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Feature selection (FS) is a data preprocessing task that can be applied before the clas-

sification phase, and aims at improving the performance and interpretability of classifiers 

by finding only a few highly informative features. The present study aims at evaluating 

and comparing the performances of six univariate and two multivariate filter FS techniques 

for heart disease classification. The FS techniques were evaluated with two white-box and 

two black-box classification techniques using five heart disease datasets. Furthermore, this 

study deals with the setting of the hyperparameters’ values of the four classifiers. This 

study evaluates 600 variants of classifiers. Results show that white-box classification tech-

niques such as K-Nearest Neighbors and Decision Trees can be very competitive with 

black-box ones when hyperparameters’ optimization and feature selection were applied.     
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1. INTRODUCTION 
 

Heart disease (HD) is one of the most prevalent diseases and considered among the 

leading causes of death worldwide. It is therefore, considered as one of the main priorities 

in medical informatics research [1]. Therefore, data mining (DM) techniques have been 

used to extract useful predictive and descriptive knowledge from large HD datasets [2]. 

Feature selection is a data preprocessing task that aims to improve the performance 

of DM-based decision support systems for HD classification [1]. FS algorithms generally 

fall into four categories: filters, wrappers, embedded, and hybrid models. Filters, in con-

trast to embedded and wrapper techniques, select features without optimizing the perfor-

mance of a DM technique [3]. Hybrid models are mainly based on the combination of the 

three aforementioned types. These techniques can be either univariate or multivariate [4]. 

Univariate techniques, also known as feature rankers, consist of ranking features individ-

ually based on some performance measures and the final features subset can be determined 

by setting a cutoff threshold or specify how many features to retain; while multivariate 

techniques evaluate an entire feature subset based on a specific search strategy using some 

performance measures and select the best features subset. 

According to authors’ knowledge, no work has evaluated and compared univariate 
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and multivariate filter FS techniques using different classifiers over multiple heart disease 

datasets. Moreover, most of the existing studies have focused on enhancing the classifica- 

tion accuracy and have neglected the interpretability issues of the classifiers used which 

were in general black-box models [3]. 

The present study has a twofold objective: (1) evaluate and compare the impacts of 

six univariate filters: ReliefF (RF), Linear Correlation (LC), Info Gain (IG), Signal-to-

noise ratio (SN), minimum Redundancy Maximum Relevance (MR), and t-test (TT), and 

two multivariate filters: Correlation-based feature subset selection and Consistency-based 

subset selection on the performance of two white-box classifiers: K-Nearest Neighbors 

(KNN) and Decision Trees (DTs); and two black-box classifiers: Support Vector Machines 

(SVM) and Multilayer Perceptron (MLP) for heart disease diagnosis, and (2) investigate 

to what extent hyperparameters’ (HP) tuning affects the performance of heart disease clas-

sification. This study uses the grid search (GS) optimization technique (OT) to tune the 

parameters of the four classifiers investigated. Note that classifiers based on the same pa-

rameters over all data subsets using Weka uniform configuration (Weka-UC) were also 

used in order to conduct a comparison. 

The experiments were performed using the Weka 3.8.3 tool [5]. The classifiers were 

evaluated using a 10-fold cross validation method and three performance criteria: accuracy, 

kappa statistic, and area under the ROC curve (AUC). Overall, this study evaluates 600 

variants of classifiers: 600 = (4 classifiers) * (6 univariate-filters * 2 selection-thresholds 

+ 2 multivariate-filters + original features set) * (5 datasets) * (2 optimization techniques), 

and aims at addressing the following research questions: RQ1: Does optimizing the pa-

rameters of classification techniques improve their performance regardless of the feature 

selection technique used? RQ2: Do multivariate filters outperform univariate ones when 

used for heart disease classification? RQ3: Is there any feature selection technique that 

distinctly outperforms the others? And RQ4: Is there any combinations of OT, FS and 

classifier that outperform others? 

The remainder of this paper is organized as follows: Section 2 describes the experi-

mental design followed in this study as well as the datasets used. Results are presented and 

discussed in Sections 3 and 4 respectively. Finally, the conclusions and future works are 

presented in Section 5. 

