
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 38, 17-39 (2022) 
DOI: 10.6688/JISE.202201_38(1).0002    

17  

Multi-Objective Scheduling  
of Cloud Data Centers Prone to Failures 

 
QING-HUA ZHU, JIA-JIE HUANG AND YAN HOU 

School of Computer Science and Technology 
Guangdong University of Technology 

Guangzhou, 510006 P.R. China 
E-mail: zhuqh@gdut.edu.cn; huangjj@mail2.gdut.edu.cn; houyan@gdut.edu.cn 

 
Distributed data centers (DDCs) consume power energy increasingly to provide dif-

ferent types of heterogeneous services to global consumers. Consumers bring revenue to 
DDC providers according to actual quality of service (QoS) of their requests. High energy 
consumption caused by a DDC is paramount for its providers to solve. During the mainte-
nance due to failures, network service providers have to guarantee continuously reliable 
services to their consumers to ensure their revenue. Therefore, it is highly challenging to 
schedule tasks among DDCs in a low-energy and high-QoS way. In this paper, we propose 
a novel hierarchical framework for solving the task scheduling and power management 
problem in DDCs. The proposed hierarchical framework comprises: (1) a tier for global 
task scheduling to the DDCs and (2) a local tier for distributed power management of local 
servers. The dataset transmission energy between DDCs is considered. Meanwhile, this 
approach optimizes three conflicting objectives: total cost, energy consumption during 
computations and transmissions, and application rejections or violations due to failures. 
The proposed method can also improve resource utilization. The experimental simulations 
on large scale parallel working datasets show that this method can save energy signifi-
cantly and obtain high quality of service. Meanwhile, it can achieve a good trade-off be-
tween QoS and energy consumption in DDCs.   
 
Keywords: cloud computing, energy-saving, random failures, dynamic voltage/frequency 
scaling 

1. INTRODUCTION 

Virtualization technology can greatly support cloud computing environments for ef-
ficient execution of applications on appropriate hosts [1]. With the growth of popularity of 
cloud computing, cloud infrastructure is built on a large number of servers, among which 
high performance computing (HPC) and large storage devices result in a large amount of 
energy consumption. Most of the energy consumption of a typical cloud data center is 
consumed by server operation, storage, and cooling. Energy consumption has become the 
most important issue on cloud computing. Many studies aim to improve the utilization of 
cloud resources [2-4].  

In cloud computing, efficient resource utilization mainly relies on virtualization tech-
nology and fine-grained energy-saving technologies. To reduce the energy consumption 
of an active server, the frequency of its CPU and chipset can be scaled in terms of the 
workload of its task request by using dynamic voltage and frequency scaling (DVFS) tech-
nology. Dynamic power management (DPM) can be used to make physical machines sleep 
within a specified period of time to effectively save energy consumption. Compared with 

Received August 23, 2020; revised November 4, 2020; accepted November 9, 2020.  
Communicated by Changqiao Xu. 



QING-HUA ZHU, JIA-JIE HUANG, YAN HOU 

 

18

DVFS, the latter can reduce the number of active machines as much as possible, avoid 
unnecessary active machines with standby consumption, and meet the performance re-
quirements in the current time period, which is achievable within a specified period of time. 

In a large-scale cloud data center, the number of servers is so large that their compo-
nent failures become routines [5, 6]. Despite of the failures affecting system performance, 
their impact on energy saving and operation costs have become an increasingly important 
concern to system designers and administrators [5, 6].  

In this study, for HPC task scheduling of a distributed cloud system, in the global 
aspect, a fine-grained scheduling decision method is proposed in terms of resource utiliza-
tion and energy saving in a reservation mode. To solve the problem of energy-aware task 
scheduling in a distributed cloud environment, the energy consumption of the dataset trans-
mission is smoothed, and a trade-off is made between energy consumption and resource 
utilization in global scheduling. Based on dynamic cluster server configuration (DCSC) 
and dataset transmission cost, a cost-aware global scheduling algorithm (CGS) is proposed 
to allocate cloud resources for geologically distributed cloud systems subject to random 
faults. 

The main contributions of this work are twofold. First, we propose a cost-sensitive 
scheduling algorithm based on dynamic cluster server on/off in the case of failures with 
considerations of dataset transmission cost. The proposed algorithms map each task to the 
required resources. Second, according to the workload or resource utilization of DC, the 
setting of the reservation ratio of servers and the operation of cluster server can be adjusted 
flexibly. The proposed algorithm balances the cost, energy consumption, and the number 
of application rejections with good performance. 

2. RELATED WORK 

The task scheduling problems aware of energy-efficiency have been extensively in-
vestigated [1, 7, 8] for distributed green data centers [1, 7, 8]. Apart from considering 
transmission energy, many approaches have been suggested to address the objective of 
minimizing energy consumption from different perspectives such as data center manage-
ment architecture [9-11], scheduling workflows [12-14], electricity prices [15, 16], and 
resource scheduling strategy [2, 17, 18]. The studies in [19-24] focus on the energy con-
sumption problems for scheduling HPC applications in cloud computing systems. The 
study in [25] considers workload scheduling in a heterogeneous cloud environment. Their 
algorithm based on Min-Min and Max-Max is better than other algorithms in the sense of 
makespan and average cloud utilization. A heuristic algorithm based on ant colony opti-
mization (ACO) is proposed to minimize the execution cost of workflow in cloud compu-
ting under time constraints. In the study of [3], a cloud computing task scheduling method 
based on VM matching is proposed, which can effectively improve the task scheduling 
performance of the cloud and realize load balancing among various VMs.  

