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The performance of language recognition system is mainly determined by feature ex-

traction and model training. In this paper, a robust equalization feature for language recog-
nition is proposed, which utilizes the common features of the speech spectrum mean vector 
to calculate a global mean vector. The spectrum mean vector of each segment is equalized 
on the global mean vector, and the equalization features are obtained. In model training, 
Gated Recurrent Unit (GRU) of Recurrent Neural Network (RNN) is applied to language 
recognition, in which GRU can reduce the amount of computation and shorten the training 
time. The experimental results show that the proposed method outperforms the baseline 
system on the NIST LRE 2007 corpus. 
 
Keywords: language recognition, deep neural network, gated recurrent unit, feature extrac-
tion, model training 
 
 

1. INTRODUCTION 
 

Language recognition is a branch of speech recognition technology, which is used to 
judge the language of the speech segments. Usually, there are three phases for recognition 
system to analyze speech segments, including feature extraction, model training and model 
testing. In the feature extraction phase, the speech data of different languages is converted 
into vector sequences. In the model training phase, a reference model is established by 
those extracted vector sequences according to a certain training algorithm. In the model 
testing phase, the test feature vectors are compared with each reference model, and the 
recognition result is determined according to the likelihood. 

In feature extraction, short-term cepstral features such as Mel-frequency cepstral co-
efficients (MFCC) has been the principal features in language recognition field [1]. MFCC 
simulates the filter property of cochlear system, which is proved to be practical for im-
proving the performance. Although MFCC achieves desirable performance in ideal condi-
tion, the result would be rapidly deteriorated in noisy situation [1]. To compensate for the 
influence of noisy situation, the researchers put forward different robust characteristics, 
such as Cepstral Mean Subtraction (CMS) [2, 3], Cepstral Mean and Variance Normaliza-
tion (CMVN) [4, 5] and RelAtive SpecTrAl (RASTA) [6, 7]. CMS assumes that the con-
volution noise of channel distortion is linear and time invariant. Therefore, in the spectrum 
Mel domain, the mean of the frame can be subtracted with the current frame to eliminate 
the influence of the time invariant channel, but it can not eliminate the distortion of the 
annex channel. Similarly, CMVN simultaneously regularizes the mean and variance of 
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speech features, which eliminates the influence of time invariant channels and additive 
noise. Rasta filtering technology can eliminate lower and higher modulation frequency to 
reduce the channel distortion. Although the methods above can achieve better results in 
channel distortion and relatively stable additive noise environment, the effect is not ideal 
under the condition of non-stationary noise [8]. In this paper, we propose the spectrum 
equalization feature to deal with non-stationary noise. In frequency domain, the spectrum 
of each speech segment is averaged on time axis to obtain the spectrum mean vector. It is 
found that these mean vectors are locally different, but the overall distribution has a same 
trend. To find the common characteristics of these mean vectors, we average all the mean 
vectors to get the global mean vector. With the principle of histogram equalization in image 
area, each mean vector is equalized on the global mean vector to make it more similar to 
the global one, which weakens the local jitter and obtains clearer and more intuitional 
spectral feature parameters with less noise effects. 

In the model training, deep learning [9-11] is a famous method focusing on the field 
of speech signal processing. Deep Neural Network (DNN) learns statistical rules from a 
large number of training samples, and then predicts unknown events. Compared with the 
system based on artificial rules in the past, it shows superiority in many aspects. However, 
the data flow in normal fully connected neural network is directed, from the input layer to 
the hidden layer, and finally to the output layer, and the nodes in the same hidden layer are 
not connected. Such network structure is unable to solve many sequential problems, re-
sulting in the generation of Recurrent Neural Network (RNN) [12-14]. RNN can memorize 
the previous information and apply it to the current output. The nodes in the same layer are 
no longer unconnected and the input of the hidden layer includes not only the output of the 
input layer but also the output of the previous hidden layer. Theoretically, RNN can pro-
cess sequence data with arbitrary length, while in practice, excessively long sequence of 
data often brings vanishing gradient. To solve this problem, researchers proposed Long 
Short-Term Memory (LSTM) [15-17], which is a variant of RNN. It controls the forward 
data flow and backward data flow by setting a block structure that includes three memory 
gates (input gate, output gate, and oblivion gate) which solve the vanishing gradient effec-
tively. Gated Recurrent Unit (GRU) [18, 19] is a variant of LSTM which can preserve the 
excellent performance of LSTM and simplify the block structure, reducing the amount of 
computation and shortening the training time. 