2. MATERIAL AND METHODS 

2.1 Datasets 

 

The present study used five datasets related to heart disease: Statlog Heart data (ST), 

Heart failure dataset (HF), processed Cleveland Heart Disease (CV), unprocessed Cleve-

land Heart Disease (ORGCV), and Arrhythmia (ARR) datasets, which are available from 

the UCI Machine Learning Repository [6]. In this paper, we aim to simply distinguish 

between the absence and presence of a heart disease. Therefore, all class values indicating 

the presence of heart disease in the CV, ORGCV, and ARR datasets were replaced by 1 

while class 0 indicates the absence of heart disease. ST, HF, CV and ORGCV are consid-

ered as small datasets, while ARR is considered as a medium-sized dataset. 

 

 



FILTER FEATURE SELECTION FOR HEART DISEASE CLASSIFICATION 793 

2.2 Methodology 

 

Performances of the four classifiers were evaluated using a 10-fold cross validation 

strategy [7]. The methodology applied is as follows: 

 

Step 1: Each dataset is checked for missing values and unimportant features. 

Step 2: Feature selection techniques are applied for each dataset: 

 

• Multivariate techniques (CFS and CON) return a feature subset. In total, we have 10 fea-

ture subsets; 

• Univariate techniques (RF, LC, IG, SN, MR, and TT) return a list of ranked features. 

Based on a previous study [8], the thresholds 40% and 50% were used with the univariate 

techniques to select the final feature subsets. In total 60 features subsets were obtained. 

 

Step3: For each dataset, the original feature set as well as each selected feature subset of 

Step 2 were investigated with KNN, SVM, MLP and DT using GS optimization and Weka-

UC. The predefined search spaces of GS for each classification technique are listed in 

Table 1. In total, we obtain 120 variants of the four classifiers per dataset. 

Table 1. Search spaces of HPs values used by Grid Search for the four classification tech-

niques.  

Classifiers HPs 

KNN K = [1, 20] with an increment of 1 

SVM 
Kernel = {RBF, Poly}; C = [1, 200] with an increment of 5; Exponent Poly = [1, 
5] with an increment of 1; Gamma RBF= [0.001, 0.1] with an increment of 0.001 

MLP 

Hidden layers = [1, 16] with an increment of 1; Learning rate = [0.01, 1] with an 
increment of 0.01; Momentum = [0.1, 1] with an increment of 0.1; Epochs = [100, 
2000] with an increment of 100 

DT 
Leaf = [1, 20] with an increment of 1; Confidence = [0.01, 0.7] with an increment 
of 0.01 

 

Step 4: For each dataset, cluster the constructed techniques of Step 3 using the Scott-Knott 

(SK) statistical based on the kappa score. The SK algorithm is a hierarchical cluster anal-

ysis approach used to partition treatments into distinct groups. The SK test deals with mul-

tiple comparisons problems 

Step 5: Rank the classifiers belonging to the best SK cluster by means of Borda Count 

voting system based on accuracy, kappa and AUC scores to gain more insight into the 

results.  

 

In order to simplify the naming of the constructed models, we use the following ab-

breviations: 

• The first number of the threshold 40% or 50% is used along with the abbreviation of the 

feature rankers to indicate a selected feature subset. For instance, RF4 describes the sub-

set of ReliefF with the threshold 40%. 

• ORG describes the original feature set for each dataset. 

• G denotes the Grid search optimization while U denotes Weka-UC. 
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The constructed models are then abbreviated as follows: 

 

• OT-ClassifierFeatureSubset 

For instance, U-MLPLC4 refers to MLP classifier with the uniform HP configuration 

of Weka applied to the feature subset selected by means of Linear Correlation and the 

threshold 40%.  

3. RESULTS 

The empirical results are depicted in this section. A software prototype with Java 

programming language and Weka API was developed to carry out the experiments. FS 

techniques not available in Weka were performed using Python’s Scikit-learn library [9]. 

