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Medical image analysis has experienced different stages of development, especially 

with the emergence of deep learning. However, acquiring large-scale, high-quality labeled 

data to train a deep learning model takes time and effort. This paper proposes a semi-

supervised learning method for medical image segmentation using limited labeled data and 

large-scale unlabeled data. Inspired by the classic Generative Adversarial Network (GAN) 

and co-training strategy, we proposed a new Co-GAN framework to implement medical 

image segmentation. The proposed Co-GAN comprises two generators and one discrimi-

nator, in which two generators can provide mutual segmentation information to each other. 

Through adversarial training between generators and discriminators, Co-GAN achieved 

higher segmentation accuracy. The dataset used was the hippocampus in Medical Segmen-

tation Decathlon (MSD). There were four training data settings: 25 labeled slices/3,374 

unlabeled slices; 50 labeled slices/3,349 unlabeled slices; 100 labeled slices/3,299 unla-

beled slices; and 200 labeled slices/3,199 unlabeled slices. Three experiments were con-

ducted for each data set: fully supervised learning based on a generator network using only 

labeled data (F-Generator), semi-supervised learning based on GAN (Semi-GAN), and 

semi-supervised learning based on Co-GAN. The experiments showed that Co-GAN im-

proved the segmentation accuracy by (1.9%, 2.6%, 1.1%, and 0.1%) compared to F-Gen-

erator and (2.2%, 0.8%, 0.5%, 0.7%) to Semi-GAN.     

 

Keywords: semi-supervised learning, GAN, co-training, Co-GAN, medical image segmen-

tation 

 

1. INTRODUCTION 
 

Deep learning algorithms such as Convolutional Neural Networks have made rapid 

development in medical image segmentation, as reported by [1-7]. Most segmentation 

models are trained to extract features using fully-supervised learning, which requires mas-

sive labeled data for training to get satisfactory segmentation results. It is challenging to 

acquire large-scale and carefully labeled datasets for medical images. The process of ob-

taining a perfect dataset is rather time-consuming and labor-intensive, which leads to the 

expense of data collection. Meanwhile, unlabeled data are more accessible than labeled 

data, and many unlabeled data are produced daily in clinical practice. Thus, many research-

ers have turned to semi-supervised learning studies for medical image segmentation, as 
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done by [8-12], aiming to alleviate the burden of collecting labeled data. In semi-super-

vised learning-based segmentation methods, the information of unlabeled data is extracted 

to train the model along with limited labeled data. For example, the authors in [10] com-

bined post-processing with self-training to achieve segmentation of ventricular MRI. This 

method would train the segmentation network with labeled data, and then unlabeled data 

was fed into the network to get a segmentation map. Consequently, the segmentation map 

was optimized by post-processing. The refined map was directly taken as the additional 

ground truth for updating the network parameters. In [11], the authors improved the train-

ing strategy of [10] by using a reasonable part of the region of the segmentation map of the 

unlabeled data and combined it with the labeled data to improve the training procedure. It 

shows that an unlabeled data segmentation map (also called the predicted map) is crucial 

in the training process. Thus, it is vital to improve the predicted map’s quality for unlabeled 

data to achieve higher segmentation accuracy. 

One of the most popular approaches in semi-supervised learning is called co-training, 

initially proposed by Blum and Mitchell [13]. Co-training trains multiple models by first 

using labeled data, in which each model should be trained sufficiently by a single view of 

the data. Then, co-training minimizes the disagreements by assigning pseudo labels be-

tween each view on unlabeled data [14]. In the co-training process, the predicted maps 

from different perspectives should be agreed upon for the same unlabeled data, enforcing 

multiple models to be generalized well to the unlabeled data [15]. With the development 

of the co-training approach, the idea of co-training has been applied to different research 

studies, such as data augmentation [16-17], image segmentation [14, 15, 18-20], image 

classification [21], and image recognition [22-24]. 

For image segmentation, the authors in [14] proposed an uncertainty-aware multi-

view co-training (UMCT) framework to segment 3D medical images in which an uncer-

tainty-weighted label fusion mechanism was proposed to estimate the reliability of the pre-

dicted map for each view. In [15], the authors proposed a deep adversarial co-training 

method for 2D medical image semantic segmentation. They used multiple models to pre-

dict the pseudo labels and fused them to get the average. At the same time, adversarial 

samples were introduced to capture the difference between the models to make the models 

learn more complementary information in the training process.  