Yacine et al. [26] propose two algorithms, namely, direct mobility heuristic (DMH) 
and iterative direct mobility heuristic (IDMH), to make up for the space limitation of A 
algorithm. Jose et al. [27] define a comprehensive cost model which includes some utilities 
that customers provide for a certain degree of degradation when VMs are allocated to an 
overused environment. Both can bring benefits in terms of revenue and resource utilization. 
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Thus, it can be expanded flexibly according to the size of the data center. Workload exe-
cution time is also improved by incorporating the reallocation of service level agreement 
(SLA)-based computing power of virtual machines (VMs). Wang et al. [28] propose a 
method to calculate the optimal migration sequence and the network bandwidth used for 
each migration. For its feasibility, an approximation scheme combining linear approxima-
tion with a full polynomial time approximation is proposed, and the theoretical perfor-
mance boundary and computational complexity have been obtained. 

Juarez et al. [29] propose a dual-objective function optimization scheduling method 
for energy consumption or maximum completion time in heterogeneous cloud systems. 
They use an integrated cost function weighted by factor Alpha to represent user preferences 
for energy savings or execution time. Their heuristic algorithm sorts a given directed acy-
clic graph (DAG) task set by estimating the required energy, which identifies a separate 
subset of tasks as a preparatory step before allocating resources.  

In addition to considering energy consumed by dataset transferring, there are many 
ways to minimize energy consumption from different perspectives. For example, green 
cloud computing [4], cost perception [18, 30], or transmission scheduling between com-
puting nodes of the application [31]. Zhu et al. [32] formulate the workflow scheduling 
problem of simultaneous optimization of maximum completion time and cost as a multi-
objective optimization problem in a cloud environment. They propose an algorithm based 
on evolutionary multi-objective optimization (EMO) to solve a workflow scheduling prob-
lem on infrastructure as a service (IaaS) platform.  

Dabiah et al. [33] propose a heuristic scheduling algorithm for heterogeneous com-
puting environments, which minimizes the total execution cost of the tasks while ensuring 
that the total completion time of the tasks does not exceed their deadlines. Aeshah et al. 
[34] propose a high performance computing application scheduling method that considers 
the transfer energy of datasets. 

In addition, Gu et al. [35] have proved that DPM based on DVFS can be used to 
perform physical hibernation of the physical host/processor within a given period of time, 
which can effectively reduce the total energy consumption.  

Alam et al. [36] provide a reliable resource allocation approach for cloud computing 
while minimizing the cost. A heuristic approach to cloud resource allocation is proposed, 
which focuses on the reliability problems caused by failures in cloud environments. Yuan 
et al. [37] present a cost-aware workload scheduling method to jointly optimize the number 
of active servers in each data center, and the selection of Internet service providers for the 
data centers. Yuan et al. [38] design a profit sensitive spatial scheduling approach to max-
imize the total profit of a distributed green data center by smartly scheduling all tasks of 
multiple applications to meet their response time constraints. Their approach can well uti-
lize such spatial diversity of the above factors. Fu et al. propose a distributed VM con-
struction strategy to enhance resource resilience by tracing failures [39]. Task rejections 
and deadline violations caused by failures of cloud resources have aroused much concern 
[39]. Extensive attention is paid to the reliability of cloud resource utilization. 

The differences between this study and aforementioned ones are summarized as fol-
lows.  

 
(1) Different from [36-39], to minimize total cost, energy consumption, and application 

deadline violations, we consider these factors jointly: random failures, the cost of tran- 
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smitting datasets across geographically distributed clouds, and cloud resource occu-
pancy.  

(2) Compared to [25, 35], we also take the resource footprint, energy for execution, and 
task execution costs in the scenario of random failures into account. 

(3) Different from [29, 33-35], to further reduce energy consumption, our energy model 
uses DPM and DCSC, in which the task execution time is determined by the CPU 
frequency of a server. At the same time, we set flexible reservation ratio of servers and 
adaptive DPM decision according to workload fluctuation and the resource utilization 
of DCs. 
 
The rest of this article is structured as follows. In Section 3, we formulate the ad-

dressed problem and system model. Then, Section 4 presents cost-sensitive scheduling al-
gorithms which can effectively minimize total cost, energy consumption, and the number 
of rejected applications. Section 5 gives experimental evaluation. Section 6 summarizes 
this work. 

3. SYSTEM MODEL AND PROBLEM FORMULATION 

We consider q distributed data centers owned by different vendors, which forms a 
multi-cloud system, denoted by C = {C1, C2, C3, …, Cq}, where Ci is a data center. Ci has 
its own management server MSj that relies on three components: a global scheduler, a local 
scheduler, and a resource controller. Fig. 1 provides an overview of the system model, 
illustrating the role of global and local schedulers when submitted applications are received. 

 

 
Fig. 1. System model. 
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This is very detrimental to application due to the non-periodicity of application arri-
vals. We use an LSTM-based (Long Short-Term Memory) workload prediction method 
for better scheduling. With little prior knowledge, we can extract links between different 
features from historical data. Here we make predictions about CPU utilization. 