The Scott-Knott statistical test was performed using R Software. Features with high per-

centages of missing values or containing same values over all instances were removed 

from the datasets. Thereafter, instances with missing values were removed.  

3.1 Feature Selection Results 

Applying the univariate filters over ST and CV datasets resulted in the selection of 5 

and 6 attributes with 40% and 50% thresholds respectively. For ORGCV, the thresholds 

40% and 50% selected 14 and 18 features respectively. A total of 111 and 139 features 

were selected with the thresholds 40% and 50% respectively in ARR dataset. For HF da-

taset the 40% and 50% thresholds selected 4 and 6 features respectively. As for multivari-

ate techniques, CFS selected a total of 7 features in both ST and CV dataset, 15 attributes 

in ORGCV, 38 attributes in ARR, and 4 attributes in HF dataset. Also, a total of 11 features 

in ST and CV, 6 in ORGCV, 21 in ARR, and 10 in HF dataset were selected using CON.  

3.2 Classification Results 

The results of the 120 variants of the four classifiers in terms of kappa were compared 

with SK test for each dataset.  

The SK test for ST dataset identified 4 clusters. Of 120 variants, a total of 99 variants 

belong to the best SK cluster. The majority of the best cluster variants (55 classifiers) were 

trained using GS optimization. It is to be noted that, with exception of G-MLPSN4, U-

MLPSN4, G-MLPSN5, G-SVMSN4, and U-SVMSN4, all MLP and SVM-based variants 

were present in the best cluster. Moreover, none of DT and KNN classifiers trained with 

subsets selected with SN4 or SN5 appeared in the best cluster except for G-KNNSN5. 

Moreover, all classifiers trained with the original set appear in the best cluster except for 

U-KNNORG and U-DTORG. 

The SK test identified two clusters for CV dataset. A total of 70 variants out of 120 

belong to the best SK cluster. 67% (47 classifiers) of the best cluster’s classifiers were 

trained using GS optimization while 33% (23 classifiers) were built using Weka-UC. 

Moreover, except for G-DTORG, U-DTORG, and U-KNNORG, all classifiers based on 

the original feature set were present in the best cluster. Except for G-DTSN5, U-DTSN5, 

and G-MLPSN5, none of the classifiers trained on subsets selected with SN4 and SN5 

appeared in the best cluster. Moreover, all classifiers based on subsets selected with MR4, 

MR5, TT4, or TT5 and optimized with GS appear in the best cluster. All classifiers trained 
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on subsets selected with RF4 and RF5 belong to the best cluster except for U-DTRF5 and 

U-KNNRF4. Furthermore, all SVM-based classifiers are among the variants of the best 

cluster, except for those trained with subsets selected with SN4 and SN5. Additionally, 

with exception of U-KNNRF5, all KNN-based variants belonging to the best cluster are 

optimized using GS.  

The SK test for ORGCV dataset identified six clusters. The best cluster contained a 

total of 80 classifiers. It is noteworthy that all DT, SVM and MLP-based classifiers belong 

to the best cluster except for those based on subsets selected using SN4 or SN5. Moreover, 

only two KNN-based classifiers (G-KNNCON and U-KNNCON) appear in the best cluster.  

For ARR dataset, the SK test identified four clusters. The best SK cluster included a 

total of 55 variants out of 120 classifiers. It is to be noted that 62% (34 classifiers) of the 

best cluster’s classifiers were trained using GS optimization while 38% (21 classifiers) 

were trained using Weka-UC. The best cluster for this dataset is mainly composed of DT 

and SVM-based classifiers, in addition to seven MLP-based variants. SVM, MLP and DT 

trained with subsets selected with RF4 or TT4 and optimized with GS appear in the best 

cluster, in addition to U-SVMRF4, U-DTRF4, and U-GDTT4. Furthermore, except for U-

SVMCFS and U-SVMCON, all SVM, DT and MLP classifiers trained with subsets se-

lected with CFS or CON are present in the best cluster. G-SVMORG, G-DTORG, and U-

DTORG are the only classifiers based on the original feature set that belong to the best SK 

cluster. Moreover, only one variant based on subset selected with SN4 and four variants 

on SN4 belong to the best cluster. 