Meanwhile, the authors in [18] proposed a deep attention network to find and correct 

erroneous information in noise labels adaptively and consequently proposed a hierarchical 

distillation method to generate more reliable predicted maps. When developing a predicted 

map, each model’s prediction in model distillation was replaced by the prediction of each 

model under multiple data transformations. Then the predictions were fused to get the final 

predicted map, which further improves the quality of the predicted map. In [19], the authors 

proposed SMU-Net to achieve brain tumor segmentation with missing modalities. The au-

thors utilized a co-training strategy to distill the useful information from the full-modality 

path into a missing modality path, in which co-training encourages the missing modality 

network to reconstruct the missing information. In [20], the authors proposed a deep mul-

tiplanar co-training (DMPCT) to achieve abdominal multi-organ segmentation. The co-

training could mine consensus information from multiple planes like sagittal, coronal, and 

axial planes, and then multi-planar fusion was applied to generate more reliable predicted 

maps. In the co-training approach used by the above-mentioned studies, the mean or wei-

ghted fusion of the predicted maps may affect the training results. Although the fusion of 
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predicted maps can improve training performance, the measurement to accurately estimate 

the confidence of the predicted maps is still an essential problem [25]. Several predicted 

maps with low segmentation performance during fusion will affect the training outcome. 

Recently, generative adversarial network (GAN) [26] based approaches are also pop-

ular for medical image processing, and some prominent extension models were also pro-

posed in [8, 9, 27-34]. GAN consists of two networks: generator and discriminator. These 

two networks were in an adversarial two-players game [28] in which a generator was used 

to generate a predicted map with high similarity to the ground truth of the real data, 

whereas a discriminator was used to estimate whether the predicted map came from the 

ground truth of real data or outputs of the generator.  

For example, the authors in [30] used GAN to generate predicted samples for unla-

beled data to enlarge the training dataset size, in which the ability of the discriminator will 

significantly affect the performance of the entire adversarial learning process. In [8], the 

authors proposed Deep Adversarial Network (DAN) to perform adrenal and fungal seg-

mentation tasks. The researchers designed an adversarial loss function that used unlabeled 

data to control the training process better. In [28], the authors refined the goal of the dis-

criminator, which can output a confidence map of the predicted map. The predicted map 

with high confidence was chosen as the pseudo-label map to train the model.  

Consequently, the entire model was iteratively optimized by the self-training method. 

In [33], the authors used the discriminator to distinguish the quality of predicted maps from 

the segmentation network. At the same time, a classification network was utilized to assist 

in optimizing the predicted maps by using attention features. In [34], the authors proposed 

a GAN-based model for Breast Ultrasound Image (BUS) image segmentation. A dual-at-

tentive-fusion block was designed to extract features of the lesion region and background 

separately, which makes more effective discrimination for the quality of predicted maps. 

Besides, many medical image segmentation approaches based on the extension of GAN 

have been studied, as described in the paper [27]. Based on this literature on extended 

GANs, one generator commonly corresponds to one discriminator to achieve medical im-

age segmentation.  

The adversarial training between GAN’s generator and discriminator shows that a 

generator can change the usage of an unlabeled dataset. The training procedure yields a 

more trustworthy predicted map that can deceive the discriminator into believing that the 

predicted map has a high degree of similarity to the ground truth. Thus, the whole perfor-

mance of GAN is improved to produce final satisfactory segmentation results. Conversely, 

the co-training strategy can use the predicted maps of different data views to supervise 

each other in multiple models. The strengths of adversarial training of GAN and co-train-

ing design are complementary and are the aim of this paper. Thus, the combination of a 

co-training strategy and GAN is proposed and named Co-GAN to produce high-quality 

predicted maps for medical image segmentation. In Co-GAN, two generators and one dis-

criminator were adopted compared to extended GANs [27]. The two generators utilize the 

co-training strategy to provide mutual segmentation information.  

Furthermore, the adversarial training between two generators and one discriminator 

allows better interaction among each other. One generator corresponds to one discrimina-

tor in each co-training stream [15]. There needs to be more mutual guidance between these 

streams. In Co-GAN, generators can extract more feature information, conserving compu-

tational space, despite just one utilization of one discriminator. Thus, Co-GAN signifi-

cantly improved the quality of predicted maps. 
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This paper concludes the significant contributions as follows:   

 

(1) A semi-supervised learning based on co-training and GAN (Co-GAN) was proposed 

to use information from the unlabeled data fully. The proposed method can improve 

image segmentation while only using limited labeled data and large-scale unlabeled 

data. 

