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In recent years, the research community has introduced various methods for process-
ing the location-based queries on a single type of objects in road networks. However, in
real-life applications user may be interested in obtaining information about different types
of objects, in terms of their neighboring relationship. The sets of different types of ob-
jects closer to each other are termed the heterogeneous neighboring object sets (or HNO
sets for short). To provide users with object information by considering both the spatial
closeness of objects to the query object and the neighboring relationship between objects,
we present useful and important location-based aggregate queries on finding the HNO sets
in road net-works. The location-based aggregate queries are the shortest average distance
query (SAvgDQ), the shortest minimal distance query (SMinDQ), the shortest maximal dis-
tance query (SMaxDQ), and the shortest sum distance query (SSumDQ). We first utilize
a grid index to manage information of data objects and road networks, and then propose
the SAvgDQ, SMinDQ, SMaxDQ, and SSumDQ processing algorithms, which are combined
with the grid index to efficiently process the four types of location-based aggregate queries,
respectively. A comprehensive set of experiments is conducted to demonstrate the efficiency
of the proposed processing algorithms using real road network datasets.

Keywords: location-based queries, road networks, heterogeneous neighboring object sets,
location-based aggregate queries, grid index

1. INTRODUCTION

Due to the increasing need for real-time information of spatial data sets in road net-
works, efficient processing of various types of location-based queries has become imper-
ative and essential in recent years [1-3] . Currently, most of the location-based queries
in road networks take into account only a single type of spatial objects. In other words,
the different types of objects (termed the heterogeneous objects) are independently con-
sidered in processing the location-based queries. Take a road network consisting of a
set of edges and a set of nodes shown in Fig. 1 as an example. There are three types
of objects in this road network, hotels, restaurants, and theaters. Assume that the user q
wants to stay in a hotel, have lunch in a restaurant, and go to the movies. Based on the
nearest neighbor of q for each object type, the objects h1, r3, and t2 are retrieved as the
result set because of their shortest road distance to q, as shown in Fig. 1 (a). However, in
terms of the neighboring relationship between the chosen object set {h1, r3, t2}, the road
distance among themselves is greater than that of the other two object sets {h1, r1, t1}

Received August 13, 2018; revised November 4, 2018, May 12, 2019; accepted May 27, 2019.
Communicated by Jianliang Xu.

921



922 YUAN-KO HUANG

and {h2, r2, t2}, shown in Fig. 1(b). As the user would like to visit hotel, restaurant,
and theater, the object sets {h1, r1, t1} and {h2, r2, t2} are actually better than the object
set {h1, r3, t2}. Unfortunately, the conventional location-based queries in road networks
cannot provide such object information as all of them consider only the spatial closeness
of the heterogeneous objects to the query object but ignore the neighboring relationship
between the heterogeneous objects.
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Fig. 1. Example of location-based queries in road networks.

In order to provide useful information of spatial objects in road networks, we present
important location-based queries, namely the location-based aggregate queries, in which
both the neighboring relationship between the heterogeneous objects and the spatial close-
ness of the heterogeneous objects to the query object play important roles in determining
the query result. For preserving the neighboring relationship between the heterogeneous
objects, the location-based aggregate queries aim at finding the heterogeneous objects
closer to each other by constraining their road distance to be within a user-defined distance
d. Here, we term a set of objects satisfying the constraint of distance d the heterogeneous
neighboring object set (or HNO set).

On the other hand, for maintaining the spatial closeness of the heterogeneous objects
to the query object, four types of location-based aggregate queries are presented to pro-
vide information of HNO set according to specific user requirement. They are the short-
est average distance query (SAvgDQ), the shortest minimal distance query (SMinDQ),
the shortest maximal distance query (SMaxDQ), and the shortest sum distance query
(SSumDQ). Consider the n types of objects, O1, O2, ..., On. Assume that there are
m HNO sets, {o11, o12, ..., o1n}, {o21, o22, ..., o2n}, ..., {om1 , om2 , ..., omn }, where oji ∈ Oi,
i = 1 ∼ n, and j = 1 ∼ m. Given a query object q, a set of objects {oj1, o

j
2, ..., o

j
n}

among these m HNO sets is determined, such that (1) for the SAvgDQ, the average road
distance of {oj1, o

j
2, ..., o

j
n} to q is shortest, (2) for the SMinDQ (SMaxDQ), the road dis-

tance of an object oji ∈ {o
j
1, o

j
2, ..., o

j
n} to q is shortest, where oji is the nearest (furthest)

neighbor of q, and (3) for the SSumDQ, the traveling distance, starting from q to visit each
object in {oj1, o

j
2, ..., o

j
n} exactly once, is the shortest.