The SK test for HF dataset identified four clusters. Of 120 variants, a total of 103 

variants belong to the best SK cluster. The best cluster contains 53 and 50 classifiers trained 

with GS and Weka-UC respectively. Moreover, all classifiers trained with subsets obtained 

with SN4 belong to the second, third or fourth clusters while all those based on SN5 belong 

to the best cluster. Except for U-MLPORG, U-KNNORG, and G-KNNORG, all classifiers 

based on the original feature set appear in the best SK cluster.  

In order to answer RQ1, RQ2, and RQ3 from Section 1, the classification techniques 

present in the best SK cluster for each dataset are summarized in Tables 2-4. Moreover, to 

answer RQ4 the results of Borda count based on kappa, accuracy, and AUC are given in 

Tables 5-7. Classifiers with the same ranks are marked with the same letter (e.g. ᵃ). 

4. DISCUSSION 

In this section we firstly discuss the results according to the aforementioned RQs (see 

Section 1). Thereafter, we present a comparison of our best results with those from the 

literature. 

 

4.1 RQ1: Comparison of GS Optimization and Weka-UC 

 

Table 2 shows that the total number of classifiers optimized with GS is higher (or 

slightly higher) than the number of classifiers trained with Weka-UC for ST, CV, ARR, 

and HF datasets. For the ORGCV dataset the number of classifiers based on Weka-UC and 

those based on GS is the same. Accordingly, we can conclude that HP optimization can 

generally improve the performance of classifiers over different datasets. 
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Moreover, some observations can be made for each classifier separately. 

For KNN, we notice that: 

 

1. From Table 2, KNN classifiers did not appear in the best SK clusters of ORGCV and 

ARR datasets with exception of two that appeared in the best SK cluster of ORGCV. 

This shows that the smaller is the number of features the more successful KNN can be.  

 
Table 2. Number of occurrences for each OT and classifier of the best cluster regardless 

of the FS technique used for all datasets. 

Dataset 
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ST 8 13 13 10 44 14 14 14 13 55 
CV 1 13 6 3 23 13 13

s 

14 7 47 
ORGCV 1 13 13 13 40 1 13 13 13 40 

ARR 0 9 2 10 21 0 14 5 15 34 

HF 10 14 12 14 50 11 14 14 14 53 

 

2. The number of KNN classifiers optimized with GS exceeds that of KNNs built using 

Weka-UC in ST and CV datasets. However, all KNN classifiers ranked in the first ten 

Borda ranks for ST, CV and HF datasets, were optimized using GS. This shows that 

KNN is sensitive to the tuning of its K hyperparameter. 

 

For SVM, Table 2 shows that, for ST, CV, ORGCV and HF datasets, there is no (or 

no significant) difference in the numbers of SVM classifiers (belonging to the best clusters) 

built with Weka-UC or optimized with GS. Therefore, we conclude that in general, HP 

tuning does not significantly improve the performance of SVMs in small datasets. None-

theless, for ARR dataset, Table 2 shows that 14 SVM classifiers were optimized using GS 

while 9 were built using Weka-UC, therefore, it is difficult to draw conclusions for medium 

datasets and more investigations might be needed. Moreover, the presence of almost all 

SVM classifiers in the best SK clusters of all datasets shows the robustness of this classifier. 

For MLP, Table 2 shows that, except for CV dataset where the majority (14 out of 20) 

of the MLP classifiers present in the best SK cluster were optimized using GS, there is 

either an equality or no significant difference in the number of MLP classifiers optimized 

with GS and Weka-UC for the rest of datasets. MLP seem to perform inconsistently there-

fore it is hard to conclude whether optimized MLP classifiers outperform those built using 

Weka-UC or not. In fact, neural networks are generally known to be hard to tune and a 

brute-force grid search may not be the best choice to find optimal HP values for MLPs. 

Other optimization techniques such as Random search or Bayesian optimization can there-

fore be more efficient to examine the impact of HP tuning on MLPs. 