(2) In Co-GAN, there were two generators and one discriminator. Because the unlabeled 

data lacks ground truth, the two generators can provide mutual segmentation infor-

mation to each other. The discriminator was used to distinguish between the predicted 

map produced by the generator and the ground truth. Through adversarial training, Co-

GAN can achieve higher segmentation accuracy because the discriminator can guide 

the generator to generate a more accurate predicted map. The mutual information guid-

ance of the two generators can also improve segmentation performance.   

(3) According to the experiment results, the proposed Co-GAN can achieve more accurate 

segmentation results. Co-GAN can alleviate the burden of clinical experts for the an-

notation process and improve the utilization of unlabeled data. 

2. METHOD 

This paper compares fully supervised (F-generator), semi-supervised (semi-GAN), 

and the proposed Co-GAN framework to understand their performance in leveraging 

largescale unlabeled data for medical image segmentation. Figs. 1-3 introduce the archi-

tecture of Co-GAN and two comparison models. The encoder-decoder structure is one of 

the most popular architectures for medical applications. Thus, all three models utilized an 

encoder-decoder deep learning network known as a generator. F-Generator only used la-

beled data to perform segmentation, as shown in Fig. 1. The second model, semi-GAN 

(see Fig. 2), used a generator and discriminator for the segmentation. Semi-GAN utilized 

both labeled and unlabeled data. Fig. 3 depicts the proposed Co-GAN, which consists of 

two generators and a discriminator. In Co-GAN, the interaction between the generators 

and discriminator enhances segmentation performance. The discriminators of semi-GAN 

and Co-GAN also adopted the same network structure. The subsequent section describes 

the details of the F-generator, semi-GAN, and Co-GAN. 

 

 
Fig. 1. F-generator (input contains labeled data only). 

 

 
Fig. 2. Semi-GAN (input contains labeled data and unlabeled data). 
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Fig. 3. Co-GAN (input contains labeled data and unlabeled data, and dotted lines represents main 

interactions). 

 

2.1 Overview of the Co-GAN Framework 

Fig. 4 shows the proposed Co-GAN framework consisting of two generators and one 

discriminator. Generator 1 receives labeled data (original image and ground truth) and un-

labeled data (original image) to generate corresponding predicted maps. Meanwhile, Gen-

erator 2 accepts rotated labeled data (rotated original image and rotated ground truth) and 

rotated unlabeled data (rotated original image) to generate corresponding rotated predicted 

maps. Conversely, the discriminator acquires five resources: predicted map with the orig-

inal image for labeled data (predicted map 1), predicted map with the original image for 

unlabeled data (predicted map 2), ground truth with the original image for labeled data, 

rotated predicted map with the rotated original image for rotated labeled data (rotated pre-

dicted map 1), and rotated predicted map with the rotated original image for rotated unla-

beled data (rotated predicted map 2). 

In GAN, the generator generates a predicted map closer to the ground truth, while the 

discriminator distinguishes between the predicted map and the ground truth. The discrim-

inator outputs an evaluation score for each input data i.e. 0 and 1. The input data to the 

discriminator which is the ground truth, was represented with 1, while 0 represents the 

predicted map’s input data. Therefore, the closer the score was to 1, the more realistic the 

input of the discriminator is, which means the closer to the ground truth. However, the 

closer the score was to 0, the more fictitious the information of the discriminator was, 

which means the closer to the predicted map, and the quality was too poor. The continuous 

iterative optimization improved the adversarial training process. 

In Co-GAN, there were two generators available. Aside from the adversarial training 

process between generators and discriminators, the two generators in Co-GAN have an-

other goal: to provide mutual guidance for each other. The predicted map from Generator 

1 and the rotated predicted map from Generator 2 should reach a consensus for one data. 

Hence, the expected map from each generator can be taken as fake ground truth to super-

vised one another to learn the mutual information. 

In Fig. 4, similarity loss was the loss function to evaluate the difference between pre-

dicted maps from the two generators. The smaller the similarity loss value was, the more 

similar the predicted maps are, which means two generators could reach an agreement for 
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one data. Since Co-GAN only has one discriminator and can guide the generator optimi-

zation, Generator 1 and Generator 2 can influence each other through adversarial training 

and mutual guidance from the similarity loss. 