To efficiently process the location-based aggregate queries, it is necessary to design
effective strategies that can find the HNO set with the shortest average, minimal, maximal,
or sum distance to the query object, without the need to (1) consider all object sets in
determining the HNO sets and (2) compute the road distances between q and all objects
contained in the HNO sets. To achieve this goal, we first design a grid index for the
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road network, which is built by balancing the storage responsibility among grid cells,
and several data structures to adequately maintain information of data objects and road
network in each grid cell. Then, we develop a road network traversal in a best-first manner
combined with the grid index to efficiently find the HNO set with the shortest average,
minimal, maximal, or sum distance, by accessing only a small proportion of data objects
in the road network.

This paper represents a major extension of our previous work [4], which focuses only
on processing the shortest average distance query (i.e., SAvgDQ) in road networks. The
research reported in this paper could be viewed as a step toward supporting more general
location-based queries in road networks. To sum up, the major contributions of this paper
are as follows.

• Four types of location-based aggregate queries, the SAvgDQ, SMinDQ, SMaxDQ,
and SSumDQ are presented for finding the HNO set with the shortest road distance
in road networks. These queries can provide useful object information by consid-
ering both the spatial closeness of objects to the query object and the neighboring
relationship between objects.

• We design appropriate data structures to represent a road network consisting of
edges and nodes, and to store information of data objects in road network. More-
over, a grid index is used for accessing the data structures, so as to facilitate the
traversal of the road network.

• Four efficient algorithms are developed, all of which operate based on a road net-
work traversal in a best-first manner to retrieve the HNO set with the shortest aver-
age, minimal, maximal, and sum distance to the query object.

• We evaluate the query performance of the proposed algorithms with extensive ex-
perimental studies, by using real road network datasets.

2. RELATED WORK

Most of the conventional location-based queries concentrate on discovering the spa-
tial closeness of objects to the query object. The range query is a well-known query,
which can be used to find a set of objects that are inside a spatial region specified by the
user. Recently, many efforts have been made on processing the range queries in different
research domains, such as mobile information systems and uncertain database systems.
The KNN query is the most common type of location-based queries, as it has important
applications to the provision of location-based services. Many variations of KNN query
have been proposed to provide the K-nearest neighbor information in numerous appli-
cations [5-7]. Some recent works consider both the spatial closeness of objects to the
query object and the neighboring relationship between objects. Zhang et al. [8] present
the KNG query to determine the query result based on the minimum distance between
data objects and the query object (referred to as inter-group distance) and the maximum
distance among the data objects (referred to as inner-group distance). To appropriately
keep the spatial closeness and the neighboring relationship of objects, in our previous
work [9], the location-based aggregate queries are presented to obtain information of ob-
jects. However, the previous work focuses on the Euclidean spaces rather than the road
networks.
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In recent years, processing the location-based queries (such as the range and the
KNN queries) in road networks has received considerable attention [3, 10, 11]. Neverthe-
less, the above works take into account only the spatial closeness of objects to the query
object. The collective spatial keyword query [12, 13] is presented to retrieve a set of ob-
jects that collectively cover user-given keywords with the minimum cost. Moreover, Su
et al. [14] propose the group-based collective keyword (GBCK) query in road networks,
considering not only the spatial closeness of objects to the query object but also the neigh-
boring relationship between objects. The object group retrieved by the GBCK query is
likely to be close to the query object but far away from each other, or close to each other
but far away from the query object. As the GBCK query is inherently different from the
location-based aggregate queries, it cannot be applied to find the group of objects that we
address in this paper.