From Table 2, it appears that in ORGCV and HF datasets the numbers of DTs opti-

mized using GS and those built using Weka-UC are the same, while for the rest of datasets 

the number of DT classifiers optimized with GS exceeds by a minimum of three and max-

imum of five occurrences that of those built using Weka-UC. According to these results it 

is difficult to draw conclusions. In fact, the Weka-UC values of DT are known to be ade-

quate to simple classification tasks. However, the Borda ranking results shows that HP 
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optimization can still improve the performance of DT classifiers in some cases since all 

the DT classifiers appearing in the best ten ranks for ARR dataset are optimized with GS.  

4.2 RQ2: Comparison of Multivariate and Univariate Filters 

According to Table 3, and based on the initial number of univariate and multivariate 

techniques used, 73% of multivariate and 67% of univariate FS techniques were present in 

the best SK clusters over all datasets. Moreover, taking into account each dataset separately: 

(1) for ST dataset, 82% of FS techniques present in the best SK cluster are univariate while 

87% are multivariate; (2) for CV dataset, 59% of FS techniques present in the best SK 

cluster are univariate while 50% are multivariate; (3) 62% of FS techniques present in the 

best SK cluster of ORGCV dataset are multivariate while 87% are univariate; (4) 62% of 

FS techniques present in the best SK cluster of ARR dataset are multivariate while 43% 

are univariate; and (5) for HF dataset, 88% of FS techniques present in the best SK cluster 

are univariate while 81% are multivariate. 

 

Table 3. Number of occurrences for each FS technique present in the best clusters regard-

less of the OT and classification techniques used for all datasets. 
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ST 7 7 14 8 8 6 8 8 8 0 3 8 8 6 8 79 
CV 4 4 8 7 7 5 4 5 4 0 3 7 5 5 5 57 
OR-

GCV 

6 8 14 6 6 6 6 6 6 0 0 6 6 6 6 60 
ARR 5 5 10 5 4 4 4 3 3 1 4 3 4 4 3 42 
HF 8 5 13 7 6 8 8 8 8 0 8 8 8 8 8 85 

Total 30 29 
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With the exception of ST dataset the percentage of occurrence of univariate tech-

niques exceeds that of multivariate ones in the small datasets. As for ARR dataset multi-

variate techniques seem to be more successful than univariate ones. This might be due to 

the fact that the larger a dataset is the higher is the degree of redundant features it contains 

and that univariate filters do not take into consideration the relationship between features. 

Nonetheless, univariate techniques can still be beneficial for large datasets by applying 

them first to reduce the size of the data and select the most informative features, then mul-

tivariate techniques can be applied to handle redundancy.  

 

4.3 RQ3: Is There a Best Performing FS Technique? 

According to Tables 3 and 4 some observations can be made: 

• From Table 3, we observe that the total number of occurrences of RF (64 occurrences 

over all datasets) and mRMR (63 occurrences over all datasets) techniques exceeds 

those of other univariate techniques. The efficiency of ReliefF can be explained by the 

fact that it uses the concept of nearest neighbors to derive feature statistics that indi-

rectly consider feature interactions without evaluating pair-wise feature combinations. 

Moreover, the mRMR technique, as its name suggests, also considers interactions 
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between features which can explain its performance. However, both RF and mRMR 

are mainly influenced by the number of features and this can be confirmed by the fact 

that the number of occurrences of these two techniques in the ARR dataset is smaller 

than those in other datasets. 

• LC, IG, and TT also seem to provide satisfactory results over different datasets but IG4, 

IG5 and TT5 appear to be the most affected by the number of features. The classifiers 

present in the best cluster of ARR dataset and based on these FS techniques are, G-

DTIG4, G-DTIG5, G-DTTT5, G-SVMIG4, G-SVMIG5, G-SVMTT5, U-SVMIG4, U-

SVMIG5, and U-SVMTT5. Comparing these techniques to baseline classifiers (i.e. G-

DTORG, G-SVMORG and U-SVMRORG), an improvement was scored for SVMs 

only. In fact, the SK test compares the kappa means with a significant level of 5%; 

however small improvements or decreases in the accuracy can still be observed. For 

instance, we observe that G-DTORG (with a kappa score of 0.64) appears before G-

DTIG4 (with a kappa score of 0.62) and G-DTIG5 (a kappa score of 0.60) and thus 

slightly outperforms them in the ARR dataset.  