 

 

 
Fig. 4. The detailed architecture of the proposed Co-GAN framework. 

 

(A) Design of generators 

In Co-GAN, two generators are designed to generate predicted maps for input data, 

that is medical image in this paper. The interaction between two generators in this paper 

reflects the co-training strategy. Thus, there were two data views required for co-training. 

One data view was the original image, and the other was the rotated original image in 

which the rotation angle is 180°. The 180° chosen is easy to implement in experiments, 

and also has suitable performance for enlarging the difference of views for co-training 

strategy. Generator 1 accepts original images as input, while Generator 2 accepts rotated 

original images. Nevertheless, the networks of the two generators have the same structure, 

as shown in Fig. 5. 
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Fig. 5. The encoder-decoder structure of the generator. 

 

The network of the generator was an encoder-decoder structure. One block unit con- 

tains two convolution layers with kernel size 3×3, batch normalization (BN) layer, one 

LeakyReLU layer, and one Max-pooling layer with pool_size 2. For each generator in Co-

GAN, the input data contains labeled and unlabeled data. Firstly, a convolution with kernel 

size 1×1 was applied to the input data and transferred into three consecutive block units, 

and the feature maps for convolution layer in each block unit are 64, 128, 256 respectively. 

Hence, the three-block units can fully extract the low-level and high-level features from 

the input data of size 40×56. The rest of the network was the decoder, consisting of three 

upsampling layers. A convolutional with kernel size 3×3 + dropout layer was added be-

tween the two upsampling layers because the feature map needs to be restored to a specific 

size with high-level feature information. It should be noted that the feature maps with the 

exact resolution were concatenated together between the encoder and decoder to combine 

low-level and high-level information to improve segmentation accuracy. Finally, two con-

volution layers with kernel size 3×3 and 1×1 respectively after the final upsampling were 

used to merge the channel of the feature maps into one to get the predicted map. 

In the Co-GAN training process, the similarity loss between two generators was used 

to measure the similarity of predicted maps for one input data. Thus, the predicted map 

from Generator 2 must be rotated 180° again when calculating the similarity because gen-

erator 2 accepts rotated labeled data (rotated original image and rotated ground truth). The 

rotated unlabeled data (rotated original image) generates corresponding rotated predicted 

maps. 

(B) Design of discriminator 

The discriminator aims to distinguish between the predicted map and the ground truth. 

An evaluation score between 0 to 1 was given to the input data representing the similarity 

of the input to either the predicted map or the ground truth. The closer the score was to 1, 

the more realistic the input data was, which means the closer to the ground truth. However, 

if the score was closer to 0, the more fictitious the input data was, which means the closer 
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to the predicted map.  

In Co-GAN, the discriminator has five input data resources: predicted map with the 

original image for labeled data, predicted map with the original image for unlabeled data, 

ground truth with the original image for labeled data, rotated predicted map with the rotated 

original image for rotated labeled data, and rotated predicted map with the rotated original 

image for rotated unlabeled data. For the sake of the description, it should be clear that the 

predicted map and ground truth both represent the region-of-interest (ROI) segmentation 

of the original image. The difference between them was that the predicted map was from 

the generator, while the ground truth was from experts’ annotation. When training the dis-

crimination, there were three channels for one input data. The first channel was the original 

image, the second channel was the corresponding segmented ROI (predicted map or 

ground truth), and the third channel was the inverse segmented ROI (inverse predicted map 

or inverse ground truth).  

The architecture of the discrimination was shown in Fig. 6. First, the input for each 

channel was convolved twice, using a kernel size of 1×1, and kernel size of 3×3. Then 

the original image and its segmented ROI (ground truth) were multiplied to produce Output 

1. The original image and the inverse segmented ROI were simultaneously multiplied to 

generate Output 2. Thus, Output 1 provides information on ROI, and Output 2 provides 

information on the background. Next, the outputs implement the block operations twice 

(each block contains convolution + batch normalization + LeakyReLU). Consequently, the 

outputs after the operations of the block were concatenated to create Output 3. Two block 

operations were applied on Output 3 to produce Output 4. Finally, Output 4 was subjected 

to a 1×1 convolution, flatten, and dense to get the evaluation score to distinguish the source 

of input data. 

 

 
Fig. 6. The architecture of the discriminator. 