3. INDEX STRUCTURES

The grid index provides a foundation for our processing algorithms, which is also
used in [4]. To make this paper self-contained, we briefly discuss the used grid index and
data structures. The reader may refer to [4] for details. The n types of data objects are
located in a road network, which is represented as an undirected weighted graph consist-
ing of a set of nodes and a set of edges. A grid index is designed to efficiently manage
information of objects, nodes, and edges, by partitioning the road network into multiple
gird cells, each of which stores data of objects, nodes, and edges intersecting it. In order
to balance the storage load of each grid cell, the data space is divided into a set of grid
cells C by considering two parameters, Pedge and Pobj . For each grid cell ci , the number
of edges intersecting ci cannot be greater than the parameter Pedge, and the number of
objects enclosed in ci must be less than the parameter Pobj . By exploiting the two param-
eters, the storage overhead for maintaining information of objects and road network can
be evenly distributed among the grid cells.

The data space covering the road network is first divided into a set of grid cells
C, and then for each grid cell ci ∈ C, information of the network and data objects is
stored in two tables, the edge table Tedge and the object table Tobj . Tedge stores the
intersection information of each edge e with the grid cell ci, including (1) the nodes ni
and nj connecting e, where ni is enclosed in ci, (2) the length len of e, (3) the grid
cell cj enclosing the node nj , and (4) a set Sc of grid cells intersecting e, except for the
two grid cells ci and cj . Note that Tedge needs not be maintained if the grid cell ci does
not contain any node (i.e., it contains the objects only). Tobj maintains the information
of each object o enclosed in the grid cell ci, including (1) the edge e containing o, (2)
the node n connecting e and closed in ci (if not, n is the node closer to o than another
connecting node), and (3) the distance dist between object o and node n.

The HNO sets have to be determined on-the-fly according to the user-defined dis-
tance d, which imposes more burdens on processing the location-based aggregate queries
in road networks. To support the task of determining the HNO sets on-the-fly, two tables
are used to maintain the distance information of objects and grid cells in the road network.
The first table, denoted as T dobj , is used to store the road distance between any two ob-
jects, computed by using the Dijkstra’s algorithm or the A* algorithm. The second table,
denoted as T dcell, is designed to maintain the minimal distance and the maximal distance
between two sets of objects, Oci and Ocj , which are contained in two cells ci and cj ,
respectively.
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4. PROCESSING ALGORITHMS

In this section, we first present the general procedure of the processing algorithms for
the SAvgDQ, SMinDQ, SMaxDQ, and SSumDQ in detail. Then, we give a running exam-
ple of the processing algorithm for the SAvgDQ, as the other three processing algorithms
have the similar process to generate the query result.

4.1 General Procedure of Processing Algorithms

In all the four processing algorithms, a road network traversal in a best-first manner
is developed to perform a network expansion starting from the edge containing the query
object q and examine whether the HNO set with the shortest distance to q can be found
from the objects visited so far. To achieve early termination in query processing, a min-
heap H is used to keep each entry with the following information: (1) the edge identifier
e, (2) the nodes ni and nj connecting the edge e (3) the grid cells ci and cj enclosing the
nodes ni and nj respectively, and (4) the road distances d(q, ni) and d(q, nj) of ni and
nj to q, respectively. The entries in H are sorted in ascending order of the road distance
d(q, ni) and initially the information about the edge containing q is inserted into H . In
each iteration, the first entry of H in the form of (e, ni, nj , ci, cj , d(q, ni), d(q, nj)) is
de-heaped, and then the following three steps are sequentially executed to find the query
result. Step 1: computing the road distances between the objects on e and the query
object q. Step 2: determining whether the HNO sets exist among the objects visited so
far. Step 3: checking whether the object set with the shortest distance can be found from
the HNO sets discovered so far.

During the course of Step 1, the n types of objects that have been considered, with
their road distance to the query object q, are separately kept in the lists,L1,L2, ...,Ln. The
objects in each list are sorted according to their road distance d(q, o) to q. When an entry
of H in the form of (e, ni, nj , ci, cj , d(q, ni), d(q, nj)) is de-heaped from H , information
of each object o on the edge e can be retrieved by accessing the grid index. For each object
o on edge e, its distance d(q, o) to q can be computed based on the following equation.
Then, the entry (o, d(q, o)) is inserted into o’s corresponding list among the lists L1 to
Ln. and the procedure proceeds to the next step.

d(q, o) =


d(q, ni) + o.dist if o is enclosed in ci,
d(q, nj)− o.dist if o is enclosed in cj ,
d(q, ni) + o.dist if o is enclosed in c′ ∈ Sc

and ni is closer to o than nj ,
d(q, nj)− o.dist otherwise.