2. EQUALIZATION FEATURE EXTRACTION 

The process of traditional MFCC feature extraction is shown in Fig. 1. Firstly, the 
preprocessed speech is framed into short frames, and Fast Fourier Transform (FFT) is cal-
culated to obtain spectrum. Secondly, the Mel Triangle Filter bank is applied to the power 
spectra and the energy in each filter is summed up. Then, the logarithm of all filter bank 
energies is taken. Finally, Discrete Cosine Transform (DCT) is performed on the log filter 
bank energies to get MFCC. The first-order and second-order delta of the MFCC are com-
puted as the dynamic features and stitched together with the static features to form the 
features of each frame. 

In order to prevent the amplitude of the spectrum from being concentrated on a certain 
frequency domain and being suppressed on other frequency domains, the spectrum needs 
to be equalized so that every ingredient can be expressed clearly, which contribute to the 
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generation of equalization feature extraction. After the spectrum is obtained by FFT, spec-
tral normalization, spectral averaging and spectral equalization are added into the process, 
as shown in Fig. 2. 

Fig. 1. The process of traditional MFCC feature extraction. 
 

Fig. 2. The process of equalization feature extraction. 
 

We assume that there are K voiceprint spectrums corresponding to K speech segments, 
and the kth voiceprint spectrum is an N×M matrix (where N is the dimension of the spectral 
feature and M is the number of frames), Ak = (x1, x2, …, xM), where xm  RN(m = 1, 2, …, 
M) is the vector of each frame. Each feature vector is normalized as:  

||xm||2
2 = 1.    (1) 

Different speech segments have different amplitude distributions on different fre-
quencies in the spectrums. To observe the distribution, the voiceprint spectrum of each 
segment is averaged over the time axis to obtain the spectrum mean vector. The mean 
vector of the kth voiceprint spectrum is calculated as: 

1
( ) .

M

k mm
v x M


  .    (2) 

The mean vector distribution of some speech segments is shown in Fig. 3. 
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Fig. 3. The mean vector distribution for some speech segments. 
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Fig. 3 illustrates that although the distribution of the spectrum mean vectors of these 
speech segments in different languages is locally different, the overall trend is similar. To 
observe the trend, we average the k mean vectors to get the global mean vector. 

1
( )

K

kk
V v K


      (3) 

 
Fig. 4. The distribution of global mean vector. 

 

 
Fig. 5. Two spectrum mean vectors of “Thai”. 

 

In Fig. 4, the distribution of the global mean vector shows a remarkable peak on the 
voice print spectrum within in a certain range of frequency, and it indicates that the ampli-
tude distribution in this frequency interval is the most prominent. Thus, this frequency 
interval can be regarded as the main frequency domain of the speech. At both ends of the 
main frequency domain, the amplitude distribution gradually decreases. However, in prac-
tical application, due to the differences in external factors like the channel environment, 
the amplitude distribution of the same language will change, as shown in Fig. 5. In Fig. 5, 
the dotted line indicates the mean vector corresponding to a speech segment with a rela-
tively clean background, while the solid line represents the mean vector with the channel 
noise. 

In order to suppress the noise influence, the ratio ck of the corresponding elements in  
V and vk is calculated, and then each feature vector xm in matrix Ak is linearly multiplied by 

the ratio ck. 

.k kc V v     (4) 

.k k
kA A c      (5) 
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The next steps are performed on the equalized voiceprint spectrums to obtain the 
equalization feature, which includes filtering by Mel Triangle Filter Bank filters, taking 
logarithm and DCT. 

3. GRU MODEL 

RNN has the ability to deal with a time-dependent data sequence with a strong corre-
lation, where it can memorize the previous information and apply it to get the following 
information. However, since RNN usually uses tanh as its activation function which can 
cause gradient vanishing, researchers proposed LSTM. LSTM is an effective technology 
to solve gradient vanishing, and it has a high universality and a great variety of possibilities. 
As a variant of LSTM, GRU can simplify the calculation process and shorten the training 
time while retaining the excellent performance of LSTM. The data flow in GRU is shown 
in Fig. 6. 

 

 
Fig. 6. The data flow in GRU. 