• The SN technique seem to fail at selecting the relevant features, except in some cases 

when a threshold of 50% was used.  

• There is no difference between the total number of occurrences of CON and CFS tech-

niques present in the best SK clusters of ST, CV, and ARR datasets. For the ORGCV 

dataset the number of occurrences of CON exceeds that of CFS by two occurrences 

this is because G-KNNCON and U-KNNCON appeared in the best cluster for this da-

taset since CON selected the smallest feature subset for this dataset (6 features) com-

pared to CFS (15 features) which may explain this difference. On the contrary, CON 

selected more features (10 features) than CFS (4 features) for the Heart failure dataset 

which may explain the difference between the number of occurrences of CFS and CON 

in this dataset.  

 

Table 4. Number of occurrences of each FS technique present in the best clusters by clas-

sifier over all datasets regardless of the OT used. 

 

• Based on the results of Table 4, we notice that for KNN classifiers only 2 occurrences 

based on the original feature set appeared in the best clusters over all datasets. These 

occurrences appeared in the best clusters of ST and CV datasets and were optimized 

using GS. This shows that in addition to HP optimization, feature selection can signif-

icantly improve the performance of KNN. In fact, in the case of ORGCV dataset which 

contains a set of features higher than the other small datasets, only two occurrences of 

KNN (G-KNNCON and U-KNNCON) appeared in the best cluster and this is because 

CON selected the smallest subset (6 features) which improved the performance of KNN 
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KNN 2 4 4 8 4 4 4 5 5 5 0 3 5 5 4 5 49 
SVM 9 9 9 18 10 10 10 10 10 10 0 5 10 10 9 9 103 
MLP 7 9 8 17 9 8 8 7 8 7 0 5 8 7 8 7 82 
DT 7 8 8 16 10 9 7 8 7 7 1 5 9 9 8 9 89 
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remarkably. Therefore, we conclude that feature selection is essential for KNN. More-

over, almost all feature selection techniques of Table 4 improved the performance of 

KNN to a greater or lesser extent. Nonetheless, we noticed that CFS consistently re-

sulted in slight improvement of KNN in ST, CV, and HF datasets when GS was used 

since all G-KNNCFS classifiers appeared before G-KNNORG in the best clusters. 

Moreover, from the Borda count results, we observe that RF4 gave the best results for 

KNN in ST and CV datasets. 

• From Table 4, it can be observed that except SN5, there is no significant difference 

between the presence frequencies of the different FS techniques for SVM. Moreover, 

9 out of 10 SVMs trained with the original feature set over the five datasets performed 

comparably to FS-based SVMs which shows that this classifier has a low sensitivity to 

FS in general. However, as previously mentioned small performance improvements 

can be underlined in each best cluster, and CFS seem to consistently improve the per-

formance of SVM when GS is used. In fact, G-SVMCFS classifiers for ST, CV, HF, 

and ARR datasets (with a kappa score of 0.68, 0.68, 0.64, and 0.61 respectively) ap-

peared before G-SVMORG classifiers (with a kappa score of 0.66, 0.67, 0.61, and 0.54 

respectively). 

• Similar to SVM, there is no significant difference between the presence frequencies of 

the different FS techniques for MLP, except for SN5. A total of 7 out of 8 MLPs trained 

with the original feature set over the four small datasets performed comparably to FS-

based MLPs, while in the medium datasets no MLP based on the original feature set 

appeared in the best cluster. Moreover, in the ORGCV dataset which contains a set of 

features higher than the other small datasets G-MLPORG and U-MLPORG appeared 

last in the best cluster. This shows that MLP is affected by the number of features and 

FS can help to improve its performance. In fact, MLPs, are not known to be adopted to 

high dimensional spaces because of the use of classical concepts such as Euclidean 

distance which scales poorly in high dimensions. For MLP, the most stable FS tech-

nique seem to be RF4 when GS is used. In fact, although it was outperformed by other 

FS techniques in some cases, RF4 improved the performance of MLP in CV (with a 

kappa score 0.67 vs 0.64), Heart failure dataset (with a kappa score of 0.57 vs 0.53), 

ORGCV (with a kappa score 1.0 vs 0.98), and ARR dataset (with a kappa score of 0.54 

vs 0.50) compared to G-MLPORG, and conserved the same accuracy in ST dataset (a 

kappa score of 0.69). Also, CON FS gave good results for MLP for ST, OTGCV, and 

ARR dataset based on the Borda results.  