 

Table 1. Symbol list. 
Symbol Definition 

M Total number of servers 
Mx

t Number of servers in state x during timeslot t 
Mo

xx Statistics number of servers in a transition from state x to state x’ 
Mi

reserve Number of reserved servers in the cloud during timeslot t 
Mvio Number of application violations 
i Process rate of active state i 
L Number of frequency levels. 
Px Server power in server’s state x 

Pxx Power consumption in the server transition from state x to state x 
Pf(l) Dynamic server power at frequency level l{1, 2, …, L}  
Dxx Latency of the server transition from state x to state x 

T Period between the arrival time of x first task and the end of processing the last task 
Ton||off Fixed period for the operation decision of switching on and off of a serve 
Ts||w Fixed period for the operation decision of switching wakeup and sleep of a server 
K Length of a segment  
k Length of a timeslot 
Tx

i Duration of a server’s state x during segment i 
U Number of timeslots to form a segment of time 

E_C Energy consumption of clouds 
E Total energy consumption 

Ei
on Energy consumption of booting up servers in a segment 

Ei
switch Energy consumption by a server’s switching in segment i 

T_faultt Duration of a failure 
Et Dataset transmission energy consumption 
 Power usage efficiency (PUE) 
A Number of applications 

DataSizei Data size of application i 
Infor_App Relevant information about an application 

 Proportion of application violations 
 Reserved process rate in a cloud 
 Electricity price for data centers 
 Penalties for each application violation 
 Dataset transmission price 

  

The local resource checker for each data center provides a provisional reservation 
(PR), which takes into account whether a data center is actually available or not, including 
estimated energy, and resource utilization. After an application is assigned to a correspond-
ing cloud, its local scheduler applies scheduling algorithm cost-aware local scheduling 
(CLS) to map an application to a machine. The scheduling framework, energy model, and 
problem description are discussed next. 
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3.1 Scheduling Framework 

Pre-scheduling primarily depends on the available resources and server status for a 
given period of time. In addition to uncertain resource failures, this scheduling model 
should avoid violating a deadline. 

Energy optimization techniques are applied to schedule the submitted applications to 
ensure the performance requirements. It is required that there be at least one cloud that can 
meet an application deadline. Normally, every submitted application can be scheduled to 
execute, but it is possible that no cloud can meet the resources required by an application 
at its planned execution time, then it is marked in a rejected state. The framework supports 
combination rate strategy (CRS), improved cuckoo search (MCS) algorithm, hybrid cha-
otic particle search (HCPS) algorithm, and improved artificial bee colony algorithm 
(MABC) to select the most suitable cloud. 

To ensure that the clouds should meet the application requirements and provide PR, 
we consider the following factors.  

 
a) Estimating the energy required for each application, 
b) Server status in each cloud, and  
c) The unoccupied resources in each cloud. 

 
The cloud selection strategy must adapt to any failures at any time in DDCs. A set of 

PRs are selected to perform the current task. The policy will check each PR to satisfy 
preferences for energy consumption, occupancy rate, performance, and their combinations. 
Afore mentioned factors b) and c) should be considered to choose the best cloud to fit a 
task. 

When an application is rejected due to insufficiency of current computing resources, 
it will wait in a queue by our given strategy. 

3.2 Energy Model 

Advanced configuration and power interface (ACPI) standard is adopted in this study. 
Pursuant to ACPI, modern server power management hardware modules typically support 
multiple sleep states. In order to respond to more server types, it is assumed that a server 
has m sleep states and n active states, and a server in different states owns different pro-
cessing capacities and capabilities. Let Ng = {1, 2, 3, …, g} denote a positive natural num-
ber set. Let S_sleep = {sleep[1], sleep[2], …, sleep[m]} and S_active = {active[1], active 
[2], …, active[n]}. Normal transitions occur only between the sleep and idle states, and 
there is no switching between any two sleep states. Notice that the latency and power con-
sumption of switching between different sleep modes and idle one are different. Server 
states fall into five levels: off, sleep, idle, fault, active, and reserve, which are denoted by 
off, S_sleep, idle, fault, S_active, and reserve, respectively. Let  = {off}S_sleep{idle} 
S_active{fault}{reserve}. Each state of a server has a different frequency corre-
sponding to a different processing rate and power. Let i denote the process rate of the ith 
active state of a server (iNn). Px denotes a server’s power in state x. We define max as 
the maximum processing rate of an active server. The relationships of servers’ processing 
rate and power among different states are shown below.   



SCHEDULING DATA CENTERS PRONE TO FAILURES 23

n > n-1 … > 2 > 1 (1) 

PS_active[n] > PS_active[n-1] … > PS_active[2] > PS_active[1] > Pidle > PS_sleep[1] >  

PS_sleep[1] … > PS_sleep[m] (iNn, jNm) (2) 

The configuration of a sleep server determines the power and latency required to per-
form a wake-up operation. The greater power a sleep server has, the more energy is re-
quired to perform its wake-up operation and the shorter time to wake up. Similarly, idle or 
active servers need to perform sleep operations. The more energy it takes to get into a sleep 
state, the less time it takes to get sleep. Here, the power off state of a server can be viewed 
as a deep sleep one. The shutdown or bootup of a server requires very little power, but the 
corresponding delay is much longer than that of a normal wake-up operation. For a server, 
let Dxx denote the latency of its transition from state x to state x, where x and x . 
And Pxx denotes the power consumption of a server in a transition from state x to state 
x, where x and x. Their relationships are as follows. 

