUANG

(note that it is executed n times) for the top-k-based MTCQ algorithm. Fig. 4(b) evaluates
the node accesses for the three algorithms. All curves exhibit the increasing trends as a
larger number of objects inevitably causes more index nodes to be accessed. Moreover,
the experimental result shows a wide gap between the enhanced MTCQ algorithm and its
competitors, confirming that using the one-time query evaluation efficiently improves the
query performance.

 0.01

 0.1

 1

 10

 100

1 10 50 100 300

C
P

U
 t
im

e
 (

s
e
c
.)

Number of objects (K)

enhanced MTCQ
topk-based MTCQ

baseline

(a) CPU time.

 0

 200

 400

 600

 800

1 10 50 100 300

N
o
d
e
 a

c
c
e
s
s
e
s

Number of objects (K)

enhanced MTCQ
topk-based MTCQ

baseline

(b) Number of node accesses.

Fig. 4. Effect of number of spatial objects.

5.3 Effect of Number of Object Types

The set of experiments shown in Fig. 5 demonstrates the performance (including the
CPU time and the number of node accesses) of the proposed algorithms as a function of
the number of object types (i.e., ranging n from 1 to 5). In the case that n = 1 (that
is, considering only a single type of objects), the task of checking for the constraint of
distance d is no longer needed. That is why the performance of the top-k-based MTCQ
algorithm is almost as good as that of the enhanced MTCQ algorithm in terms of both
the CPU time and the number of node accesses. On the other hand, when n is larger
than 1 (i.e., multiple object types are considered), the curves for the top-k-based MTCQ
algorithm grow rapidly, compared to the enhanced MTCQ algorithm. The reason is that
in the top-k-based MTCQ algorithm the repetitive executions are required and dominated
by n, while the enhanced MTCQ algorithm is executed only once regardless of n. As for
the baseline algorithm, it yields the worst performance in terms of the CPU time and the
node access, because all of the object sets have to be accessed for determining the m sets
of HNOs.

5.4 Effect of Distance d

As shown in Fig. 6, the set of experiments is conducted to study how the user-defined
distance d affects the performance of processing the MTCQ, by varying the distance d
from 0.01% to 5% of the experimental space. As we can see, the curves for the enhanced
MTCQ algorithm show that a larger distance d results in a lower CPU time (in Fig. 6(a))
and a less number of node accesses (in Fig. 6(b)) when the MTCQ is processed. This
improvement can be attributed to the fact that for a smaller d, most of the object sets
cannot be the sets of HNOs so that the enhanced MTCQ algorithm needs to access more
index nodes and involve more distance computations of non-qualifying object sets. Con-

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 987

 0.01

 0.1

 1

 10

 100

1 2 3 4 5

C
P

U
 t
im

e
 (

s
e
c
.)

Number of object types

enhanced MTCQ
topk-based MTCQ

baseline

(a) CPU time.

 0

 150

 300

 450

 600

 750

1 2 3 4 5

N
o
d
e
 a

c
c
e
s
s
e
s

Number of object types

enhanced MTCQ
topk-based MTCQ

baseline

(b) Number of node accesses.

Fig. 5. Effect of number of object types.

 0.01

 0.1

 1

 10

 100

0.01 0.05 0.1 1 5

C
P

U
 t
im

e
 (

s
e
c
.)

Distance d (%)

enhanced MTCQ
topk-based MTCQ

baseline

(a) CPU time.

 0

 200

 400

 600

 800

0.01 0.05 0.1 1 5

N
o
d
e
 a

c
c
e
s
s
e
s

Distance d (%)

enhanced MTCQ
topk-based MTCQ

baseline

(b) Number of node accesses.

Fig. 6. Effect of distance d.

versely, a larger d increases the chance for each object set to be a set of HNOs and thus the
MTCQ result could be determined early. The experimental results also illustrate that the
performances of the baseline algorithm and the top-k-based MTCQ algorithm are quite
insensitive to the distance d, but still fall behind the enhanced MTCQ algorithm.