2.2 Training Strategy of Semi-supervised Learning based on Co-GAN Framework 

In this section, the training strategy in Co-GAN consists of a semi-supervised learning 

process and the loss function definition. First, the semi-supervised learning process was 

introduced, and then the loss function definition in the training process was described in 

detail. 
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(A) Semi-supervised learning process 

Fig. 4 shows that there were two generators and one discriminator in Co-GAN. For 

each generator, the input was a single view of the training data. In this paper, one view of 

the training data was the original image, and the other view of the training data was the 

rotated original image in which the rotation angle is 180°. For the initialization process, 

each generator was trained by using only the labeled data. This was a fully-supervised 

learning. However, the two generators and one discriminator are combined to represent the 

proposed Co-GAN. The Co-GAN framework used semi-supervised learning dataset com-

prising unlabeled and limited labeled data. 

 

(B) Loss function definition 

The loss function provides the direction of model optimization, which was utilized to 

calculate the predicted error during the training process. The predicted error presents the 

difference between the ground truth and the predicted map. Then, the model was trained 

to minimize the predicted error.   

The first step in Co-GAN strategy was to initialize the two generators by training 

them with labeled data. The segmentation loss function for Generator 1 was notated by 

lossseg1 and defined as follows, 

lossseg1 = lossdice1 + lossdis1   (1) 

where 
1 1

1 1

1 1 1

| |
1 ( , ) 1 2

| | | |

L L
dice L L

L L

Y Y
loss Dice Y Y

Y Y


= − = −

+
   (2) 

and  

1 1 1 1

2 log (1 ) log(1 )dis L L L Lloss Y Y Y Y= −  − −  −    (3) 

YL
1
 = ground truth of the labeled data used by Generator 1 

YL
1
 = predicted map of the labeled data generated by Generator 1 

Similarly, the loss function for Generator 2 notated by lossseg2 was defined as follows, 

lossseg2 = lossdice2 + lossdis2     (4) 

where 
2 2

2 2

1 2 2

| |
1 ( , ) 1 2

| | | |

L L
dice L L

L L

Y Y
loss Dice Y Y

Y Y


= − = −

+
   (5) 

and 
2 2 2 2

2 log( ) (1 ) log(1 )dis L L L Lloss Y Y Y Y= −  − −  −    (6) 

where 

YL
2
 = ground truth of the labeled data used by Generator 2 

YL
2
 = predicted map of the labeled data generated by Generator 2 

 

In general, the segmentation loss notated by lossseg represents the supervised segmen-

tation loss between the predicted map and the ground truth and only works with labeled 
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data, measuring how similar they are. Meanwhile, lossdis was the binary cross-entropy loss. 

These two losses simultaneously control the initialization of generators. The optimizer 

used in the initialization process was Adam, while the training epochs were set to 150 and 

the batch size was set to 16. 

The second step was to train the combination of two generators and one discriminator 

using unlabeled data and limited labeled data. The loss functions in this step were defined 

in the generator and discriminator optimization process. Eq. (7) defines the generator’s 

loss function in which  and  denote losssimi and lossadv weight. The derivations of each 

loss weight were presented in Eqs. (8)-(10). 

lossG = lossseg + lossdis2 + lossadv    (7) 

lossseg = lossseg1 + lossseg2     (8) 

1 2 1 2( , ) ( , )simi bce L L bce U Uloss l Y Y l Y Y= +    (9) 

1 1 1 1

2 2 2 2

( ( , ),1) ( ( , ),1)

          ( ( , ),1) ( ( , ),1)

adv bce L L bce U U

bce L L bce U U

loss l D X Y l D X Y

l D X Y l D X Y

= +

+ +

   (10) 

where 

XL
1
 = labeled data used by Generator 1 

XU
1
 = unlabeled data used by Generator 1 

XL
2
 = labeled data used by Generator 2 

XU
2
 = unlabeled data used by Generator 2 

YL
1
 = predicted map for labeled data generated by Generator 1 

YL
1
 = predicted map for unlabeled data generated by Generator 1 

YU
2
 = predicted map for labeled data generated by Generator 2 

YU
2
 = predicted map for unlabeled data generated by Generator 2 

 

In the semi-supervised learning process, labeled data was used to train two generators, 

preventing large errors in the Co-GAN training process when using unlabeled data. The 

similarity loss notated by losssimi describes the similarity of the predicted maps from two 

generators for one data and lbce() was the binary cross-entropy loss. It should be noted that 

the predicted map from Generator 2 was rotated compared to Generator 1. When calculat-

ing losssimi,YL
2
 andYU

2
, the predicted map should be rotated 180 again. According to the 

losssimi function definition, two generators can provide segmentation information to each 

other so that the performance of Co-GAN can be improved by mutual guidance between 

the two generators. 

