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The strong designated verifier ring signature scheme provides signer anonymity to 

protect actual signer’s identity. However, the message of the strong designated verifier 
ring signature may disclose some identity information related to the actual signer. To re-
move this flaw, this study proposes a novel strong designated verifier ring signcryption 
scheme. Compared with the Han et al. and Huang et al. ring signcryption schemes, the 
proposed scheme provides strongest signer anonymity to protect the signer identity. This 
scheme also provides signer admission to show who the actual signer is. Unlike some 
proposed schemes, which still suffer the message length restriction, this scheme is free 
from the message length restriction to provide message confidentiality.  
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1. INTRODUCTION 
 

The ring signature scheme [1] provides one-out-of-n signer anonymity among an ad 
hoc group, which is called a ring, consisting of n members. In the ring signature scheme, 
although anyone can validate ring signatures, no one is able to identify who the actual 
signer is. For one-out-of-n signer anonymity, ring signature schemes have many practical 
applications such as news reports with anonymous signers and e-voting schemes. 

After the first ring signature scheme was proposed, various types of ring signature 
schemes were proposed. The first ID-based ring signature scheme [2] based on the ID- 
based cryptosystem [3] was proposed to remove public key certificates. The linkable ring 
signature scheme [4] was proposed such that the linkable ring signatures generated by 
the same signer can be clustered. Because of its linkable property, the linkable ring sig-
nature scheme is useful for implementing the e-voting scheme. The (t, n) threshold ring 
signature scheme [5] generates the ring signatures by only the cooperation of t or more 
ring members. Based on the ElGamal signature scheme, the generalized ring signature 
scheme [6] was proposed to provide signer admission to prove who the actual signer is. 
However, the generalized ring signature scheme does not provide signer admission [7], 
and an improved scheme [7] was proposed to provide the signer admission. 

In these schemes, anyone can validate ring signatures. In some applications, signers 
may want to specify their ring signature being validated only by some designated-verifier. 
For example, someone in the government wants to publish news to the designated re-
porter, such that no one can verify the news except the designated reporter. Although the 
designated-verifier is able to validate ring signatures, he/she still cannot identify the ac-
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tual signer. 
For the designated-verifier requirement, the designated verifier ring signature scheme 

was proposed [8-10]. Based on the designated-verifier property, only the designated ver-
ifier is able to validate ring signatures. Among these schemes, only the Hwang and 
Cheng scheme [10] provides one-out-of-all signer anonymity for anyone, except the 
designated verifier. The other schemes provide only one-out-of-n signer anonymity for 
anyone. The one-out-of-all signer anonymity property means that the actual signer may 
be any legal user in the system. Therefore, Hwang and Cheng’s scheme provides the 
strongest identity privacy protection, and also provides signer admission. Hwang and 
Chen [11] proposed an improvement to enhance the performance of Hwang and Cheng’s 
scheme. 

Schemes with designated verifiers do not protect message confidentiality. However, 
the message sent in plaintext may release some sensitive information. For example, a 
whistleblower in the government wants to send sensitive and secret news to a designated 
reporter. The whistleblower keeps not only his identity, but also the news, a secret from 
anyone except the designated reporter. Because the sensitive news may be known by 
only a few people, the sensitive news releases some useful identity information on the 
whistleblower. Thus, the message confidentiality is as important as the unforgeability 
and anonymity properties for the designated verifiers ring signature schemes. 

Inspired by the signcryption schemes [12], (strong) designed verifiers ring sign-
cryption schemes [13, 14] can provide confidentiality and ring signatures concurrently. 
However, some ring signcryption schemes [16-21] are insecure [15]. The ring signcryp-
tion schemes [13, 14] integrate ring signature schemes and symmetric cryptosystems to 
sign and encrypt messages anonymously and efficiently. Although ring-signcryptexts 
cannot be decrypted and verified, the actual signer is still only a ring member; therefore, 
these schemes only provide one-out-of-n signer anonymity. 

To provide one-out-of-all signer anonymity, this study proposes a novel strong des-
ignated verifier ring signcryption scheme based on Hwang and Chen’s strong designated 
verifier ring signature scheme. Section 2 details the proposed scheme. Section 3 provides 
the security proof for this scheme. Section 4 presents a comparison of ring signcryption 
schemes. Finally, Section 5 offers a conclusion. 

2. STRONG DESIGNATED VERIFIER RING SIGNCRYPTION 
SCHEME 

Our strong designated verifier ring signcryption scheme consists of four algorithms: 
Setup, Ring-Signcrypt, Ring-UnSigncrypt, and Signer Admission algorithms. These al-
gorithms are detailed below. 
 
Setup Algorithm: 

The Setup Algorithm generates system public parameters and functions. On the in-
put of an security parameter l, Setup Algorithm outputs two large public primes p and q 
with q|(p  1), a public generator g  Zp

* with order q, and two public hash functions 
hl:{0, 1}*  {0, 1}l and hq:{0, 1}*  Zq

*. Each ring member has a private key xi and a 
public key yi = gxi mod p. 
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Ring-Signcrypt Algorithm 
The Ring-Signcrypt Algorithm generates the ring-signcryptext on a message m with 

a ring U = {U1, U2, …, Un} chosen by the real signer Us  U. After receiving the mes-
sage m, the ring U, the signer’s private key xs, and the designated verifier Uv’s public key 
yv, the actual signer Us performs Ring-Signcrypt algorithm to generate the ring-sign- 
cryptext , where Uv  U. This algorithm is described as follows. 