PidleS_sleep[1] > PidleS_sleep[2] > … > PidleS_sleep[m] > Pidleoff  (3) 

DidleS_sleep[1] < DidleS_sleep[2] < … < DidleS_sleep[m] < Didleoff (4) 

PS_sleep[1]idle > PS_sleep[2]idle > … > PS_sleep[m]idle > Poffidle (5) 

DS_sleep[1]idle < DS_sleep[2]idle < … < DS_sleep[m]idle < Doffidle (6) 

Assume that there are M servers in each data center. Let T denote the period between 
the arrival time of the first task and the completion time of processing the last task, which 
is divided into Ton||off segments. Each segment is set to be a fixed period. During segment t, 
let Mx

t denote the number of servers in state x. Let Mt
xx denote the statistics number of 

servers in a transition from state x to state x. Let S_on =  \{off, reserve}. Let Mx
h denote 

the number of servers in state x during segment h. Let Ms
h denote the number of servers in 

state set S, i.e., we have  

Ms
h = xSMs

h, hNTon||off.   (7) 

In Eq. (7), S is one of the following state sets: S_active, S_on, and S_sleep. 
The number of servers in a data center is calculated as follows,  

M = Mx
h + Mh

off + Mh
yoff + Mh

offy + Mh
reserve, hNTon||off, yS_on, (8) 

Mh
S_on = Mh

S_active + Mh
S_sleep + Mh

{idle} + Mh
{idle}S_sleep + Mh

S_sleep{idle} + Mh
fault, hNTon||off. (9) 

Each application consumes energy by its execution, failure handling, and dataset tran-
sfer, which are discussed below. 

(A) Energy Formula for Executing Applications  

The amount of energy to execute an application largely depends on the size of the 
application and the state of a server. When an application is scheduled to execute in a cloud, 
a server uses DPM to select its state. Then, it continues to adjust the processor frequency 
by using DVFS based on the application profile. Suppose that U timeslots form a segment 
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of time. Let K and k denote the length of a segment and a timeslot, respectively. K and k 
are set to be 120 minutes and 2 minutes, respectively. In other words, we divide T into Ts||w 
timeslots.  

Ton||off = T/K (10) 

Ts||w = T/K (11) 

U = K/k  (12) 

The decision on turn-on/off is made at the beginning of each segment. Turn-on oper-
ations are performed at the end of current segment. Turn-off (shutdown) operations are 
performed at the beginning of current segment. Sleep operations are performed at the be-
ginning of current timeslot. Wake-up operations are performed at the end of current 
timeslot. For the transition of a server, aforementioned sleep and wakeup operations ensure 
that enough servers are turned on or awakened to respond to requests for the next timeslot. 

Let i
K denote the incoming task requests during segment iNTon||off. Let j

k denote the 
incoming task requests during timeslot jNTs||w. The maximum number of servers in the 
next timeslot is used as a decision variable for the current timeslot to ensure that the servers 
can satisfy all requests in the next timeslot. When the servers are making switch operations, 
the arrival of the requests should be considered to prevent the switch operations from af-
fecting the processing of the current requests.  

For a server, let Dwakeup, Dsleep, Doff, and Don denote the maximum latency of its wakeup, 
sleep, off, and on operations, respectively.  

Therefore, under the premise of ensuring a server’s performance to process the re-
quest, transitions including S_sleep{idle}, {idle}S_sleep, S_on{off}, and {off} 
S_on may keep a small number of servers in active- or on- state for the performance re-
quirements in a timeslot, which may result in a portion of the energy loss, but can reduce 
the energy consumption through dynamic server on/off operations and a multi-sleep mode. 

Let E_C denote the energy consumption of q data centers. During segment iNTon||off, 
let Ei

switch denote the energy consumption of servers in state x. Let Ei
on, Ei

reserve and Ei
switch 

denote the energy consumption of booting up servers, the energy consumption of reserved 
servers and the energy consumption by servers’ switching in segment iNTon||off, respec-
tively. During segment i, let Ti

x stand for the duration of server state x in segment iNTon||off, 
 for the power usage efficiency (PUE), Ei for the energy consumption of data center Ci 
(iNq), and Exx for the energy consumption in the transition from state x to state x. 
Therefore, the estimated energy consumption of clouds is calculated as follows: 

Ei
x = Mi

x  Px  Ti
x, iNTon||off,    (13) 

Ei
on = Ei

S_active + Ei
idle + Ei

S_sleep + Ei
idleS_sleep + Ei

S_sleepidle + Ei
fault, iNTon||off, (14) 

Ei
switch = Ei

onoff + Ei
offon, iNTon||off, (15) 

||

1
=(1+ ) ( ),on offT j j j

i on switch reservej
E E E E


    (16) 

1
_ , .

q

i qi
E C E i N


   (17) 
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(B) Energy formula for random failure occurrence 

During the application execution, different components of a server may fail at any 
time, which breaks up the normal execution. In the event of a failure, we assume that the 
application being executed by a failed server will be moved by mirror replication to an idle 
server to continue its execution. During this migration, a failed server will continue to 
consume energy during the failure restore. Let Tfault denote the duration of a failure. We 
assume that the power of a server in the failed status remains as same as that prior to the 
failure, which is denoted by Pfault. Therefore, the extra energy consumption caused by a 
fault process is calculated below. 