 

The mapping relationship of the data corresponding to Fig. 6 is as follows: 
 
z(t) = (W(z)x(t) + U(z)h(t-1)) (6) 

r(t) = (W(r)x(t) + U(r)h(t-1))  (7) 

h̃(t) = tanh(r(t)⊙Uh(t) + U(r)h(t-1))     (8) 

h(t) = (1  z(t))⊙h̃(t) + z(t)⊙h(t-1)        (9) 

As the deep learning model is applied to a classification task, the classification diffi-
culty of a common method to train a multi-classification model will be aggravated by the 
increasing number of categories. In this paper, we propose a new method to train the clas-
sifier. For a K-class language recognition problem, we train k parallel binary-classifiers to 
replace the K-class model. For the kth binary-classifier, the speech segments of the kth 
language are labeled as positive, and the others are negative. This model determines which 
language the input segment belongs to by calculating the similarity between the input seg-
ment and the kth language and the result is the language that the maximum similarity cor-
responds to.  

4. EVALUATION AND DISCUSSION 

In order to evaluate the performance of the proposed method, experiments are carried 



WEN-JIE SONG, CHEN CHEN, TIAN-YANG SUN, WEI WANG 

 

566

 

out on the NIST LRE 2007 corpus. It is a language recognition database with 8 types of 
languages, where all utterances are recorded in single channel with 16-bit streams at 
8000Hz sampling rate. Since the dialect is not researched in this paper, experimental eval-
uation is fixed on 4 types standard languages which include Arabic, Bengali, Russian and 
Thai. Each type of language consists of 400 minutes training speech, and three kinds of 
test set including average durations of 3 seconds, 10 seconds and 30 seconds where each 
class has 80 utterances. 

4.1 Experimental Setup 

39 dimensional equalization MFCC coefficients (including 13 equalization MFCC, 
13equalization MFCC and 13equalization MFCC coefficients) are used as acoustic 
features, using 20-msec-long windows shifted by 10 msec.  

In addition, the following features are also extracted to compare with the proposed 
equalization MFCC. 
 
 MFCC: traditional MFCC feature without any robust processing. 
 CMS: mean subtraction over a sliding window of up to 3 seconds [20] on MFCC feature.  
 CMVN: mean and variance normalization over a sliding window of up to 3 seconds on 

MFCC feature. 
 RASTA: the band pass filter (N = 5, G = 0.1,  = 0.94) on MFCC feature. 

 
The following systems are constructed to evaluate language recognition. 
 

 I-vector (Baseline system): 
The experiments operate on 56-dimensional SDC (optimal configuration 7-1-3-7) which 
are calculated corresponding to MFCC. We use the training data of NIST LRE 2007 
corpus to train the UBM with 1024 Gaussians, the total variability matrix composed of 
400 total factors and the i-vector of 400 dimensionality by Kaldi Identity Toolbox [http://  
www.kaldi-asr.org/doc/]. Softmax regression is then used as classification.  

 GRU-based classification + equalization MFCC (Proposed method): 
In GRU-based system, all models are GRUs with 512 units and the input is 10-second 
equalization MFCC acoustic feature (the dimension is 1001×39). The learning rate is set 
with 0.001, the batch size is set with 32 and tanh is used as the activation function. 

 VGG16 based classification + equalization MFCC: 
In VGG16 [21] system, the specific structure of the convolution network consists of a 
large number of 3*3 convolution kernels (3*3*64, 3*3*64, max pooling, 3*3*128, 
3*3*128, max pooling, 3*3*256, 3*3*256, 3*3*256, max pooling, 3*3*512, 3*3*512, 
3*3*512, max pooling, 1024 units, 1024 units). The settings of other parameters are the 
same with GRU. 

 LSTM based classification + equalization MFCC: 
All models are left-to-right unidirectional LSTM with 512 units and the settings of other 
parameters are the same with GRU. 

 Bidirectional LSTM based classification + equalization MFCC: 
All models are bidirectional LSTM with 512 units and the settings of other parameters 
are the same with GRU. 
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Fig. 7. Performance of different methods on 3s 
test data in NIST LRE 2007 corpus. 

Fig. 8. Performance of different methods on 10s 
test data in NIST LRE 2007 corpus. 

4.2 Results and Discussions 

Fig. 7 shows the performance of the proposed method compared with the typical i-
vector (the baseline system) and MFCC feature plus GRU model (MFCC+GRU) on 3-
second test data. The solid line is used to describe the detection error tradeoffs (DETAs) 
of the baseline system, the dotted line represents the DETs of MFCC+GRU and the dashed 
line denotes the DETs of the proposed method. It can be seen that the proposed method 
(EER with 14.74%) significantly outperforms the baseline system (i-vector EER with 
19.79%) and MFCC+GRU (EER with 18.80%). 