 
Step 1: Choose a random integer k  Zq

*, compute K = gk mod p, k = hq(yv
k mod p), and 

ke||km = hl(yv
k mod p||K), and encrypt the message m using C = Eke(m||hl(m, km)). 

Step 2: Compute all ring member’s temporary public keys yk,i = yi
k mod p, for i = 1, 

2, …, n. 
Step 3: Forge the other ring member’s ElGamal Signature (i, i) on mi by first choos-

ing two random numbers ai  Zq, bi  Zq
*, and computing i = gaiyi

bi mod p, i = 
ibi

-1 mod q and mi = aii mod q for i = 1, 2, …, n, i  s. 
Step 4: Choose a random integer r  Zq

* and compute v = hq(g
r mod p||m||ys) and s = r  

xsv mod q. These parameter s should be kept secret. 
Step 5: Find ms by computing 

vs+1 = hq(m, v), 
vs+2 = hq(m, vs+1 + ms+1 mod q), 
vs+3 = hq(m, vs+2 + ms+2 mod q), …, vn = hq(m, vn-1 + mn-1 mod q), 
v1 = hq(m, vn + mn mod q), 
v2 = hq(m, v1 + m1 mod q), …, vs = hq(m, vs-1 + ms-1 mod q), and  
ms = (vs) + v mod q. 

Step 6: Generate the ElGamal Signature (s, s) on ms by choosing a random integer ks 
 Zq

*, and computing s = gks mod p and s = ks
-1(ms  xss) mod q. 

Step 7: Output the ring-signcryptext  = (C; Y; K; i0, vi0; m1, m2, …, mn; (1, 1), (2, 
2), …, (n, n)), where i0 is a random integer in {0, 1, 2, …, n} and Y = {yk1, 
yk2, …, ykn}. 

 
Ring-Unsigncrypt Algorithm 

After receiving the ring-signcryptext  = (C; Y; K; i0, vi0; m1, m2, …, mn; (1, 1), 
(2, 2), …, (n, n)), the designated verifier can decrypt and validate  as follows. 
 
Step 1: Obtain the session key ke||km = hl(K

xv mod p||K) and recover the message and 
digest by m||hl(m, km) = Dke(C). 

Step 2: Compute the public keys by k = hq(K
xv mod p) and yi = yk,i

k
-1

 mod p for i = 1, 
2, …, n.  

Step 3: Verify the ElGamal signature (i, i) on mi by validating gmi = yi
i i

i mod p for 
i = 1, 2, …, n.  

Step 4: Check vi0+1 = hq(m, vi0 + mi0 mod q),   
vi0+2 = hq(m, vi0+1 + mi0+1 mod q), 
…, 
vn = hq(m, vn-1 + mn-1 mod q), 
v1 = hq(m, vn + mn mod q), 
…, and vi0 = hq(m, vi0-1 + mi0-1 mod q). 

If the equation vi0 = vi0 holds, then output “accept”; otherwise, reject. 
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The Ring-Unsigncrypt algorithm outputs “accept” only when the verifications of these 
five steps are correct. 
 
Admission Algorithm 

When the actual signer want to disclose his/her identity for the ring-singcrypt , 
he/she reveals (v, s). The verifier verifies the equation v = hq(m||gsys

v||ys). If the equation 
holds, then the verifier is convinced that the sender of (v, s) is the actual signer. 

3. SECURITY ANALYSIS 

The proposed scheme is existentially unforgeable against adaptive chosen message 
attacks (EF-CMA2). In this scheme, the ring-signcryptext is also indistinguishably se-
cure against adaptive chosen ciphertext attacks (IND-CCA2). This scheme also has cor-
rectness, strong designated-verifier, signer anonymity, and signer ambiguity properties. 
The underlying hard problems for the scheme are first described below. 
 
Definition 1: Decision Diffie-Hellman Problem (DDHP) 

Let p, q be two large prime numbers with q|(p  1) and g be a generator order q in Zp
*. 

Given ga, gb, gc (mod p) to determine whether gc  gab (mod p), where a, b, and c  Zq
*. 

 
DDHP Assumption: No probabilistic polynomial-time (PPT) algorithm solves DDHP 
with non-negligible probability. 

These security properties were proved one by one below. 
 
Correctness (Definition 1): A strong designated verifier ring signcryption scheme is 
correct if the ring-signcryptext  generated by Ring-Signcrypt algorithm always passes 
the verification by Ring-Unsigncrypt algorithm. 

The parameters k, the encryption and authenticated keys ke and km, the message, 
and the public keys can be correctly recovered. Because yv

k  Kxv (mod p), the verifier 
recovers the correct k = hq(yv

k mod p) and ke||km = hl(yv
k mod p||K). Since ke and km are 

correct and m||hl(m, km) = Dke(Eke(m||hl(m, km))), the message m and the digest hl(m, km) 
are recovered correctly. Using the correct k, the public keys yi = yk,i

k-1 mod p can be 
recovered correctly. 

Next, the validation of the ElGamal signature (i, i) on mi is correct for i = 1, 2, …, 
n. Because gmi  gaii  yi

igaiiybi(-ibi
-1)  yi

ii
i (mod p), all the ElGamal signatures (i, 

i)’s satisfy gmi  yi
ii

i (mod p). Finally, the verification for (i0, vi0; m1, m2, …, mn) 
holds because ms = (vs) + v mod q, and 

 
vi0+1 = hq(m, vi0 + mi0 mod q), 
vi0+2 = hq(m, vi0+1 + mi0+1 mod q), 
…, vn = hq(m, vn-1 + mn-1 mod q), 
v1 = hq(m, vn + mn mod q), …, and 
vi0 = hq(m, vi0-1 + mi0-1 mod q). 