5.5 Performance for Real Datasets

In this subsection, three sets of experiments are conducted to investigate the per-
formance of the proposed methods using three real datasets, the Beijing, Manchester, and
Pittsburgh datasets (containing about 400K, 1000K, and 1200K objects, respectively). As
shown in Fig. 7, as the Pittsburgh dataset has a larger number of objects (compared to the
Beijing and Manchester datasets), it demands more computation time and accesses more
index node in processing the MTCQ for both the top-k-based MTCQ algorithm and the
enhanced MTCQ algorithm. On the other hand, the Beijing dataset contains much fewer
objects than the Manchester and Pittsburgh datasets, but incurs the slightly lower CPU
cost and number of node accesses in comparison with the other two datasets. The reason
is that the Beijing dataset has a denser object distribution so that it leads to more HNOs
sets for the enhanced MTCQ algorithm and more processing time spent on finding the
top-k objects for the top-k-based MTCQ algorithm.

Figs. 8 and 9 study the effects of the number of object types and the distance d on
the performance (in terms of CPU time and number of node accesses) of the enhanced

988 YUAN-KO HUANG

MTCQ algorithm, respectively, for the Beijing, Manchester, and Pittsburgh datasets. The
experimental results show that for the Pittsburgh dataset, the enhanced MTCQ algorithm
consumes higher CPU time (shown in Fig. 8(a) and Fig. 9(a)) and requires more node
accesses (shown in Fig. 8(b) and Fig. 9(b)), compared to the Beijing and Manchester
datasets.

 0.1

 1

 10

 100

Beijing Manchester Pittsburgh

C
P

U
 t

im
e

(s
ec

.)

Various real datasets

enhanced MTCQ
topk-based MTCQ

(a) CPU time.

 0

 100

 200

 300

 400

 500

Beijing Manchester Pittsburgh

N
o
d

e
ac

ce
ss

es

Various real datasets

enhanced MTCQ
topk-based MTCQ

(b) Number of node accesses.

Fig. 7. Effect of number of objects on real datasets.

 0.01

 0.1

 1

 10

1 2 3 4 5

C
P

U
 t
im

e
 (

s
e
c
.)

Number of object types

Beijing
Manchester

Pittsburgh

(a) CPU time.

 0

 100

 200

 300

1 2 3 4 5

N
o
d
e
 a

c
c
e
s
s
e
s

Number of object types

Beijing
Manchester

Pittsburgh

(b) Number of node accesses.

Fig. 8. Effect of number of object types on real datasets.

This is expected because the Pittsburgh dataset contains more objects, enforcing
it demands more computation time and accesses more index node for determining the
HNOs satisfying the constraint of distance d. As for the Beijing dataset, it has a better
performance in all cases mostly because of its smaller cardinality. From the experimental
results, we know that the enhanced MTCQ algorithm is also suitable for various real
datasets.

6. CONCLUSIONS

In this paper, we focused on processing the MTCQ to find a set of HNOs with the
lowest total cost. In order to efficiently process the MTCQ, the Rc-tree was used as the
underlying index for managing the locations and costs of spatial objects. Then, the top-k-
based MTCQ algorithm and the enhanced MTCQ algorithm, combined with the Rc-tree,
were proposed to retrieve the set of HNOs with the lowest cost in total. Comprehensive
experiments demonstrated the efficiency of the proposed processing algorithms.

EFFICIENT EVALUATION OF MTCQ ON HETEROGENEOUS NEIGHBORING OBJECTS 989

 0.1

 1

 10

0.01 0.05 0.1 1 5

C
P

U
 t
im

e
 (

s
e
c
.)

Distance d (%)

Beijing
Manchester

Pittsburgh

(a) CPU time.

 0

 100

 200

0.01 0.05 0.1 1 5

N
o
d
e
 a

c
c
e
s
s
e
s

Distance d (%)

Beijing
Manchester

Pittsburgh

(b) Number of node accesses.

Fig. 9. Effect of distance d on real datasets.

ACKNOWLEDGMENT

This work was supported by Ministry of Science and Technology of Taiwan under
Grants MOST 107-2119-M-992-304 and MOST 108-2621-M-992-002.

REFERENCES

1. R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, “Nearest neighbor and
reverse nearest neighbor queries for moving objects,” VLDB Journal, Vol. 15, 2006,
pp. 229-249.

2. M. F. Mokbel, X. Xiong, and W. G. Aref, “Sina: Scalable incremental processing
of continuous queries in spatio-temporal databases,” in Proceedings of International
Conference on ACM SIGMOD, 2004, pp. 623-634.