The goal of Step 2 is to determine whether the HNO sets exist among the objects
visited so far. We utilize two data structures related to the grid cells visited so far to
facilitate the task of determining the HNO sets. The first is a list, denoted asLcell, which is
used to keep the visited grid cells in which at least one object can be found. The second is a
table, denoted as Tc, for each visited grid cell c in Lcell, which is used to store information
in the form of ((o, o′), c′), where (o, o′) refers to an object pair indicating that the road
distance between o and o′ is less than or equal to the distance d, and o and o′ are enclosed
in c and c′, respectively. Consider a de-heaped entry (e, ni, nj , ci, cj , d(q, ni), d(q, nj))
of H . Once the grid cell cj encloses at least one object and is not in Lcell, it is inserted
into Lcell. Also, each grid cell appearing in Sc of edge e is inserted into Lcell if it has
not yet been visited. Then, the grid cells in Lcell are checked for the satisfaction of the
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distance constraint d, so as to update their table Tc. Here, we use the two tables T dobj and
T dcell mentioned in the previous section to improve the performance of updating the table
Tc.

Suppose that the tables Tc and Tc′ of grid cells c and c′ in Lcell need to be updated.
Based on the maximal distance dM (ci,j) and the minimal distance dm(ci,j) between c and
c′ kept in T dcell, there are three cases to be considered: (1) dM (ci,j) ≤ d, (2) dm(ci,j) > d,
and (3) dm(ci,j) ≤ d < dM (ci,j). For Case 1, each object pair ((o, o′), c′) (or ((o′, o), c))
can be directly added into Tc (or Tc′), without the need to compare their distance with
d. For Case 2, each object pair (o, o′) cannot satisfy the requirement of HNO set, and
thus the tables Tc and Tc′ need not be updated. For Case 3, the distance d(o, o′) needs to
be derived from the table T dobj , and only the object pairs whose d(o, o′) ≤ d are inserted
into Tc and Tc′ . Having updated the table Tc for each grid cell in Lcell, if there exist the
HNO sets among the objects visited so far, then the average, minimal, maximal, and sum
distance of each HNO set to the query object q can be estimated. The HNO set with the
shortest distance to q is treated as the candidate and the procedure proceeds to the next
step. If no HNO set exists, each of the unvisited edges connecting the node nj is inserted
into H and the procedure goes back to Step 1 for considering the next entry of H .

Step 3 aims to verify whether the candidate set discovered so far is the actual result
for the SAvgDQ, SMinDQ, SMaxDQ, and SSumDQ. As the four types of location-based
aggregate queries focus on different distance considerations, Step 3 needs to be designed
accordingly so as to achieve early termination in query processing.

For the SAvgDQ: let davg(q, {o1, o2, ..., on}) be the average road distance of the candi-
date set {o1, o2, ..., on} to the query object q, which can be estimated as

davg(q, {o1, o2, ..., on}) =
1

n
(
n∑
i=1

d(q, oi)),

where d(q, oi) refers to the road distance between q and oi. Also, let (o1α, d(q, o
1
α)) be the

first entry of the α-th list Lα (meaning that o1α has the minimal road distance to q among
the visited objects belonging to the α-th type of objects). Consider an unvisited object
oα belonging to the α-th type of objects. It has no chance to be included in the SAvgDQ
result if its road distance d(q, oα) to q satisfies the following equation:

d(q, oα) > n× davg(q, {o1, o2, ..., on})−
∑

1≤β≤n∧α6=β

d(q, o1β).

As oα is an unvisited object, its road distance d(q, oα) must be greater than the distance
d(q, nj) of the node nj to q (i.e., d(q, oα) > d(q, nj)). Motivated by this, we can infer
that the unvisited edges connecting the node nj need not be inserted into the min-heap H
once the following equation holds:

d(q, nj) > n× davg(q, {o1, o2, ..., on})−min{
∑

1≤β≤n∧α6=β

d(q, o1β)|α = 1 ∼ n}.

Otherwise, the unvisited edges connecting the node nj would be inserted into H for
consideration.