 
According to the correctness of k, ke, km, the recovered public keys, ElGamal signatures, 
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and the received vi0, the Ring-Unsigncrypt algorithm correctly decrypts and validates the 
ring-signcryptext generated by the Ring-Signcrypt algorithm. 
 
Existential Unforgeability against Adaptive Chosen Message Attacks (EF-CMA2) 
(Definition 2): In a strong designated verifier ring signcryption scheme, except ring 
members, no one generates a valid ring-signcryptext for some random message without 
ring members’ private keys, after collecting ring-signcryptexts with chosen messages. 

In other words, if some adversary can existentially forge ring-signcryptexts for some 
messages, the adversary wins the EF-CMA2 game with non-negligible probability. The 
following discussion describes the EF-CMA2. 
 
EF-CMA2 Game  The game consists of two participators: Challenger and Adversary. 
Challenger performs the Setup algorithm to generate public parameters p, q, and g, and 
some user’s public keys for Adversary. Challenger also provides two hash oracles, hq 
and hl, and one the Ring-Signcrypt oracle. Adversary is then allowed to request those 
oracles to collect the ring-signcryptext  for some message chosen by Adversary poly-
nomial times. The hq oracle, hl oracle and Ring-Signcrypt oracle are stated sequentially. 

 
hq oracle: When Adversary queries the hq oracle, the hq oracle returns a corresponding 
hash value to Adversary. 
 
hl oracle: When Adversary queries the hl oracle, the hl oracle returns a corresponding 
hash value. 
 
Ring-Signcrypt Oracle (RS-Oracle): When Adversary queries Ring-Signcrypt oracle 
with input (m, ys, Y), the Ring-Signcrypt oracle returns a ring-signcryptext  to Adver-
sary, where Y = {y1, y2,.., yn} is a set of ring members’ public keys. 

After collecting many (i, Y, mi), Adversary outputs a ring-signcryptext * for the 
message m* and the ring members’ public key set Y, where the message m* is not queried 
RS-Oracle before. Adversary wins the game if the ring signcryptext * can pass the 
Ring-Unsigncrypt.  

 
Theorem 1: A valid ring-signcryptext in the proposed scheme is existentially unforgea-
ble against adaptive chosen message attacks (EF-CMA2) based on the unforgeability of 
the ElGamal signatures.  
 
Proof: First, Challenger takes a security parameter l for the Setup Algorithm to generate 
p, q, g, and two hash functions hq, hl for Adversary. Adversary can request RS-oracle to 
generate a ring-signcryptext  in polynomial times. The oracles hq, hl, and RS-oracle are 
described below. 
 
hq Oracle: Oracle hq accepts two types of queries described below. 
 
Case 1: (m, mi-1 + vi-1 mod q, , )-query 

Oracle hq first searches its local records, hq-list. If it finds the record (m, mi-1 + vi-1 

mod q, vi), then hq returns the digest vi; otherwise, hq returns a random value vi  Zq
* and 
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stores the record (m, mi-1 + vi-1 mod q, vi) in its hq-list. 
 
Case 2: (m, ms-1 + vs-1 mod q, v, ms)-query 

In this case, Oracle hq computes vs = (v + (ms)) mod q and stores the record (m, 
ms-1 + vs-1 mod q, vs) in its local hq-list. 

 
hl Oracle: For any query, hl oracle first searches its local records, hl-list. If the query (yv

k 
mod p||K) has been made before, then hl oracle returns the stored hash value for yv

k mod 
p||K; otherwise, hl oracle returns a random value vl {0, 1}l and stores the record in its 
hl-list. 
 
Ring-Signcrypt Oracle (RS-oracle)  On the input (m, ys, {y1, y2, ..., yn}), the Ring- 
Signcrypt oracle outputs a ring-signcryptext  based on the following procedure, where 
ys is the signer’s public key and m is a chosen message. 
 
Step 1: Choose a random integer k  Zq

*, compute K = gk mod p, k = hq(yv
k mod p), and 

ke||km = hl(yv
k mod p||K), and encrypt the message m using C = Eke(m||hl(m, km)). 

Step 2: Compute all temporary public keys yk,i = yi
k mod p, for i = 1, 2, …, n. 

Step 3: Forge the other ring member’s ElGamal signature (i, i) on mi by first randomly 
choosing ai  Zq, bi  Zq

*, and computing i = gaiyi
bi mod p, i = ibi

-1 mod q 
and mi = aii mod q for i = 1, 2, …, n. 

Step 4: Choose a random value v  Zq
*. 

Step 5: Find the vs with the help of hq oracle answering. 
vs+1 = hq(m, v, , ), 
vs+2 = hq(m, vs+1 + ms+1 mod q, , ), 
vs+3 = hq(m, vs+2 + ms+2 mod q, , ), 
…, 
vn = hq(m, vn-1 + mn-1 mod q, , ), 
v1 = hq(m, vn + mn mod q, , ), 
v2 = hq(m, v1 + m1 mod q, , ), 
…, and vs = hq(m, vs-1 + ms-1 mod q, v, ms), 
In this step, the returned value is vs = (ms) + v mod q. 

Step 6: Output the ring-signcryptext  = (C; Y; K; i0, vi0; m1, m2, …, mn; (1, 1), (2, 
2), …, (n, n)), where i0 is a randomly chosen index between 0 and n and Y = 
{yk1, yk2, …, ykn}. 
Adversary can query in polynomial times. 