Fig. 8 shows the performance of the proposed method compared with the typical i-
vector and MFCC+GRU on 10-second test data. The solid line is used to describe detection 
error tradeoffs (DETAs) of the baseline system. Moreover, the dotted line represents the 
DETs of MFCC+GRU and the dashed line denotes the DETs of the proposed method. It 
shows that the proposed method (EER with 6.09%) significantly outperforms the baseline 
system (i-vector EER with 8.18%) and MFCC +GRU (EER with 8.44%). 

Fig. 9 shows the performance of the proposed method compared with the typical i-  
 

 
Fig. 9. Performance of different methods on 30s test data in NIST LRE 2007 corpus. 
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vector and MFCC+GRU on 30s test data. The solid line is used to describe detection error 
tradeoffs (DETAs) of the baseline system. Furthermore, the dotted line represents the 
DETs of MFCC+GRU and the dashed line denotes the DETs of the proposed method. It 
shows that the proposed method (EER with 4.06%) significantly outperforms the baseline 
system (i-vector EER with 6.04%) and MFCC+GRU (EER with 7.50%). 

In order to show the experimental performance clearly, Table 1 is used to summarize 
the results in Figs. 7-9.  

In Table 1, the data illustrates that the performance can be better as the time increases. 
In the same test conditions, Equalization MFCC+GRU is the best compared with the base-
line system and MFCC+GRU. 
 

Table 1. Performance of different methods on 3s, 10s and 30s test data in NIST LRE 2007 
corpus. 

Time Baseline system MFCC+GRU Equalization MFCC+GRU 

3s 19.79% 18.80% 14.74% 
10s 8.18% 8.44% 6.09% 
30s 6.04% 7.50% 4.06% 

 

Table 2. Performance of various classifiers using the equalization MFCC feature in NIST 
LRE 2007 corpus. 

Time GRU VGG16 LSTM Bid-LSTM 

3s 14.74% 17.80% 16.35% 17.55% 
10s 6.09% 7.78% 9.48% 11.46% 
30s 4.06% 8.16% 7.55% 8.33% 

 

In order to show the stability of proposed feature, the equalization MFCC feature pairs 
with various classifiers such as GRU, VGG16, LSTM and Bid-LSTM in Table 2.  

Table 2 illustrates the reason that we use the GRU network as the classifier rather than 
others. Without too much effort on tuning these non-optimal models, we can achieve a 
better performance using great parameters.  

In order to assess the robustness of the equalization features, we add babble and fac-
tory noises to the NIST LRE 2007 test set, with SNR of 0 dB, 5 dB and 10 dB respectively. 
Fig. 10 shows the test results on three-second test data in NIST LRE 2007 corpus, and lines 
are used to describe the EER of the baseline system and the new feature system. Under the 
babble noisy environment (0dB), the result indicates that the EER of the baseline system 
is 42.55% and that of the new system is 36.46%. Under the babble noisy environment 
(5dB), the result indicates that the EER of the baseline system is 38.13% and that of the 
new system is 31.35%. Under the babble noisy environment (10dB), the result indicates 
that the EER of the baseline system is 33.75% and that of the new system is 25.99%. 

Fig. 11 shows the test results on ten-second test data in NIST LRE 2007 corpus, and 
lines are used to describe the EER of the baseline system and the new feature system. 
Under the babble noisy environment (0dB), the result indicates that the EER of the baseline 
system is 39.90% and that of the new system is 34.43%. Under the babble noisy environ-
ment (5dB), the result indicates that the EER of the baseline system is 35.21% and that of 
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the new system is 29.48%. Under the babble noisy environment (10dB), the result indicates 
that the EER of the baseline system is 31.88% and that of the new system is 23.28%. 

 

 
Fig. 10. Performance of different methods under 3 
different SNR levels of babble noise conditions on 
3s test data in NIST LRE 2007 corpus. 

Fig. 11. Performance of different methods und-
er 3 different SNR levels of babble noise condi- 
tions on 10s test data in NIST LRE 2007 corpus. 

 

 
Fig. 12. Performance of different methods under 3 different SNR levels of babble noise conditions 
on 30s test data in NIST LRE 2007 corpus. 