• Compared to SVM and MLP, DT classifiers seem to be very competitive. No specific 

FS performed the best for DT in all datasets, however, RF resulted in the best classifi-

cation performance for DT in ST and CV datasets when GS is used, while CFS pro-

duced the best results for DT in ARR and HF dataset when GS was used. For ORGCV, 

with exception of those based on SN4 and SN5, all DT-based classifiers achieved an 

accuracy of 100% (i.e. a kappa score of 1.0). 

 

4.4 RQ4: Best OT, FS, and Classifier Combination  

 

According to the Borda count results (Tables 5-7), there are several combinations that 

have performed well in different datasets. For instance, G-MLRF4 appear in the top ranks 

for ST, CV and ORGCV datasets. This confirms the fact that ReliefF and HP optimization 
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can improve the performance of MLP. Moreover, the combination G-SVMCFS also ap-

pears among the best ten ranks of ST, CV, ORGCV and ARR datasets. This shows that 

although SVM proved to be a robust technique, HP optimization and feature selection can 

still be beneficial in terms of accuracy. Moreover, as long as feature selection do not 

worsen its performance it can help in terms of reducing training time. As for white-box 

classifiers, we can notice that different KNN-based combinations appear in the top ranks 

for small datasets while different DT-based combinations appear in the top ranks for the 

medium dataset. For instance, the combinations G-KNNIG4, G-KNNMR4 appear in ST 

and HF datasets, G-KNNRF4 appears in ST and CV datasets, while G-KNNCON appears 

in ORGCV. Moreover, G-DTCFS and other DT-based combinations appear in the top 

ranks for the medium dataset (ARR) and ORGCV which contains a set of features higher 

than the other small datasets. This demonstrates that using HP optimization and FS can 

make simple classifiers such as KNN and DT very competitive with more robust black-

box classifiers in terms of accuracy, not to mention their interpretability aspect.  

 

Table 5. Borda count results for ST and CV datasets. 

ST dataset CV dataset 

Rank Classifiers Rank Classifiers Rank Classifiers Rank Classifiers 

1 G-MLPORG 6 ᵇG-MLPLC4 1 G-KNNRF4 6 G-MLPRF4 
2 ᵃG-SVMTT5 7 G-SVMCFS 2 G-SVMCON 7 G-MLPTT5 
3 ᵃG-MLPRF4 8 ᶜG-KNNMR4 3 U-SVMCON 8 U-SVMCFS 
4 ᵇG-SVMMR5 9 ᶜG-KNNIG4 4 G-KNNRF5 9 G-KNNTT5 
5 ᵇG-KNNRF4 10 ᶜG-MLPCON 5 G-SVMCFS 10 G-SVMORG 

 

Table 6. Borda count results for ORGCV and ARR dataset. 

ORGCV dataset ARR dataset 

Rank Classifiers Rank Classifiers Rank Classifiers Rank Classifiers 

1 ᵃG-DTCFS 6 ᵃG-KNNCON 1 G-DTCFS 6 G-MLPCFS 
2 ᵃG-DTTT4 7 ᵃG-SVMRF4 2 G-MLPCON 7 G-DTLC4 
3 ᵃ G-MLPRF4 8 ᵃG-MLPCON 3 G-DTTT4 8 G-DTCON 
4 ᵃG-SVMCFS 9 ᵃG-DTRF5 4 ᵃG-DTMR5 9 ᵇG-SVMCFS 
5 ᵃG-DTCON 10 ᵃG-SVMCON 5 ᵃG-DTTT5 10  

 

Table 7. Borda count results for HF dataset. 