 
If Adversary can generate a valid ring-signcryptext with a non-negligible probability, 

Challenger can forge an ElGamal signature for a specified message m without the sig- 
ner’s private key with the help of Adversary. Suppose that the ElGamal signature forgery 
instance is (m, y). In this case, the challenger generates n public keys yi = gxi mod p for i 
= 1, 2, …, n and i  s and ys = y. 

After collecting many ring-signcryptexts on some messages, Adversary must forge 
the message m. During the Adversary forgery, the oracle hq returns the digest vs = (m) 
+ v mod q for the query (m, vs-1 + ms-1 mod q, , ). In other words, Adversary is forced 
to generate the ElGamal signature on the message ms = m. Finally, Adversary forges a 
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valid ring-signcryptext  = (C; Y; K; i0, vi0; m1, m2, …, mn; (1, 1), (2, 2), …, (n, n)) 
on m, and Challenger obtains the ElGamal signature (s, s) on the message m. 
 
Indistinguishable Confidentiality against Adaptive Chosen Ciphertext Attacks (IND- 
CCA2) 

IND-CCA2 game is described before giving the definition IND-CCA2 and Theorem 
2 shows that the proposed scheme provides IND-CCA2. 

 
IND-CCA2 Game  The IND-CCA2 game has two participators: Challenger G1 and 
Adversary A1. On the security parameter l, Challenger G1 generates the systems public 
parameters, p, q, g, and the designated-verifier’s public key, and the hash oracle hl, sign-
crypt and unsigncrypt oracles for Adversary A1. By adaptive chosen ciphertext attacks, 
Adversary A1 can collect some ciphertexts with the help of three oracles. These oracles 
are described below. 
 
hl oracle: On the query input, the hl oracle returns a random digest for fresh queries; 
otherwise, the hl oracle returns the used digest. 
 
Signcrypt oracle (S-Oracle): On the input (m, yv, K), the Signcrypt oracle returns a ci-
phertextC. 
 
Unsigncrypt oracle (U-Oracle): On the input C, the U-Oracle returns a message m and 
corresponding digest for the ciphertext C. 

The game includes two phases: collection and guess phases. In the collection phase, 
Adversary A1 collects many of his/her chosen ciphertexts on some messages. In the 
guessing phase, Adversary A1 randomly chooses and sends two new messages m0 and m1 
to Challenger G1. After randomly choosing one bit b  {0, 1}, Challenger G1 signcrypts 
mb, then sends the ciphertext C* to Adversary A1. Adversary A1 may collect more chosen 
ciphertext after receiving the challenge C*. Finally, Adversary A1 gives his/her answer bit 
b. Adversary A1 wins the game if b = b. 
 
Definition 3: A strong designated verifier ring signcryption scheme provides IND-CCA2 
if no PPT algorithm wins the IND-CCA2 game with non-negligible advantage over 1/2. 
 
Theorem 2: If Adversary wins the IND-CCA2 game with non-negligible advantage, 
then a PPT algorithm solving the DDHP with non-negligible probability exists. 
 
Proof: The following discussion describes the three oracles in the IND-CCA2 game. 
 
hl oracle: The inputs of this oracle are classified into three cases. 
 
Case 1: (yv

k, K)-query 
On the input (yv, K), hl oracle first searches its local records, hl1-list. If the query has 

been made before, hl oracle returns the found digest ke||km in hl1-list. Otherwise, it returns 
a new random string ke||km such that the bit length |(ke||km)| = l and stores the record (yv

k, 
K, ke||km) in its hl1-list. 
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Case 2: (m, km)-query 
On the input (m, km), the hl oracle searches its hl2-list first. If it finds the digest in its 

hl2-list, it returns the found digest; otherwise, it returns a random digest with bit length l 
and stores (m, km, digest = hl(m, km)) in its hl2-list.    
 
Case 3: (, km, mt)-query 

On the input (, km, mt), the hl oracle finds a message m and a bit string H, such that 
mt = m||H. In this case, the oracle stores the record (m, km, H) in its hl2-list. Finally, it 
returns m and the digest H. 

 
Signcrypt Oracle 

To respond to the query (m, yv), the signcrypt oracle searches the S-list. If the query 
(m, yv) has already been queried, it returns the corresponding ciphertext. Otherwise, the 
signcrypt oracle first randomly chooses a value k  Zq

*, and computes K = gk mod p and 
ke||km = hl(yv

k mod p||K). Finally, the signcrypt oracle returns the ciphertext C = Eke(m||hl 

(m, km)) and records it in the S-list (m, yv, C). 
 

Unsigncrypt Oracle 
On the input (C, yv), the unsigncrypt oracle searches the S-list first. If the record (m, 

C, yv, ke||km, K) in S-list has already been found for the query (C, yv), the unsigncrypt ora-
cle returns the m and digest = hl(m, km) with the help of the hash oracle hl. Otherwise, the 
unsigncrypt oracle chooses a value k  Zq

*, and computes K = gk mod p and ke||km = hl(yv
k 

mod p||K). The unsincrypt oracle then decrypts the cipthertext C by ke to obtain mt = 
Dke(C). With the help of the hash oracle by the query (, km, mt), the unsigncrypt oracle 
obtains m and the digest hl(m, km) such that mt = m||hl(m, km). Finally, the unsigncrypt 
oracle returns m and the digest, hl(m, km). 