3. A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao, “Modeling and querying mov-
ing objects,” in Proceedings of IEEE International Conference on Data Engineering,
1997, pp. 422-432.

4. Y. Tao and D. Papadias, “Time-parameterized queries in spatio-temporal databases,”
in Proceeding of International Conference on ACM SIGMOD, 2002, pp. 334-345.

5. Y.-K. Huang, “Location-based aggregate queries for heterogeneous neighboring ob-
jects,” IEEE Access, Vol. 5, 2017, pp. 4887-4899.

6. G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,” ACM Trans-
actions on Database Systems, Vol. 24, 1999, pp. 265-318.

7. N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,” in Proceed-
ings of International Conference on ACM SIGMOD, 1995, pp. 71-79.

8. Y. Chen and J. M. Patel, “Efficient evaluation of all-nearest-neighbor queries,” in
Proceedings of IEEE International Conference on Data Engineering, 2007, pp. 1056-
1065.

9. D. Papadias, Q. Shen, Y. Tao, and K. Mouratidis, “Group nearest neighbor queries,”
in Proceedings of IEEE International Conference on Data Engineering, 2004, pp.
301-312.

10. K. C. Lee, W.-C. Lee, and H. V. Leong, “Nearest surrounder queries,” in Proceedings
of International Conference on Data Engineering, 2006, pp. 1444-1458.

990 YUAN-KO HUANG

11. H. Hu and D. L. Lee, “Range nearest-neighbor query,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 18, 2006, pp. 78-91.

12. F. Korn and S. Muthukrishnan, “Influence sets based on reverse nearest neighbor
queries,” in Proceedings of ACM SIGMOD International Conference on Management
of Data, 2000, pp. 201-212.

13. G. Iwerks, H. Samet, and K. Smith, “Continuous k-nearest neighbor queries for con-
tinuously moving points with updates,” in Proceedings of International Conference
on Very Large Data Bases, 2003, pp. 512-523.

14. Y.-K. Huang and L.-F. Lin, “Continuous within query in road networks,” in Pro-
ceedings of the 7th International Wireless Communications and Mobile Computing
Conference, 2011, pp. 1176-1181.

15. G. R. Hjaltason and H. Samet, “Incremental distance join algorithms for spatial
databases,” in Proceedings of International Conference on ACM SIGMOD, 1998,
pp. 237-248.

16. T. Brinkhoff, H.-P. Kriegel, and B. Seeger, “Efficient processing of spatial joins using
r-trees,” in Proceedings of International Conference on ACM SIGMOD, 1993, pp.
237-246.

17. N. Mamoulis and D. Papadias, “Multiway spatial joins,” ACM Transactions on Da-
tabase Systems, Vol. 26, 2001, pp. 424-475.

18. D. Zhang, C.-Y. Chan, and K.-L. Tan, “Nearest group queries,” in Proceedings of the
25th International Conference on Scientific and Statistical Database Management,
2013, Article No. 7.

19. Y. Gao, J. Zhao, B. Zheng, and G. Chen, “Efficient collective spatial keyword query
processing on road networks,” IEEE Transactions on Intelligent Transportation Sys-
tems, Vol. 17, 2016, pp. 469-479.

20. C. Long, R. C.-W. Wong, K. Wand, and A. W.-C. Fu, “Collective spatial keyword
queries: A distance owner-driven approach,” in Proceedings of International Confer-
ence on ACM SIGMOD, 2013, pp. 689-700.

21. S. Su, S. Zhao, X. Cheng, R. Bi, X. Cao, and J. Wang, “Group-based collective
keyword querying in road networks,” Information Processing Letters, Vol. 118, 2017,
pp. 83-90.

22. http://www.openstreetmap.org/.

Yuan-Ko Huang received the BS and Ph.D. degrees from
National Cheng-Kung University, Taiwan, in 2004 and 2009, re-
spectively. He joined the faculty of National Kaohsiung Uni-
versity of Science and Technology in 2016 and is currently a
Professor of the Department of Maritime Information and Tech-
nology. His research interests are in the areas of mobile data
management, spatio-temporal databases, and big data analysis.
He has published many papers in major database journals and
conferences, such as Information Systems, GeoInformatica, In-
formation Sciences, SSDBM, IDEAS, and so on.