 

Fig. 12 shows the test results on thirty-second test data in NIST LRE 2007 corpus, 
and lines are used to describe the EER of the baseline system and the new feature system. 
Under the babble noisy environment (0dB), the result indicates that the EER of the baseline 
system is 40.57% and that of the new system is 33.44%. Under the babble noisy environ-
ment (5dB), the result indicates that the EER of the baseline system is 34.95% and that of 
the new system is 24.69%. Under the babble noisy environment (10dB), the result indicates 
that the EER of the baseline system is 30.73% and that of the new system is 18.39%. In 
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the noisy conditions, it can be seen that the new feature system is still better than the base-
line system. 

In order to clearly show the experimental performance under 3 different SNR levels 
of babble noise conditions on 3s, 10s and 30s test data, Table 3 is used to summarize the 
results in Figs. 10-12. 

 

Table 3. Performance of different methods under 3 different SNR levels of babble noise 
conditions on 3s, 10s and 30s test data in NIST LRE 2007 corpus. 

Time SNR level Baseline system  Equalization MFCC+GRU 
 0dB 42.55% 36.46% 

3s 5dB 38.13% 31.35% 
 10dB 33.75% 25.99% 
 0dB 39.90% 34.43% 

10s 5dB 35.21% 29.48% 
 10dB 31.88% 23.28% 
 0dB 40.57% 

34.95% 
30.73% 

33.44% 
24.69% 
18.39% 

30s 5dB 
 10dB 
 

In Table 3, the data illustrates that the performance can be better as the higher SNR 
levels in the same time of the test data. In the same SNR levels, the performance can be 
better as the time increases in most cases. In the same test condition, Equalization MFCC 
+GRU is better than the baseline system. 

On 3s test data in NIST LRE 2007 corpus, under the factory noisy environment (0dB), 
the results are shown in Fig. 13, where the lines are used to describe the EER of the baseline 
system (44.69%) and the new feature system (39.22%) respectively. Under the factory 
noisy environment (5dB), the results are shown that the EER of the baseline system is 
40.16% and that of the new system is 36.2%. Under the factory noisy environment (10dB), 
the results are shown that the EER of the baseline system is 36.82% and that of the new 
system is 32.29%. 

 

 
Fig. 13. Performance of different methods under 3 different SNR levels of factory noise conditions 
on 3s test data in NIST LRE 2007 corpus. 
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On 10s test data in NIST LRE 2007 corpus, under the factory noisy environment 
(0dB), the results are shown in Fig. 14, where the lines are used to describe the EER of the 
baseline system (43.3%) and the new feature system (38.59%) respectively. Under the fac-
tory noisy environment (5dB), the results are shown that the EER of the baseline system 
is 39.27% and that of the new system is 35.78%. Under the factory noisy environment 
(10dB), the results are shown that the EER of the baseline system is 35.16% and that of 
the new system is 31.09%. 

On 30s test data in NIST LRE 2007 corpus, under the factory noisy environment (0 
dB), the results are shown in Fig. 15, where the lines are used to describe the EER of the 
baseline system (42.24%) and the new feature system (38.96%) respectively. Under the 
factory noisy environment (5dB), the results are shown that the EER of the baseline system 
is 38.85% and that of the new system is 35.83%. Under the factory noisy environment 
(10dB), the results are shown that the EER of the baseline system is 34.84% and that of 
the new system is 29.64%. In the noisy conditions, it can be seen that the new feature 
system is still better than the baseline system. 

In order to clearly show the experimental performance under 3 different SNR levels 
of factory noise conditions on 3s, 10s and 30s test data, Table 4 is used to summarize the 
results in Figs. 13-15. 

 

   
Fig. 14. Performance of different methods under 3 
different SNR levels of factory noise conditions on 
10s test data in NIST LRE 2007 corpus. 

Fig. 15. Performance of different methods under 
3 different SNR levels of factory noise condi-
tions on 30s test data in NIST LRE 2007 corpus. 

 

Table 4. Performance of different methods under 3 different SNR levels of factory noise 
conditions on 3s, 10s and 30s test data in NIST LRE 2007 corpus. 

Time SNR level Baseline system  Equalization MFCC+GRU 
 0dB 44.69% 39.22% 

3s 5dB 40.16% 36.20% 
 10dB 36.82% 32.29% 
 0dB 43.30% 38.59% 

10s 5dB 39.27% 35.78% 
 10dB 35.16% 31.09% 
 0dB 42.24% 38.96% 

30s 5dB 38.85% 35.83% 
 10dB 34.84% 29.64% 
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In Table 4, the data illustrates that the performance can be better as the higher SNR 
levels in the same time of the test data. In the same SNR levels, the performance can be 
better as the time increases in most cases. In the same test condition, Equalization MFCC+ 
GRU is better than baseline system. 