If Adversary A1 wins the game with non-negligible advantage , then Challenger G1 
can use A1 to solve DDHP with non-negligible probability. Suppose that the DDHP in-
stance is (ga mod p, gc mod p, gd mod p). Challenger G1 sets the public key of the desig-
nated verifier yv = gc mod p. In the guessing phase, after receiving the {m0, m1}, Chal-
lenger G1 sets K = ga mod p and computes (ke

*||km
*) = hl(g

d mod p||K). After choosing the 
random bit b, the ciphertext C = Eke*(mb) and K are sent to A1. If A1’s guessing is correct, 
then Challenger G1 answers that gd mod p = gac mod p; otherwise, gd mod p  gac mod p. 

There are two cases in the probability analysis solving the DDHP. 
 
Case 1: gd = gac mod p. Because Adversary A1 provides the correct answer with proba-
bility (1/2 + ), Challenger G1 also solves the yes-instance of DDHP with successful 
probability (1/q)(1/2 + ). 
 
Case 2: gd mod p  gac mod p. The challenging ciphertext C* is correct because of the 
hash collision occurs with probability (1/2l). Adversary A1’s correct answer causes the 
incorrect answer for the input no-instance with probability (1/2 + ). Conversely, when 
the hash collision does not occur, the challenging ciphertext is incorrect. For the incor-
rect ciphertexts, Challenger G1 determines that the challenging ciphertexts are incorrect 
when the A1 is over its polynomial computational time bound. Then Challenger G1 pro-
vides the correct answer that gd mod p  gac mod p. In this case, Challenger G1 provides 
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the correct answer with probability (1  (1/q))(1  (1/2l) (1/2 + )). 
 
Finally, Challenger G1 correctly solves DDHP with probability (1/q)(1/2 + ) + (1  (1/q)) 
(1  (1/2l)(1/2 + )) = [(1/q) + (1  (1/q))(1  (1/2l))](1/2 + ) = [1 + (q  1)(1  (1/2l))] 
(1/q)(1/2 + ) = [q  (q  1)(1  (1/2l))(1/2 + ) > (q  (q  1))(1/2 + ) = (1/2 + ). Be-
cause (1/2 + ) is non-negligible, DDHP is solved with non-negligible probability. 
 
Strong Designated-verifier (Definition 4): A strong designated verifier ring signcryp-
tion scheme satisfies the strong designated verifier property if only the designated verifi-
er and actual signer can decrypt and verify the ring-signcryptext.  

Theorem 3 shows that only the designated verifier and actual signer can decrypt and 
verify the ring-signcryptext. Message decryption requires the session key ke obtained by 
computing ke||km = hl(yv

k mod p||K). The secret parameter k = hq(yv
k mod p) is used to 

recover temporary public keys. To determine ke||km and k, the common secret item yv
k 

mod p = Kxv mod p is necessary. Therefore, the hardness of DDHP can be used to prove 
the designated verifier property in Theorem 3. 
 
Theorem 3: Only the designated verifier and actual signer are able to recover the tem-
porary public keys Y = {yk,1, yk,2, …, yk,n} and subsequently decrypt the ring-sincryp- 
text, where yk,i = yi

k for i = 1, 2, …, n. Others cannot recover the public keys and de-
cryption the ring-signcryptext based on the hardness of DDHP. 
 
Proof: The first part of the proof shows that only the designated verifier and the actual 
signer recover the public keys correctly. Suppose that a PPT Adversary A2 can recover 
the actual ring members’ public keys with the input (K, yv, Y). With the help of Adver-
sary A2, a PPT Algorithm B is proposed to solve the DDHP problem with non-negligible 
probability. If the instance of DDHP is (ga mod p, gb mod p, gc mod p), the goal of 
DDHP is to determine whether gc mod p = gab mod p. 
 

Algorithm B first sets that K  ga (mod p), yv  gb(mod p). Then, Algorithm B 
computes k* = hq(g

c mod p) and the temporary public keys yk*,i = yi
k* (mod p) for i = 1, 

2, …, n. Next, Algorithm B queries Adversary A2 the instance (K, yv, Y
* = {yk*,1, yk*,2, …, 

yk*,n}) and Adversary A2 responses B the public keys Ŷ = (ŷ1, ŷ2, …, ŷn). If Ŷ = Y = {y1, 
y2, …, yn}, then Algorithm B outputs gc  gab (mod p). 

The probability analysis that Algorithm B provides the correct answer is shown be-
low. The analysis consists of two cases because of the relationship between k* = hq(g

c 
mod p) and k = hq(yv

k mod p) = hq(g
ab mod p). 

 
Case 1: gc  gab (mod p). In this case, k* = hq(g

c mod p) = hq(yv
k mod p) = hq(g

ab mod p) 
= k. Because k* = k, Adversary A2 correctly responds the public key Ŷ = Y = {y1, y2, …, 
yn}. Thus, Algorithm B correctly solves the DDHP by determining whether Ŷ = Y = {y1, 
y2, …, yn}. The correct probability of this case is (1/q). 
 
Case 2: gc mod p  gab mod p. Because gc mod p  gab mod p, k* = k only because of the 
hash collision hq(yv

k mod p) = hq(g
c mod p). With the hash collision hq(yv

k mod p) = hq(g
c 

mod p), Algorithm B provides the incorrect answer. Conversely, without hash collision, 
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Adversary A2 always provides the incorrect response. Thus, B provides the correct an-
swer, gc mod p  gab mod p. In this case, Algorithm B provides the incorrect answer with 
probability ((q  1)/q))(1/q) = (q  1)/q2. 