Efault = Mh
fault  Pfault  Tfault, tNTs||w (18) 

(C) Dataset transmission 
 
Let A denote the number of applications. The set of applications is denoted by App = 

{app[1], app[2], …, app[A]}. Let Mvio denote the number of application violations and ψ 
denote the proportion of application violations. Therefore, the proportion of application 
violations is calculated as follows: 

 = Mvio/A. (19) 

The energy consumed by the dataset of application app[i] is mainly related to its size 
and travel distance, which are denoted by DataSizei and Distancei, respectively. A given 
original cloud is set up to accept all incoming tasks. After the allocation phase, a task may 
be performed in the original cloud or be sent to a target cloud data center to perform. Both 
its transmission from the source to target cloud and its execution on the target consume 
energy. After an application’s execution, its output results are sent back to the original 
cloud, which also consumes energy. Following [35], the dataset transmission energy con-
sumption and total energy consumption is: 

500_ ( ),
A

ii N
iDistance

kmE T DataSize


     (20) 

E = E_C + E_T.   (21) 

3.3 Cost Model 

The total cost is made of the cost caused by task executions and the fines caused by 
application violations. Let Cost, Costenergy, and Costfault denote the total cost, the cost caused 
by task execution, and the fines caused by application violations, respectively. Let ,  and 
 denote the electricity price for data centers, the penalties for each application violation, 
and the dataset transmission price. The total cost is calculated by 

 
Cost = Costenergy + Costfault, (22) 

Costenergy = EC   + Et  , (23) 

Costfault = Mvio  . (24) 
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3.4 Problem Formulation 

We assume that each application is committed to the original cloud at a specific time 
in DDCs. If a submitted task is known and the execution conditions are met for it, then a 
corresponding cloud can accept it, otherwise it will be rejected. If the application is ac-
cepted in a schedule, it may be successfully executed or interrupted in case that its server 
may fail during its execution. Our goal is to optimize the total energy consumption of all 
accepted applications across DDCs. At the same time, the reliability of system operations 
is guaranteed. Let R denote the tolerable response time. Efforts are made to minimize the 
total expenditure: (1) the total energy consumption; (2) the total cost; and (3) the ratio of 
application violations. Therefore, the objective function is to 

Minimize: E, Cost, ψ 
Subject to: Eq. (7) to Eqs. (18), (20), (23) to (24), and 

||max _ ,  ,
on off

h h
S active TM h N     (25) 

||maxmax _

1 1 ,  .
on offTh h

S activeM
R h N  

    (26) 

Once a task is rejected or interrupted, the penalty for a rejection or violation is usually 
high, which should be avoided in practice. 

4. ALGORITHMS DESIGN 

4.1 Mapping Applications to Clouds 

After an application reaches the original cloud, the middleware assigns a token to the 
cloud that has the ability to complete before the deadline. When multiple clouds have the 
ability to complete at the same time, a strategy is adopted to obtain the desired result. We 
adopt CRS to trade off such multiple objectives by efficiently executing all applications 
while meeting their delay constraints, as far as possible to minimize the estimated energy 
consumption, the cost, the utilization and maximize the performance. In order to optimize 
multiple objectives and balance them, we use the coefficient of variation method to analyze 
each objective, and then calculate the weights of different objectives. The relative standard 
deviation (RSD) represents the dispersion among the objectives and plays a different role 
in making decisions.  

As aforementioned, the local resource checker in each data center maintains a PR. All 
PRs in DDCs are stored in a list, which is denoted by PRs. Let PRs.size denote how many 
PRs (data centers) are available for a submitted application. Let ei denote the energy con-
sumption of Ci. Let ē denote the average of energy consumption. In the aspect of energy, 
RSD(Energy) is defined below to evaluate the relevance of different objectives to the ap-
plication. 

2
. 2

1
| |

.( ) /
PRs size

ii
E e

PRs sizeRSD Energy e


   (27) 

Let Uti stand for the utilization rate of Ci, Ut  for the average of all Uti’s, _maxi for 
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the maximum processing rate of Ci, and _ max  for the average of the maximum pro-
cessing in all data centers. Similar to the definition of RSD(Energy), we have the evalua-
tions for the utilization and performance. 

2
. 2

1
| |

.( ) /
PRs size

ii
Ut Ut

PRs sizeRSD Utilization Ut


   (28) 

2
. 2

1
| _ max _ max |

.( ) / _ max
i

PRs size

i
PRs sizeRSD Performance
 




   (29) 

Total_RSD = RSD(Energy) + RSD(Utilization) + RSD(Performance) (30) 

Then we use the coefficient of variation to calculate the weight of each objective as 
shown below. 

W(Energy) = RSD(Energy)/Total_RSD (31) 

W(Performance) = RSD(Performance)/Total_RSD (32) 

W(Utilization) = RSD(Utilization)/Total_RSD (33) 

Low dispersion means that the objective has little influence on decision-making. On 
the contrary, high dispersion means that the objective has a great impact on decision-mak-
ing. During the decision evaluation, we give the objective higher weight when its index 
value becomes larger which means it has a greater influence on decision-making. Conse-
quently, we can get better decision-making under the premise of trading off different ob-
jectives. 

The execution list and waiting list for each application will be created in the original 
cloud during the execution. When an application arrives, the current state of each cloud is 
known, and the No. of a cloud capable of executing the application is recorded in the cur-
rent executable list. After all of the clouds are evaluated, the executable list is queried. 
When there is no cloud in the executable list, an application is unable to execute at that 
time, then it is placed in a waiting list. If an application fails to start executing within the 
given time, it is considered to be rejected. A cloud is chosen as a host cloud if it is the only 
one can execute the current application.  

To map each application to a desirable cloud, Algorithm 1 is proposed to implement 
aforementioned CRS scheme, where Info_App denotes the profile of an application. 

Algorithm 1: Mapping applications to clouds 
Input: Info_App, C, waiting list 
Output: Cz 

1. Initialization: PRs, token0 
2. For each cloud management server of Ci  C do 
3.     If max  (M  Mh

S_active) > app and starttime + runtime < Deadline  
4.         token1 
5.     Endif  
6. EndFor  
7. if PRs then 
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8.     add the application to the waiting list 
9. Else  
10.     If PRs.size = 1 then 
11.         choose the cloud whose token = 1 
12.     Else 
13.         Calculate the RSD of Energy, Utilization and Performance by Eqs. (27)-(29) 
14.         Normalized the Energy, Utilization and Performance 
15.         Set weight of the Energy, Utilization and Performance by Eqs. (31)-(33) 
16.         Choose the best cloud Cz  PRS for the application 
17.     Endif 
18. Endif 
19. Return Cz. 