For the SMinDQ: for an object set {o1, o2, ..., on} that has still not been considered, it
can be the HNO set if the distance between any two objects in {o1, o2, ..., on} does not
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exceed d. The above condition implies that for each object oα ∈ {o1, o2, ..., on}, its road
distance d(q, oα) to q must satisfy the following equation:

d(q, oNN ) ≤ d(q, oα) ≤ d(q, oNN ) + d,

where d(q, oNN ) refers to the road distance between q and its nearest neighbor oNN ∈
{o1, o2, ..., on}, which is represented as

d(q, oNN ) = min{d(q, oi)|i = 1 ∼ n}.

Compared to a candidate HNO set {o′1, o′2, ..., o′n} discovered so far, the set
{o1, o2, ..., on} will become the new candidate only when its minimal distance d(q, oNN )
is less than that (denoted as d(q, o′NN )) of {o′1, o′2, ..., o′n}. Conversely, {o1, o2, ..., on}
cannot be the SMinDQ result because d(q, oNN ) > d(q, o′NN ). As a result, an unvisited
object oα cannot appear in the SMinDQ result once its road distance d(q, oα) satisfies the
following equation:

d(q, oα) > d(q, o′NN ) + d.

This is because for each HNO set containing oα, the difference between its minimal dis-
tance d(q, oNN ) and d(q, oα) does not exceed d, and thus d(q, oNN ) must be greater than
d(q, o′NN ) if the above equation holds. For the sake of early termination of the road net-
work traversal, the unvisited edges connecting the node nj need not be inserted into the
min-heap H as the following equation holds:

d(q, nj) > d(q, o′NN ) + d.

Otherwise, the unvisited edges connecting nj have to be inserted into H .

For the SMaxDQ: the result would be affected by the road distance between q and its
furthest neighbor in each HNO set. Let object oFN be the furthest neighbor of q in a
set of object {o1, o2, ..., on} and its road distance to q is equal to d(q, oFN ), which is
computed as

d(q, oFN ) = max{d(q, oi)|i = 1 ∼ n}.

If object oFN is farther to q than the furthest neighbor o′FN in the candidate set
{o′1, o′2, ..., o′n} (i.e., d(q, oFN ) > d(q, o′FN )), then the set {o1, o2, ..., on} cannot be
the SMaxDQ result no matter whether it is a HNO set or not. As such, an unvisited object
oα needs not be considered if the following equation holds:

d(q, oα) > d(q, o′FN ),

which also implies that the unvisited edges connecting the node nj is not inserted into the
min-heap H when

d(q, nj) > d(q, o′FN ).

For the SSumDQ: suppose that among the HNO sets discovered so far, the set of objects
{o′1, o′2, ..., o′n} has the minimal traveling distance from q, which is defined and computed
as follows:

d(q, {o′1, o′2, ..., o′n}) = min{d(q, o′i) + d(o′i, HNO)|i = 1 ∼ n},
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where d(o′i, HNO) refers to the shortest traveling distance starting from o′i to visit each
object in {o′1, o′2, ..., o′n} \ {o′i} exactly once, which can be obtained by looking up the
table T dobj . For a set of objects {o1, o2, ..., on} containing an unvisited object oα, it cannot
be the SSumDQ result because the road distance of oα to q is greater than the shortest
traveling distance from q to the candidate set {o′1, o′2, ..., o′n}. That is,

d(q, oα) > d(q, {o′1, o′2, ..., o′n}),

which means that the minimal road distance to reach oα from q (passing the other ob-
jects exactly once) must also exceed d(q, {o′1, o′2, ..., o′n}). Similarly, the unvisited edges
connecting the node nj needs not be inserted into the min-heap H once

d(q, nj) > d(q, {o′1, o′2, ..., o′n}).

The three steps mentioned above (i.e., Step 1, Step 2, and Step3) are sequentially
executed on each de-heaped entry until H is empty. If there exists at least one HNO
set, then the candidate set is returned as the query result. Otherwise, no object set can
satisfy the requirement of HNO set. The pseudo code of detailed steps for the processing
algorithms is given in Algorithm 1.