Based on this analysis, the probability of an incorrect answer of Algorithm B is ((q 
 1)/q))(1/q) = (q  1)/q2 < 1/q. Because q is a large prime number, the probability 1/q is 
negligible. Hence, Algorithm B solves DDHP with a non-negligible probability. 

The second part of this proof shows that no one is able to decrypt the ring-sign- 
cryptext except the designated-verifier and actual signer. Suppose that an adversary re-
cover the message from the ring-signcryptext by giving the parameter K and the desig-
nated-verifier’s public key yv. By using this adversary, this proof proposes Algorithm B* 
to solve the DDHP instance, (ga mod p, gb mod p, gc mod p). Algorithm B* first sets the 
K  ga  gk (mod p) and yv  gb  gxv (mod p). Algorithm B* computes ke

*||km
* = hl(g

c mod 
p||K) and obtains the ring-signcryptext C* = Eke* (m||hl(m, km

*)) where m is the message 
chosen by B. On the input (C*, K, yv), the adversary outputs a message m*. If m = m*, 
then B* answers that gc  gab (mod p); otherwise, gc mod p  gab mod p. 

Similarly, Algorithm B* provides the incorrect answer when gc mod p  gab mod p 
and the occurrence of hl(g

c mod p||K) = hl(g
ab mod p||K). Thus, the probability of Algo-

rithm B*’s incorrect answer is ((q  1)/q))(1/2l) < (1/2l). The probability-bound (1/2l) is 
negligible because the hash function hl avoids collisions with non-negligible probability. 
Therefore, Algorithm B* solves DDHP with non-negligible probability. 
 
Signer Ambiguity (Definition 5): A strong designated verifier ring signcryption scheme 
satisfies the signer ambiguity property if no PPT designated-verifier can identify the ac-
tual signer with non-negligible probability. 

Suppose that the ring-signcryptext is  = (C; Y; K; i0, vi0; m1, m2, …, mn; (1, 1), 
(2, 2), …, (n, n)) on the message m. Consider whether the ring-signcryptext C = 
Eke(m||hl (m, km)) is used to identify the actual signer. The proposed scheme computes the 
encryption key ke and authentication key km using ke||km = hl(yv

k mod p||K). Suppose that 
hl is an ideal hash function. Because k is a random value uniformly distributing over Zq

*, 
K is also uniformly distributes over Zp. Because the ring-signcryptext C is also uniformly 
distributed, C cannot be used to identify the actual signer. 

Consider whether the temporary public key Y is used to identify the actual signer. 
Because k is randomly and uniformly chosen in Zq

*, k = hq(K
xv mod p) is also uniformly 

distributed over Zq
*, each temporary public keys yk,i = yi

k is also uniformly distributed 
for i = 1, 2, …, n. Thus, Y cannot be used to identify the actual signers. 

Consider the ElGamal signatures (i, i) on mi for i = 1, 2, …, n. These ElGamal 
signatures are classified into forged signature (i, i) on mi for i = 1, 2, …, n and i  s 
and the actual signer’s signature (s, s) on ms. First, consider the distribution of each 
forged signature (i, i). Because ai and bi are randomly and uniformly chosen over Zq 
and Zq

*, respectively, i = gaiyi
bi mod p, i = ibi

-1 mod q and mi = aii mod q are also 
uniformly distributed over Zp

*, Zq
* and Zq

*, respectively. Next, consider the distribution 
of the actual signer’s signature (s, s) on ms. Since vs and v are uniformly distributed 
over Zq

*, the message ms = v + (vs) is also uniformly distributed. The random number ks 
is also uniformly distributed over Zq

*; thus, s and s are also uniformly distributed over 
Zp

* and Zq
*, respectively. Due to the analysis, all the forged signatures (i, i)’s and actu-

al signer’s signature (s, s) have the same distribution; thus, they are indistinguishable 
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from each other. So the ElGamal signatures cannot be used to identify the actual signer. 
Next, consider v and vi for i = 1, 2, …, n. Suppose that the hash function hq is an 

ideal hash function, so v = hq(g
r mod p||m||ys) is uniformly distributed over Zq

*, where r is 
an random integer chosen over Zq

*. Because the hash function is ideal, vi is also uni-
formly distributed over Zq

*.  
According to this analysis, no parts of  can be used to identify the actual signer; 

therefore, the designated verifier cannot identify the actual signer. 
 
Signer Anonymity (Definition 6): A strong designated verifier ring signcryption scheme 
satisfies the signer anonymity property if, except for the actual signer and designated 
verifier, no PPT algorithm finds out the actual signer among all possible one with non- 
negligible probability.   

To provide signer anonymity, the key point is that no PPT one is able to distinguish 
the legal ring-signcryptext from illegal ring-signcryptexts, which cannot pass the Ring- 
Unsigncrypt algorithm, with non-negligible probability. Since no one can distinguish the 
legal/illegal ring-signcryptexts, no one can find out who the actual signer is. The actual 
signer and the forgers are the possible candidates, so the identity privacy of the actual 
signer is protected in signer anonymous way.    

The following algorithm may generate an illegal ring-signcryptexts.    
 

Illegal-Ring-Signcrypt Algorithm (IRS) 
Step 1: Choose a random value xs  Zq

* and compute ys = gxs mod p such that ys is not 
a certificated public key. 

Step 2: Choose another random integer k  Zq
*, compute K = gk mod p, k = hq(yv

k mod 
p), and ke||km = hl(yv

k mod p||K), and signcrypt the message m using C = Eke(m||hl 

(m, km)). 
Step 3: Compute all ring member’s temporary public keys yk,i = yi

k mod p, for i = 1, 
2, …, n, i  s, and yk,s = ysk mod p. 