 
Under the coefficient of variation method, the weight of each objective will be dy-

namically adjusted according to the requirements of each application and the cloud re-
sources that meet the conditions. When an executable application is bound to a correspond-
ing cloud, the executable list of the current application is published. The results are sent to 
PR when an appropriate cloud is chosen. 

4.2 Cost-Sensitive Server Scheduling 

After applications are dispatched to a cloud, they should be scheduled locally to cor-
responding servers to achieve a minimal energy consumption. Algorithm 2 is proposed to 
do so. 

The input Paras of Algorithm 2 represents server configuration parameters. Its out-
puts X, Y, F, and E represent the decision variables for switching between turn-on and turn-
off, sleep-wake switching, frequency scaling, and minimal total power consumption, re-
spectively. Let x, y, and f denote the number of servers required for the current segment, 
the number of servers in the current timeslot, and the number of servers at different fre-
quencies, respectively. 

Algorithm 2: Cost-ware Server Scheduling 

Input: 
|| |

1 1
{ }, { },on off s wT TK K

i ii i
 

   K, k, U, Paras 

Output: X, Y, F, E, .  

1. Initialization: X  , Y  , F  , E0, 0, x0, y0 , f0;  
2. For i1 to Ton||off do 
3.     If k

i < (max  M  25%)              
4.          0.3% 
5.     Else 
6.         If (max  M  25%) < k

i < (max  M  75%)  
7.              0.5% 
8.         Else 
9.              0.8% 
10.         Endif 
11.     Endif 
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12.     If k
i < k

i+1 or k
i > (k

i+1  120%)    
13.         Xi-1, {k

i} and Paras are constructed into matrix 1. 
14.         x  Call CPLEX by inputting 1 
15.         Xi  Servers on/off (x, i) 
16.         XX{Xi}; 
17.         For j1 to U do 
18.             if k

j >k
j+1 or k

j > (k
j+1  120%)  

19.                 Yj-1, {k
j } and Paras are constructed into matrix 2. 

20.                 y, f  Call CPLEX by inputting 2   
21.                 Yj  Servers Wakeup/Sleep(y, j); 
22.                 Fj  Frequency adjustment (f, j); 
23.             Endif 
24.        Y  Y{Yj} 
25.        F F{Fj} 
26.        EndFor 
27.     Endif 
28. EndFor 
29. E  Energy consumption calculation (X, Y, F) 
30. Return X, Y, F, E. 

 
In lines 3-11 of Algorithm 2, the reserved process rate in a cloud is flexibly adjusted 

according to the resource utilization. After the workload for each segment is obtained, we 
adjust the reserved process rate according to the data center resource utilization in the cur-
rent segment. Set a low threshold of reserved process rate when the workload is low (less 
than 25% of the data center’s processing capacity). On the premise of dealing with failures, 
the energy consumption cost of the reserved server is reduced. Accordingly, the reserved 
process rate is increased when the workload is high. In lines 12-26 of Algorithm 2, the 
workload during the current segment is compared with that during the next segment. When 
the former workload is less than the latter workload, or 120% more than the latter workload, 
DPM operations are performed on servers’ turn-on/off, sleep/wakeup, and DVFS are per-
formed according to the workload in the specified timeslot, which can adapt to the work-
load fluctuations.  

Now we look into the matrix construction procedure in lines 13 and 19. In order to 
execute a DPM operation, relevant parameters are constructed by matrices based on equa-
tions, inequalities, current workload, and server state parameters. Matrix construction is 
similar for sleep/wakeup, turn-on/off decision making, as exemplified here by turn-on/off 
decision making. 

For segment 1, matrices can be constructed by the following steps. It is assumed that 
all servers are in an idle state before segment 1. 
 
Step 1: For each i{1, 2, …, Ton||off}, initialize Mi

{idle} = M  (1  ), Mk
off = 0, Mi

S_on = Mi
{idle}, 

Mi
onoff = 0, Mi

offon = 0, Mi
reserve = M  , Mi

fault = 0.  
Step 2: Current_next  the number of failed servers that cannot recover by the end of 
current segment; 1t

faultM   Current_next. 
Step 3: Create a coefficient matrix for Eqs. (7)-(9) and (25)-(26) according to Steps 1-2. 
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For segment i > 2, the steps to construct a matrix are as follows: 

Step 1: Count the numbers of servers currently in the reserved state, servers in a failure 
state, and servers that need to turn-on/off machine operations, respectively. 
Step 2: Current_next  the number of failed servers that cannot recover by the end of 
current segment; if the duration of a server failure is less than the delay of server turn-on 
operation, Current_next will also be considered as part of the reserved server in the next 
segment, and otherwise, some idle servers will become the reserved server. 
Step 3: Create a coefficient matrix for Eqs. (7)-(9) and (25)-(26) according to Steps 1-2. 

Therefore, redundant operation can be effectively reduced and the reliability of a 
server can be guaranteed under the condition that the energy consumption cost is roughly 
unchanged. 