Algorithm 1: Processing algorithm
Input : A grid index, a distance d, and the query object q
Output: A HNO set with the shortest distance to q

initialize a heap H;
insert information of the edge containing q into H;
while ( H is not empty ) do

de-heap (e, ni, nj , ci, cj , d(q, ni), d(q, nj)) from H;
/* executing Step 1 */
foreach object o on e do

compute d(q, o);
insert (o, d(q, o)) into the corresponding list among L1 to Ln;

/* executing Step 2 */
insert cj and cells in Sc of e into Lcell;
foreach cell pair (c, c′) in Lcell do

check for the constraint of d to update Tc and Tc′ ;
if there exist HNO sets then

foreach each HNO set {o1, o2, ..., on} do
compute the average, minimal, maximal, and sum distance of
{o1, o2, ..., on} to q;

set {o1, o2, ..., on} with the shortest distance as a candidate;
/* executing Step 3 */
if the inequality for d(q, nj) does not hold then

insert information of the edges connecting nj into H;

if there exists a candidate {o1, o2, ..., on} then
return {o1, o2, ..., on};

4.2 Running Example

We use a concrete example to illustrate how the SAvgDQ result can be efficiently
determined, where the query object q is located at the node n2 enclosed in the grid cell
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c4, and the distance d is set to 11. Initially, the min-heap H contains information of the
three edges e1, e2, and e6 connecting the query object q, as shown in Fig. 2(a). In the first
iteration, the first entry (e1, q, n1, c4, c8, 0, 6) of H is de-heaped, on which Step 1, Step
2, and Step 3 are sequentially executed (refer to Fig. 2(b)). In Step 1, the road distance
d(q, h2) between objects h2 and q is computed as 5, and then (h2, 5) is inserted into the
list LH . Having executed Step 2, the gird cells c4 and c8 are kept in the list Lcell. Then,
the edges e3 and e7 connecting the node n1 are inserted into H and Step 3 is skipped as
no HNO set has been discovered so far. In the second iteration (refer to Fig. 2(c)), where
the edge e2 is considered, the object t2 with d(q, t2) is added into the corresponding list
LT (after Step 1). By looking up the table T dcell, we know that dM (c4,8) < d for grid
cells c4 and c8, and thus the entries ((t2, h2), c8) and ((h2, t2), c4) are added into the
tables Tc4 and Tc8 , respectively (after Step 2). The procedure proceeds to de-heap the
first entry of H , which is omitted here due to space limitations. In the sequel, when the
edge e3 is de-heaped from H (as shown in Fig. 2(d)), the entry (t1, 9), meaning that the
road distance d(q, t1) is equal to 9, is inserted into LT . After Step 2, we can find a HNO
set, {h2, r2, t1}, whose average road distance to q is equal to 25

3 . Therefore, Step 3 is
executed to determine whether {h2, r2, t1} is the actual SAvgDQ result. Unfortunately,
the road distance d(q, n3) does not satisfy the termination condition, so that the edges
e5 and e9 have to be inserted into H for further consideration. As shown in Fig. 2(e),
after checking the edge e10, the objects r4 and t4 are added into the lists LR and LT ,
respectively, and also the table Tc for each grid cell in Lcell is updated accordingly. When
the edge e8 is de-heaped from H (refer to Fig. 2(f)), the object h3 on e8 leads to two new
HNO sets, {h3, r4, t2} and {h3, r4, t4}, and the former has a smaller average distance.
In Step 3, as the road distance d(q, n16) satisfies the termination condition, the edges
connecting n16 need not be en-heaped in H . Finally, the algorithm terminates once H is
empty and {h3, r4, t2} is returned as the SAvgDQ result.

5. PERFORMANCE EVALUATION

In this section, four sets of experiments are conducted to demonstrate the efficiency
of the proposed methods. We investigate the effects of four important factors on the query
performance. They are the values of Pedge and Pobj , the number of objects, the number
of data types (i.e., n), and the value of distance d.

5.1 Performance Settings

All the experiments are performed on a PC with Intel 2.80 GHz and 4GB RAM.
The algorithms are implemented in C++. Two road networks are used in our simulation.
The first is the Oldenburg (a city in Germany), consisting of about 6000 nodes and 7000
edges. The second is the San Joaquin County with about 18200 nodes and 23800 edges.
The data set, generated using the generator proposed in [15], consists of n types of ob-
jects (where n varies from 1 to 5), and the number of objects for each type ranges from 1K
to 30K. The data space is divided into multiple grid cells by considering the parameters
Pedge and Pobj , in which the pair (Pedge, Pobj) changes from (25, 25) to (1000, 1000). In
the experimental space, we also generate 30 query objects on the edges of road network
and each of them issues a SAvgDQ, a SMinDQ, a SMaxDQ, or a SSumDQ to the server,
where the distance d varies from 0.1% to 3% of the entire space. Then, we present the
LBAQ (stands for location-based aggregate queries) algorithm to process the 30 queries.
The performance is measured by the average CPU time and the average ratio of accessed
grid cells (i.e., Ncell