Meanwhile, the adversarial loss notated by lossadv represents adversarial loss between 

the generator and discriminator. Additionally, lossadv is minimized by using labeled and 

unlabeled data. The adversarial loss was designed to estimate the degree of the predicted 

map, which appears similar to the ground truth. The generator aims to generate the pre-

dicted map and deceiving the discriminator into thinking that the predicted map was the 

ground truth. Meanwhile, lbce refers to the binary cross-entropy function.  was the weight 

of losssimi and  was the weight of lossadv, both of which were set to 0.02 according to the 

experiments training process in this paper, ensuring the stable training of Co-GAN under 
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different training data settings.  

For discriminator optimization, the aim was to make the correct distinction between 

the predicted map and the ground truth. In Co-GAN, the discriminator has five input data 

resources: predicted map with the original image for labeled data, predicted map with the 

original image for unlabeled data, ground truth with the original image for labeled data, 

rotated predicted map with the rotated original image for rotated labeled data, and rotated 

predicted map with the rotated original image for rotated unlabeled data. The discriminator 

gives a score for input data in which the standard score is 1 and 0. The input data of the 

discriminator from the ground truth was represented with 1, while 0 represents the input 

data of the discriminator from the predicted map. The closer the score was to 1, the more 

realistic the input data was, which means the closer to the ground truth. Conversely, the 

closer the score was to 0, the more fictitious the input data was, which means the closer to 

the predicted map. 

During the adversarial training process, the discriminator should make the right eval-

uation for distinguishing between the predicted map and the ground truth. Then, the dis-

criminator can provide the right guidance for optimization of the generator. The evaluation 

loss functions denoted by losseva were defined as follows, 

losseva = losseva1 + losseva2   (11) 

losseva1 = lbce(D(XL
1
,YL

1
), 0) + lbce(D(XU

1
,YU

1
), 0) + lbce(D(XL

1
, YL

1
), 1)    (12) 

losseva2 = lbce(D(XL
2
,YL

2
), 0) + lbce(D(XU

2
,YU

2
), 0)    (13) 

where 

XL
1
 = labeled data used by Generator 1 

XU
1
 = unlabeled data used by Generator 1 

XL
2
 = labeled data used by Generator 2 

XU
2
 = unlabeled data used by Generator 2 

YL
1
 = predicted map for labeled data generated by Generator 1 

YL
1
 = predicted map for unlabeled data generated by Generator 1 

YU
2
 = predicted map for labeled data generated by Generator 2 

YU
2
 = predicted map for unlabeled data generated by Generator 2 

lbce = binary cross-entropy function 

losseva1 = evaluation loss of Generator 1 

losseva2 = evaluation loss of Generator 2 

 

In the training process, the optimizer for the generator was SGD, and the learning rate 

was set to 0.01. On the other hand, for the discriminator, the optimizer was RMSprop, and 

the learning rate was set to 0.001. The batch_size of the labeled data was set to 16, and the 

batch_size of the unlabeled data was set to 48. During optimization, the discriminator was 

trained to minimize losseva, and generators were trained to minimize lossG. The generators 

use labeled and unlabeled data to first minimized losssimi and lossadv, and then lossseg was 

optimized using only labeled data. In the training process, the generator was trained ten 

times, while the discriminator was trained once. Thus, the Co-GAN framework was stable 

as a trained generative model. 
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3. EXPERIMENTS RESULTS 

This section introduces the dataset, experimental realization, and result analysis. 

Overall, the section starts with the dataset description and the pre-processing steps fol-

lowed by the experimental execution process. Lastly, the section presents the discussion 

on the result to highlight the importance of all the experiments conducted. 

3.1 Dataset 

The dataset used in this research was the hippocampus images in the Medical Seg-

mentation Decathlon (MSD) dataset originated from Vanderbilt University Medical Centre. 

The hippocampus dataset contains 260 3D volumes of the MRI modality. In this paper, the 

target area was the anterior hippocampus. Fig. 7 shows one anterior hippocampus image 

viewed in three planes: Axial, Sagittal, and Coronal using 3D slicer software. 

  

 
Fig. 7. Hippocampus data (Axial, Sagittal, and Coronal plane views from left to right). 