The decision variables for each segment determine the number of active servers at the 
current segment. On this basis, the decision for sleep mode switching is executed in each 
of timeslot of a segment. A matrix is obtained by constructing the relevant parameters in 
each timeslot through IBM ILOG CPLEX Optimization Studio. According to the obtained 
decision variables, a server is scheduled to sleep or wake up within a specified timeslot to 
ensure that energy consumption is minimized during the timeslot of execution. Adjusting 
the frequency of a server within a timeslot can further reduce its energy consumption. The 
results of each segment and timeslot are marked and all decision variables for the next task 
processing phase are updated in lines 15 and 21-22 of Algorithm 2. 

4.3 Response to Failures 

During the execution of a task, we assume that (1) a fault is likely to occur in every 
second; (2) the number of faults is stochastic; and (3) the fault duration satisfies the Poisson 
distribution. To cope with the situation in possible failures, a given number of servers are 
reserved to replace the failed ones. If the reserved servers cannot satisfy the replacement 
requirement, available servers in the resource pool can be scheduled to do so. Firstly, the 
numbers of both server failures per second and task requests executing on the failed server 
are obtained. Then, check the current cloud resource surplus and servers’ status to see if 
the reserved servers can handle the current failure. If they can, they are enabled to perform 
tasks interrupted by failures; otherwise, the reserved and other available servers are ena-
bled to make such a replacement. Finally, the actual execution time and status of the ap-
plication are recalculated and updated which are outputted along with the energy and cost 
of handling a failure. 

The above procedure is implemented by Algorithm 3, where we let  stand for the 
reserved processing rate in the clouds, Mt

reserve for the number of reserved servers in the 
clouds in timeslot t, and Mvio for the number of application violations. Notice that we do 
not consider to turn on the poweroff servers in the event of a server failure because the 
reliability of a server and the long latency are required to boot up.  

 

Algorithm 3: Response to Failures 

Input: Mt
fault, Tfault, Info_App, t, Paras 

Output: Info_App, Efault, Costfault   
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1. CostfaultMvio  ; 
2.   Mt

fault  Tfault  fault; 
3. reserve  Mt

reserve  max; 
4. If  < reserve then 
5.     Mt

reserve  Mt
reserve  Mfault;   

6.     Update Info_App, Efault, Costfault, Mt
reserve; 

7. Else 
8.     Mfault  Mfault  Mt

reserve;            
9.     Update  with the new Mfault; 
10.     Calculate the remaining required requests and the time to complete the application; 
11.     Update Info_App, Efault, Costfault;   
12. EndIf 
13. Return Info_App, Efault, Costfault.  

5. EXPERIMENTAL EVALUTION 

By simulations on CloudSim [40], the proposed algorithms based on CRS under dif-
ferent polices are compared with three benchmark algorithms to evaluate the total energy 
consumption for executing applications, the ratio of application rejections and violations 
under different loads, and the total cost for executing applications. Different workloads are 
given to show that the quantity of reservation servers impacts on the application executions.  

Assume that there are five geographically dispersed data centers to form a multi-cloud 
system. Each cloud with 32000 VMs is set to be twice the VM capacity of its physical 
processors. They have three sleep states (S_sleep[i], iN3), an idle state (idle), a poweroff 
state (off) and five active states (S_sleep[i], iN5), as shown in Table 2. The relevant pa-
rameters for parallel workloads are shown in Table 3. We use the CPU utilization of all 
VMs as the input data of the prediction model. Table 4 shows the parameter settings in the 
simulation experiment. Suppose that the penalties for each application violation  is 2.5 
times the maximum cost of executing applications. The parameter settings of the adopted 
benchmark algorithms are shown in Table 5. The parameters in our proposed algorithms 
have been presented afore. Because of the randomness of evolutionary algorithms, each 
benchmark algorithm is executed independently for 30 times to obtain the best solution as 
the result. 

Table 2. Servers on different states. 
State Power(W) State Power(W) Delay(s) 
off 0, 0, 0, 0, 0 off  on 380 80 

S_sleep [1] 36, 39, 44, 49, 56 on  off 280 60 
S_sleep [2] 51, 46, 73, 97, 104 S_sleep [1]  idle 143 18 
S_sleep [3] 69, 53, 89, 120, 127 S_sleep [2]  idle 135 15 

idle 97, 87, 122, 150, 153 S_sleep [3]  idle 128 10 
S_active [1] 110, 104, 140, 153, 159 idle  S_sleep[1] 100 4 
S_active [2] 115, 120, 151, 165, 170 idle  S_sleep[2] 108 8 
S_active[3] 136, 141, 173, 183, 189 idle  S_sleep[3] 114 10 
S_active[4] 167, 172, 195, 220, 227 idle  S_active (iN5) 0 10 
S_active[5] 175, 187, 210, 243, 256    
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Table 3. Parallel workloads. 
Category Max.nti Applications Tasks in each app 
Low-load 2556 200 64 
Mid-load 8192 200 64 
High-load 9120 200 64 

 

Table 4. Simulation parameters. 
Parameter Definition Value 

q Number of clouds. 5 
Nvm Number of VMs per cloud. 32000 
K Length of a segment. 120 minutes 
k Length of a timeslot. 2 minutes 
ε Electricity price for data centers. 1.2 $/kwh 
ζ Dataset transmission price. 0.2 kwh/GB 

Pfailure Probability of random failures in data centers. 2% 

 

Table 5. Benchmark algorithm parameters. 
Algorithm Parameter Definition Value 

MCS 

CN Number of cuckoo nests. 20 
Pα Possibility of finding the cuckoo’s eggs. 0.50 
Iter Maximum number of iterations. 800 
Q Positive constant. 0.39 
b Positive constant. 0.40 

(i) 
Step size factor  of Levy flight:  

(i) = b – Q × 
expቀ10ሺi-1ሻ

Iter-1
ቁ-1

expሺ10ሻ-1
 (i = 1, 2, …, Iter) 

Not appli-
cable to a 
function. 