Ntotal
, where Ncell refers to the number of accessed grid cells and Ntotal
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Fig. 2. Running example of processing the SAvgDQ.

is the total number of grid cells) in performing workloads of the 30 queries. In our sim-
ulation, we compare the LBAQ algorithm, with a naive algorithm which is composed of
the following steps: (1) all of the HNO sets in the road network are determined by ex-
ploiting the distance information kept in the table T dobj , (2) for each HNO set, its average,
minimal, maximal, and sum distance to the query object is computed using the A* al-
gorithm, and (3) the HNO set with the shortest distance is returned as the query result.
Table 1 summarizes the parameters under investigation, along with their default values
and ranges.

5.2 Effect of Parameters Pedge and Pobj

Fig. 3 studies the impact of Pedge and Pobj (affecting the number of grid cells), on the
performance of processing the four types of location-based aggregate queries. In this set
of experiments, we vary the pair (Pedge, Pobj) from (25, 25) to (1000, 1000) and measure
the CPU cost and the ratio of accessed grid cells for the proposed processing algorithms.
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Table 1. System parameters.
Parameter Default Range

(Pedge, Pobj) (100, 100) (25, 25), (50, 50), (100, 100),
(500, 500), (1000, 1000)

Number of objects (K) 10 1, 5, 10, 20, 30
n 3 1, 2, 3, 4, 5

d (%) 1 0.1, 0.5, 1, 2, 3

Fig. 3(a) illustrates the CPU times for processing the SAvgDQ, SMinDQ, SMaxDQ, and
SSumDQ, respectively. The CPU time first decreases and then slightly increases with
the increasing Pedge and Pobj . This is mainly because (1) the smaller Pedge and Pobj
result in a larger number of grid cells, so that more combinations of grid cells to be
considered in determining the HNO sets, while (2) the larger Pedge and Pobj lead to more
information about the edges and objects for each grid cell, and thus more CPU time is
required for computing the road distance of objects to the query object. On the other
hand, the increasing Pedge and Pobj make the ratio Ncell

Ntotal
increase, which is illustrated

in Fig. 3(b). Actually, both Ncell and Ntotal decrease, but the value of Ncell decreases
slower than that of Ntotal. That’s why Ncell

Ntotal
exhibits an increasing trend. To decide an

appropriate pair (Pedge, Pobj) to build the grid index for query processing, we observe that
when (Pedge, Pobj) = (100, 100), the improvement of CPU time becomes insignificant,
while the ratio of accessed grid cells increases noticeably. As the experimental result
reveals that (100, 100) is a better choice than the others, we will use it as the default
(Pedge, Pobj) in all the rest experiments.
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Fig. 3. Effect of parameters Pedge and Pobj .

5.3 Effect of Number of Objects

The second set of experiments investigates the effect of the number of objects for
each data type on the performance of the LBAQ algorithm and the naive algorithm.
Fig. 4(a) measure the CPU time for the LBAQ algorithm compared to the naive algo-
rithm, by varying the object number from 1K to 30K. In all experiments, for the naive
algorithm the CPU cost increases significantly with the number of objects, because when
the object number increases, more distance computations are required for finding the HNO
set with the shortest distance. An interesting observation from the experimental result is
that for the LBAQ algorithm the CPU cost first decreases and then increases, exhibiting a
V-shape. This is mainly because (1) for a smaller number of objects, there are fewer HNO
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sets in the road network, which leads to more objects to be visited in query processing,
and (2) for a larger number of objects, more HNO sets have the similar distance, and thus
results in more CPU time spent on determining the query result. As shown in Fig. 4(b),
the ratio Ncell

Ntotal
for the naive algorithm remains constant (i.e., Ncell

Ntotal
= 1) regardless of

the number of objects. This is because no matter what the object quantity is, all grid cells
storing object information have to be accessed for determining the query result. As for
the LBAQ algorithm, the ratio Ncell

Ntotal
shows a decreasing trend, because a larger number

of objects (leading to more HNO sets) increases the chance that the HNO set with the
shortest distance can be found by accessing only the grid cells closer to the query object.
The experimental results also show that the proposed algorithm have a significantly better
performance on both the CPU cost and the ratio Ncell

Ntotal
compared to the naive algorithm.
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Fig. 4. Effect of number of objects.