Step 4: Forge the other ring member’s ElGamal signature (i, i) on mi by first choosing 
two random numbers ai  Zq, bi  Zq

*, and computing i = gaiyi
bi mod p, i = 

ibi
-1 mod q, and mi = aii mod q for i = 1, 2, …, n, i  s. 

Step 5: Choose a random integer v  Zq
*. 

Step 6: Find ms by computing 
vs+1 = hq(m, v), 
vs+2 = hq(m, vs+1 + ms+1 mod q), 
vs+3 = hq(m, vs+2 + ms+2 mod q), 
…, vn = hq(m, vn-1 + mn-1 mod q), 
v1 = hq(m, vn + mn mod q), 
v2 = hq(m, v1 + m1 mod q), 
…, vs = hq(m, vs-1 + ms-1 mod q), and 
ms = (vs) + v mod q. 

Step 7: Generate the ElGamal signature (s, s) on ms by choosing a random integer ks 
 Zq

*, and then computing s = gks mod p and s = ks
-1(ms  xss) mod q. 

Step 8: Output the ring-signcryptext  = (C; Y; K; i0, vi0; m1, m2, …, mn; (1, 1), (2, 
2), …, (n, n)), where i0 is a random integer between 1 and n and Y = {yk1, 
yk2, …, yks …, ykn}. 
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To prove signer anonymity, the following subsections define the signer anonymity 
game and provide proof of the signer anonymity. 
 
Signer Anonymity Game 

First, Adversary A3 gives Challenger G2 a message m. G2 chooses a random bit b. If 
b = 0, Challenger G2 generates the legal ring-signcryptext on the message m using the 
Ring-Signcrypt algorithm; otherwise, Challenger G2 generates the illegal ring-signcry- 
ptext using the Illegal Ring-Signcypt algorithm or generating in a random manner. After 
receiving the legal or illegal ring signcryptext from G2, Adversary A3 outputs its guessing 
bit b in polynomial time. If Adversary A3 provides the correct answer b = b with non- 
negligible advantage  more than 1/2, then Adversary A3 wins the game.  
 
Theorem 4: No PPT adversary wins the Signer Anonymity game with non-negligible 
advantage based on the hardness of DDHP. 
 
Proof: Suppose that the PPT Adversary A3 is able to win the Signer Anonymity game 
with non-negligible advantage  more than 1/2. In this case, Adversary A3 can construct a 
polynomial-time algorithm DDHP-A solving the DDHP with non-negligible probability. 
Assume that the instance of DDHP is (ga mod p, gc mod p, gd mod p). 

Algorithm DDHP-A first sets yv = gc mod p. Adversary A3 is then asked to randomly 
choose the message m and send m to DDHP-A. After receiving the message m from Ad-
versary A3, DDHP-A chooses a random bit b. If b = 0, DDHP-A uses the Ring-Signcrypt 
algorithm with K = ga mod p to generate the legal ring-signcryptext. If b = 1, DDHP-A 
generates the illegal ring-signcryptext using the illegal Ring-Signcryptext algorithm or in 
a random manner. After receiving the ring-signcryptext from DDHP-A, Adversary A3 
responds with its answer bit b. If the answer bit is correct, DDHP-A outputs gd  gac 
(mod p); otherwise, DDHP-A outputs gd mod p  gac mod p. 

The probability analysis of DDHP-A consists of the following three cases: gd  gac 
(mod p); gd mod p  gac mod p with hash collision; and gd mod p  gac mod p without 
hash collision. 

 
Case 1: gd  gac (mod p). 

In this case, if Adversary A3 responds with the correct bit, then DDHP-A solves the 
DDHP correctly. Because Adversary A3 wins the game with probability 1/2 +  and the 
probability of gd  gac (mod p) is 1/q, the probability solving DDHP in this case is 
(1/q)(1/2 + ). 

 
Case 2: gd mod p  gac mod p with hash collision. 

In Case 2, the hash collision occurs. The probability of gd mod p  gac mod p with 
hash collision is (1  (1/q))(1/q) based on the ideal hash function assumption. Because 
the collision occurs, the challenging ring signcryptext is correct either by the Ring-Sign- 
cryptext or illegal Ring-Signcryptext algorithms, although gd mod p  gac mod p. If Ad-
versary A3 answers incorrectly with probability (1/2  ), then DDHP-A provides the 
correct answer for the DDHP problem. Thus, the probability of solving DDHP correctly 
is (1  (1/q))(1/q)(1/2  ) in Case 2. 
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Case 3: gd mod p  gac mod p without hash collision. 
In this case, since no hash collision occurs and gd mod p  gac mod p, the ring-sign- 

cryptext is incorrect or random. Based on the ideal hash function assumption, the proba-
bility of gd mod p  gac mod p without hash collision is (1  (1/q))2. Because challenging 
ring-signcryptext is always incorrect or random, Adversary A3 answers correctly with 
probability 1/2. The probability of correctly solving DDHP in this case is (1  (1/q))2 

(1/2 + )(1/2). 
According to the three analyzed cases, the probability of solving DDHP with (1/q) 

(1/2 + ) + (1  (1/q))(1/q)(1/2  )+ (1  (1/q))2(1/2 + )(1/2) = (1  (1/q))2(1/4 + /2) + 
(1/q)  (1/q)2(1/2  ) > (1  (1/q))2(1/4 + /2), where q is a large prime, 1/2 > (1/2  ) > 
0, and (1/q)  (1/2) (1/q)2 > 0. Because q is a large prime and  is non-negligible, (1  
(1/q))2(1/4 + /2) is non-negligible. Thus, DDHP-A solves DDHP with non-negligible 
probability. However, no PPT algorithm solves DDHP with non-negligible probability; 
therefore, Adversary A3 cannot exist. 