 PN Number of particle. 20 
 cf1 Acceleration factor 

1.5 
 cf2 1.5 

 v Maximum flying speed of the particles. [5, 5] 
 ωmax Upper bound of the inertia weight. 1.2 
 ωmin Lower bound of the inertia weight. 0.9 

HCPS ωi
 Inertia weight: 

max mini i
i

      N/A 

 Tstart
 

Tstart = 
Fitness(XgBest)

lg(5)
, where Fitness(XgBest) is the fit-

ness function value of XgBest. Tstart denotes the ini-
tial temperature of SA.

N/A 

 Fcooling Temperature cooling rate. 0.95 
 Iter Maximum number of iterations. 1500 

 p and v 
Positions and velocities of particles are updated 
using Metropolis acceptance criterion. 

N/A 

MABC 

CZ Number of colonies. 30 
FS Number of food source. 20 
PL Number of leader bees. 20 
PF Number of follower bees. 20 
PS Number of scout bees. 2 
Iter Maximum number of iterations. 800 
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Fig. 2. Different logs of the traces of real events. 
 
We assume that a random failure is given by a probability of 2%. In the simulations, 

a stochastic fault generation model based on Poisson distribution is implemented and 
server reservation settings are specified. Table 3 and Fig. 2 show three logs of the real 
event tracks [41] for the experiments.   

As shown in Fig. 3, in the sense of energy optimization, the adopted DPM-DVFS 
technology has the best performance. Compared with conventional DVFS, the combina-
tion of dynamic server on/off scheduling and multi-sleep operations can greatly reduce the 
total energy consumption. 

Suppose the deadline for executing a submitted application is 120% of its estimated 
execution time. All tasks in applications are CPU-bound. 

Fig. 4 shows the number of application rejections for MCS, HCPS, MABC, CRS (us-
ing a fixed reservation ratio of servers), and CRS (using a flexible reservation ratio of 
servers) under various workloads, normal scenario, and failure scenario, respectively. Fig. 
5 shows the total cost for MCS, HCPS, MABC, CRS (using a fixed reservation ratio of 
servers), and CRS (using a flexible reservation ratio of servers) under various workloads, 
normal scenario, and failure scenario, respectively. 

0                 5                 10                 15                20  
Time (day) 

(a) LLNL-Thunder.

0      5       10     15      20     25     30     35      40    45      50 
Time (day) 

(b) ANL-Intrepid. 

0      5       10       15      20    25     30     35     40      45      50 
Time (day) 

(c) LLNL-Atlas. 
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Fig. 3. Energy consumption. 

 

 

 
Fig. 4. Number of application rejections under different strategies. 

 

 

 
Fig. 5. Total cost under different strategies. 
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Regardless of failures, both cases CRS perform better than the other three benchmark 
algorithms under different workloads. CRS with a flexible reservation ratio of servers, 
compared with CRS with a fixed reservation ratio of servers, further reduces the cost of 
application execution while reducing the number of application rejections. 

As can be seen from the experimental results, compared with other benchmark algo-
rithms, CRS reduces the cost by 18% on average, and the number of application rejections 
also decreases about 21%. MCS performs better in reducing the cost and the number of 
application rejections than the other two benchmark algorithms do. The simulation for each 
benchmark algorithms has been performed for many times independently. The total cost is 
regarded as a measure to evaluate the advantages and disadvantages of an algorithm, which 
can more accurately reflect the performance of different scheduling algorithms than other 
metrics in practice. 

Fig. 6 shows the number of application rejections under different workloads and dif-
ferent server reservations. 

In the experiments, it is found that when the reservation ratio for server in the CRS is 
set to be too small, the number of application rejections becomes high. In the case of heavy 
workloads, if the reservation ratio of servers is low, it does not fully respond to failures 
and results in more application rejections due to timeout. The number of application rejec-
tions does not decrease when a high reservation ratio of servers is set. Conversely, a high 
reservation ratio of servers not only increases energy consumption, but also reduces the 
processing rate of DC. Therefore, we consider different fixed reservation ratio of servers 
and different flexible reservation ratios of servers, respectively. The result shows that fail-
ures affect application differently as the workloads change. In the case of light workloads, 
we can reduce power consumption by reducing the reservation ratio of servers. Therefore, 
a flexible reservation ratio of servers should be set to cut down both the total cost and the 
number of application rejections. 

 

 

 
Fig. 6. The impact of CRS on the number of application rejections. 

6. CONCLUSION 

This work focuses on the energy consumption for scheduling high-performance com-
puting applications under the premise of servers’ failures. It aims to minimize application  
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rejections and deadline violations caused by server failures to improve resource reliability 
and save energy. Experimental simulations show that the proposed scheduling method re-
duces total cost by an average of 18% over the upper bound, which is determined by the 
highest possible performance in DDCs. Moreover, the method can effectively reduce ad-
ditional application rejections and violations caused by server failures, with an average 
reduction by 20%. The results show that the strategies relying on only energy consumption 
to execute applications may not produce the best energy savings in all cases, nor may they 
achieve the best results for reducing application rejections. Furthermore, the results show 
that there is an interdependent relationship between the proposed scheduling decision 
method and the characteristics of the submitted applications. The reservation number of 
servers not only affects the results of server failures, but also has an impact on the decision 
for an application to select a cloud. 
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