5.4 Effect of Number of Data Types

The third set of experiments shown in Fig. 5 illustrates the performance of the LBAQ
algorithm and the naive algorithm as a function of the number of data sources (ranging n
from 1 to 5). When n = 1 (i.e., only a single data type), the task of determining whether
the road distance between objects is greater than d is no longer needed. It implies that the
problems of processing the SAvgDQ, SMinDQ, SMaxDQ, and SSumDQ can all be reduced
to finding the nearest neighbor of the query object. The better performance of the LBAQ
algorithm, compared to the naive algorithm, demonstrates that the LBAQ algorithm can
be successfully applied to the environment in which user is interested in obtaining in-
formation about a single data type. When the number of data sources n gets larger than
1, both the CPU time and the ratio Ncell

Ntotal
for the LBAQ algorithm increase, because the

value of n dominates the total number of combinations of object sets. Nevertheless, the
experimental results show that the performance of the LBAQ algorithm still outperforms
its competitor under various numbers of n, which confirms again that the road network
traversal we develop in this paper can efficiently improve the query performance by con-
sidering only a small proportion of the HNO sets.

5.5 Effect of Distance d

The set of experiments studies the CPU time and the ratio Ncell

Ntotal
under different

values of the distance d. In the experiments, we vary the value of d from 0.1% to 3% of
the experimental space. As shown in Fig. 6, the curve for the LBAQ algorithm has the
V-shape trends in terms of the CPU time (while the curve for the naive algorithm shows an
increasing trend) and the decreasing trend in terms of the ratio Ncell

Ntotal
. For a smaller value
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of d, most of the object sets cannot satisfy the requirement of HNO set and thus (1) for the
naive algorithm, less number of HNO sets needs to be considered, while (2) for the LBAQ
algorithm, it has to access more object sets and involve more road distance computations
of object sets. Nevertheless, the LBAQ algorithm still outperforms the naive algorithm by
a significant amount, which can be attributed to the early termination in query processing.
For a larger value of d, the differences in the CPU time between the LBAQ algorithm and
the naive algorithm become noticeable, as shown in Fig. 6(a). This is because for a larger
d each object set has a higher chance to be the HNO set so that for the LBAQ algorithm
the query result could be determined earlier by only considering the object sets closer to
the query object. That’s also why the LBAQ algorithm yield a better performance than
the naive algorithm, in terms of the ratio Ncell

Ntotal
(shown in Fig. 6(b)).
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Fig. 6. Effect of distance d.

5.6 Performance for Larger Road Network

We conduct a set of experiments to study how well the LBAQ algorithm and the
naive algorithm work for a larger road network, the San Joaquin County. Fig. 7(a) and
Fig. 7(b) measure the CPU time and the ratio Ncell

Ntotal
, as a function of d (varying from

0.1% to 3% of the experimental space). Compared to the experimental result in Fig. 6
(illustrating the performance for a small road network), the CPU time for the both the
algorithms increases, while the ratio Ncell

Ntotal
decreases. The reason for the higher CPU

overhead is that the road connectivity of the larger network is more complicated so that
more time is spent on computing the road distance. On the other hand, the decrease of the
ratio Ncell

Ntotal
for the larger network is because the queries can be terminated by accessing

fewer cells closer to the query object.
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Fig. 7. Performance for larger road network.

6. CONCLUSIONS

This paper focused on processing the four types of location-based aggregate queries
on the HNO sets in road networks, where the road distance between objects is computed
based on the connectivity of the network. We designed a grid index to manage information
of data objects located in a road network consisting of edges and nodes, and made use of
the grid index to access only a small proportion of data objects while computing the
result of location-based aggregate queries. The processing algorithms, associated with
the grid index, were developed to retrieve the HNO set with the shortest distance to the
query object. Comprehensive experiments demonstrated the efficiency of the proposed
processing algorithms.
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