To further demonstrate the superior robustness of the equalization MFCC feature, we 
also compared it with other robustness features, such as CMS, CMVN and RASTA, using 
GRU as the classifier in babble and factory noise conditions. 

Tables 5 and 6 illustrate that, among several noise condition set in the experiments, 
our equalization MFCC feature realizes the best EER in most cases which means it has 
better robustness. 

 

Table 5. Performance of different methods under 3 different SNR levels of babble noise 
conditions on 3s, 10s and 30s test data using GRU as classifier. 

Time SNR level MFCC Equalization MFCC CMS CMVN RASTA 

 
3s 

0db 36.77% 36.46% 41.67% 
38.18% 
34.27% 

43.80% 
40.73% 
38.39% 

46.56% 
43.28% 
38.54% 

5db 29.58% 31.35% 

10db 24.17% 25.99% 

 
10s 

0db 35.99% 34.43% 
29.48% 
23.28% 

39.84% 
32.60% 
26.09% 

45.83% 
42.92% 
40.47% 

48.44% 
46.41% 
41.25% 

5db 29.69% 

10db 23.91% 

 
30s 

0db 38.96% 33.44% 
24.69% 
18.39% 

37.66% 
28.49% 
19.32% 

47.92% 
46.04% 
43.70% 

49.27% 
48.75% 
44.11% 

5db 29.53% 

10db 23.28% 

 
Table 6. Performance of different methods under 3 different SNR levels of factory noise 
conditions on 3s, 10s and 30s test data using GRU as the classifier. 

Time SNR level MFCC Equalization MFCC CMS CMVN RASTA 

 
3s 

0db 
5db 

10db 

43.39% 
39.38% 
35.31% 

39.22% 
36.20% 
32.29% 

43.33% 
40.63% 
37.34% 

46.98% 
44.64% 
43.59% 

49.27% 
48.75% 
44.53% 

 
10s 

0db 
5db 

10db 

45.63% 
40.99% 
34.53% 

38.59% 
35.78% 
31.09% 

46.04% 
38.23% 
31.98% 

48.96% 
48.18% 
46.56% 

49.84% 
49.48% 
46.35% 

 
30s 

0db 
5db 

10db 

45.63% 
40.83% 
34.69% 

38.96% 
35.83% 
29.64% 

47.92% 
38.80% 
25.57% 

50.00% 
49.69% 
49.06% 

50.00% 
49.90% 
48.28% 

 

Furthermore, the performance of the language recognition is evaluated based on the 
number of hidden nodes on NIST LRE 2007 corpus. In Fig. 16, the experiments show 
clearly that different numbers of hidden nodes lead to different results. The accuracy tends 
to increase first, and gets the best performance at the number of 512 hidden nodes, followed 
by a decrease as the number of hidden nodes increases. Thus, more numbers of hidden 
nodes don’t mean a better performance.  
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Fig. 16. Comparison of accuracy about the number of different hidden nodes in NIST LRE 2007 
corpus. 

 
Fig. 17. Comparison of accuracy about the number of different hidden layers in NIST LRE 2007 
corpus. 

 

Fig. 17 fixed on 512 hidden nodes when the performance of language recognition 
evaluated based on hidden nodes shows the best result, and the performance is evaluated 
based on the number of hidden layers. Several results with the number of different hidden 
layers are tested on the test set. The highest accuracy of language recognition exhibits at 
single hidden layer. It may be explained that more numbers of hidden layers don't mean a 
better performance. 

5. CONCLUSIONS 

In this paper, we propose the equalization features. The distribution of all the spec-
trum mean vectors calculated from segments are locally different but have the same trend 
in the overall distribution, so we apply equalization to these voiceprint spectrums in which 
the components on every frequency can be expressed clearly. Furthermore, equalization 
performance can also suppress the noise effect to a certain extent and achieve better ro-
bustness compared with other algorithms such as CMS, CMVN and RASTA. In model 
training, we apply GRU to language recognition. GRU neural network shows great ad-
vantages to process time-sequential information of speech compared with other popular 
neural networks. There are multiple reasons including a simpler structure, faster training 
speed, and without gradient vanishing. The experimental results prove that the proposed 
method is able to achieve the better performances than the baseline system in the ideal and 
noise environments. 
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