HF dataset 

Rank Classifiers Rank Classifiers 

1 G-MLPMR5 6 ᵃG-KNNIG4 
2 G-MLPMR4 7 ᵃG-MLPLC4 
3 G-MLPTT4 8 ᵃG-KNNTT4 
4 ᵃG-KNNCFS 9 G-MLPTT5 
5 ᵃG-KNNMR4 10 G-MLPSN5 

 

4.5 Accuracy Results Comparison 

The accuracy results of the best performing classifiers of the present study are com-

pared with those from previous studies in Table 8. In fact, the majority of the studies pre-

sented in Table 8 used black-box classifiers such as neural networks, support vector ma-

chine, and Random forest. Moreover, some studies used feature extraction techniques such 
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as principal component analysis which transforms the original features into new ones. 

Nonetheless, critical decisions such as the diagnosis of heart disease require white-box 

classifiers that are more comprehensible and easily interpreted [3]. Hence, in case the best 

performing classifier is a black-box, we also added the first best performing white-box (i.e. 

DT or KNN) classifier from the Borda results for each dataset to conduct the comparisons. 

As shown in Table 8, the results achieved are very promising compared to those of the 

previously published studies.  

 

Table 8. Accuracy results comparison with previous studies. 

Dataset Study Technique 
No. of  

features 
Accuracy 

S
ta

tl
o
g
 Our study 

G-MLPORG 13 85.18% 

G-KNNRF4 5 84.81% 

Polat, et al. [10] 
RBF kernel F-score FS + LS-

SVM 
117 83.70% 

Jaganathan, et al. [11] Fuzzyentropy-NNTS FS + RBF 4 85.19% 

P
ro

ce
ss

ed
 
 

C
le

v
el

an
d
 Our study G-KNNRF4 5 86.13% 

Jaganathan, et al. [11] Fuzzyentropy-NNTS FS + RBF 3 84.46% 

Vivekanandan, et al. [12] 

Modified differential evolution 

FS + fuzzy AHP + feed-forward 

neural network 

9 83% 

U
n
p
ro

-

ce
ss

ed
 

C
le

v
el

an
d
 

Our study G-DTCON and U-DTCON 6 100% 

Garate-Escamila, et al. [13] CHI-PCA FS + Random Forest 13 98.7% 

Miao, et al. [14] Adaptive boosting 29 80.14% 

Patra, et al. [15] IG FS + DT 51 87.12% 

A
rr

h
y
th

m
ia

 Our study G-DTCFS 38 82.52% 

Mustaqeem, et al. [16] 
Random Forest wrapper FS + 

MLP 
− 78.26% 

Sasikala, et al. [17] 
PCA + ReliefF-Shapley FS  

+ SVM 
− 65.78% 

Niazi, et al. [18] Improved F-score FS + KNN 60 73.8% 

H
ea

rt
 

fa
il

u
re

 

Our study 
G-MLPMR5 6 85.61% 

G-KNNCFS 4 84.93% 

Oladimeji, et al. [19] Filter FS + Random Forest  4 83.17% 

5. CONCLUSIONS AND FUTURE WORK 

This paper studied the effect of feature selection and HP optimization on HD classi-

fication. To this end, the relevant features of five datasets related to heart disease were 

selected using CFS and CON multivariate filters, and RF, LC, IG, SN, MR, and TT uni-

variate filters with 40% and 50% thresholds. KNN, SVM, MLP and DT classifiers were 

trained with the entire and reduced feature sets, and evaluated using the 10-fold cross val-

idation method. The accuracy results of the best performing white-box classifiers of the 

present study were compared with those from previous studies. In addition to the interpret-

ability advantage, the constructed techniques showed very promising results in terms of 

accuracy as well. 

Ongoing works aim to investigate the application of other preprocessing tasks such 
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as normalization and missing data handling in attempt to obtain better results. Constructing 

ensemble feature selection techniques will also be investigated to combine the robustness 

and eliminate the drawbacks of the individual ones.  
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