4. COMPARISONS AND DISCUSSIONS 

The comparison of security properties of the proposed scheme with those of Han et 
al., Huang et al., and Selvi et al. First, the signer anonymity is considered. Two types of 
signer anonymity are considered for these ring signcryption schemes. One is the signer 
anonymity for the designated verifier and one is the signer anonymity for the other. All 
four schemes provide 1-out-of-n signer anonymity for the designated verifier. However, 
the proposed scheme provides 1-out-of-infinite signer anonymity for the others, whereas 
the three other schemes provide only at most 1-out-of-(n + 1) signer anonymity. There-
fore, the signer anonymity of the proposed scheme is stronger than the other three 
schemes. 

Because the signer is anonymous, the signer admission is necessary to show who the 
actual signer is. Among these four schemes, only the proposed scheme provides sig ner 
admission, so the proposed scheme provides strong benefit protection for actual signers. 

For the confidentiality property, the proposed scheme and those of Huang et al. and 
Selvi et al. provide indistinguishable confidentiality against adaptive chosen ciphertext 
attacks (IND-CCA2). However, only the Harn et al. scheme provides indistinguishable 
confidentiality against chosen plaintext attacks (IND-CPA). 

Next, consider the message length. Because the proposed scheme uses symmetric 
encryption to encrypt messages, it does not have a message length restriction. The other 
three schemes adopt the public key cryptosystems; thus, they suffer the length restriction 
on messages. Therefore, the proposed scheme removes the message length restriction. 
Moreover, the encryption/decryption performance in this scheme is better than that in the 
other three schemes. 

Table 1 provides a comparison of the four mentioned schemes. The proposed scheme 
provides stronger signer anonymity and signer admission to protect the actual signer’s 
privacy. Conversely, this scheme satisfies IND-CCA2 and EF-CMA2 to provide ring- 
signcrytexts simultaneously. 

Table 2 shows the performance of the proposed scheme. The notations are defined 
first. Notation Te is the computation cost to perform one modular exponentiation opera-
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tion. Tinv is the computation cost to perform one modular inverse operation. Th is the 
computation cost to execute hash function once and Tsym is the computation cost to per-
form the symmetric encryption/decryption operation. 

In the Ring-Signcryption algorithm, the computation cost of Step 1 is 2Te + 2Th + 
1Tsym. The computation cost of Step 2 is n  Te and the cost of Step 3 is (n  1)  (1.16Te 
+ 1Tinv) [21]. The computation cost of Step 4 is 1Te + 1Th. The computation cost of Step 
5 is n  Th. The computation cost of Step 6 is 1Te + 1Tinv. Finally, the Ring-Signcryption 
algorithm’s computation cost is (2.16n + 2.84)Te + nTinv + (n + 3)Th + 1Tsym.  

In the Ring-Unsigncrypt algorithm, the computation cost of Step 1 is 1Tsym + 1Te + 
1Th. The computation cost of Step 2 is 1Th + 1Tinv + nTe. In Step 3, the computation cost 
is n  (2.16Te) [21]. In Step 4, the computation cost is nTh. Finally, the total cost of 
Ring-Unsigncrypt algorithm is (3.16n + 1)Te + 1Tinv + (n + 2)Th + 1Tsym. 

The computation cost of admission algorithm is at least 2Te + 1Th. The ring sign-
cryptext must be validated by the Ring-Unsigncrypt algorithm in advance. The extra 
computation cost is to validate the Schnorr signatures. 

Table 1. Security property comparison. 
Schemes 

Properties 
Han et al. 
Scheme 

Huang et al. 
Scheme 

Selvi et al. 
Scheme 

Our 
Scheme 

Signer Anonymity for the Others 1/(n + 1) 1/n 1/n 1/max 
Signer Anonymity for the Desig-
nated-Verifier 

1/n 1/n 1/n 1/n 

Signer Admission No No No Yes 
Message Confidentiality IND-CPA IND-CCA2 IND-CCA2 IND-CCA2 

 

Table 2. Computation cost of our scheme. 
Algorithms Our Scheme 

Ring-Signcrypt (2.16n + 2.84)Te + nTinv + (n + 3)Th + 1Tsym 
Ring-Unsigncrypt (3.16n + 1)Te + 1Tinv + (n + 2)Th + 1Tsym 
Admission  2Te + 1Th 

5. CONCLUSIONS 

A ring signature scheme with a strong designated verifier provides signer anonymi-
ty to protect the signer’s identity. However, the message may reveal some sensitive data 
about the signer’s identity. To remove this flaw, Han et al., Huang et al., and Selvi et al. 
each proposed ring signcryption schemes. To provide stronger signer anonymity, this 
study proposes a ring signcryption scheme with a (strong) designated verifier. Compared 
with the Han et al., Huang et al., and Selvi et al. schemes, this scheme provides stronger 
signer anonymity for the other verifiers. This scheme still provides the same signer ano-
nymity for the designated verifier as the other three schemes. For unforgeability and 
confidentiality properties, this scheme is as strong as the Huang et al. scheme and Selvi 
et al. scheme, but stronger than the Han et al. scheme. The proposed scheme is also free 
of the message length restriction, whereas the other three schemes are not. 
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