 

Since the proposed Co-GAN framework is a 2D network, the MRI volumes and 

ground truth need to be converted to 2D images. In each direction, MRI data contains 

several 2D slices. In this paper, the 2D images were from the 2D axial slices. For the hip-

pocampus dataset, each data has 29–40 slices in the axial plane. During the conversion, the 

slices without the target region were discarded because these slices cannot provide the 

information of ROI. Then, all 2D slices were separated into the training and testing datasets. 

The training dataset contains 3,399 slices with 2D ground truth, while the testing dataset 

contains 300 slices with 2D ground truth.  

After completing 3D to 2D conversion, the images were resized, and the grey values 

were normalized to (0,1). The size of the original images was 35×51, which was resized to 

40×56 to ensure the feature maps were of the same size in concatenation operation between 

encoder and decoder.  

For semi-supervised learning based on Co-GAN, the training dataset needs to be fur-

ther separated into either a labeled or an unlabeled dataset. The labeled dataset consists of 

slices and ground truth, while the unlabeled data contains only the slices, and the corre-

sponding ground truth was discarded. When the labeled and unlabeled datasets were suc-

cessfully created, the two views of the dataset need to be constructed. In this paper, the 

labeled and unlabeled datasets were fed into Generator 1, whereas rotated labeled and ro-

tated unlabeled datasets are fed into Generator 2. Fig. 8 shows the dataset processing op-

erations in this paper.    

 



SEMI-SUPERVISED LEARNING USING CO-GAN FOR MEDICAL IMAGE SEGMENATION 

 

 

1083 

   

 

 

 

 

 

 

 

 

Fig. 8. Dataset pre-processing. 

3.2 The Experiments 

The proposed semi-supervised Co-GAN framework was implemented on Keras deep 

learning API and all the experiments were conducted on Kaggle platform.  

In this paper, there are four training data settings for the number of labeled and unla-

beled data. For each data setting, we conducted three experiments: fully supervised learn-

ing based on a generator network using only labeled data (F-Generator), semi-supervised 

learning based on GAN, and semi-supervised learning based on Co-GAN as illustrated in 

Table 1. Experiment One used four different number of labeled slices for training that are 

25, 50, 100 and 200 slices, respectively. Since Experiment Two and Three were semisuper-

vised learning, both the labeled and unlabeled slices were used. The same number of la-

beled slices used in Experiment One was also utilized in the training of Experiment Two 

and Three. The unlabeled slices used in Experiment Two and Three to train the respective 

semi-supervised GAN and Co-GAN were 3,374, 3,349, 3,299 and 3,199 slices. 

 

Table 1. Experiments process setting. 

Experiment Learning model Dataset settings 

One 
Fully-supervised Gen-  

erator (F-Generator) 
Labeled slices 25 50 100 200 

Two 
Semi-supervised GAN 

(Semi-GAN) 

Labeled slices 25 50 100 200 

Unlabeled slices 3,374 3,349 3,299 3,199 

Three 
Semi-supervised 

Co-GAN 

Labeled slices 25 50 100 200 

Unlabeled slices 3,374 3,349 3,299 3,199 

(A) F-Generator 

The aim of Experiment One was to initialize the two generators in Co-GAN frame-

work using fully supervised learning. The training dataset for fully supervised learning 

based on generator network used only labeled data as stated in Table 1. The learning rate 

in the training process adopted ReduceLROnPlateau() in Keras. When the monitored loss 

value remains unchanged, ReduceLROnPlateau() reduced the learning rate to get better 

results. In the fully-supervised learning, the epoch was set to 150, and the batch_size set 

to 16. The experiments also showed that the loss function value of training was not changed 

Construct the two views of the dataset 

3D MRI data 2D data (Axial slices) Data resizing and normalization 

Labeled data Unlabeled data 

View 1 View 2 View 1 View 2 
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after 150 epochs. Generator 1 initialization training was referred to as Seg1only. Likewise, 

Generator 2 initialization training was called Seg2only for short. 

(B) Semi-GAN 

The training dataset for semi-supervised learning based on GAN (Semi-GAN) con-

tains both labeled and unlabeled data. The training data settings included 25/3,374, 50/ 

3,349, 100/3,299, and 200/3,199 notated as labeled slices/unlabeled slices. This experi-

ment aimed to justify the effectiveness of unlabeled data utilization in the training process. 

GAN was adopted to achieve adversarial training between generator and discriminator to 

ensure the quality of the predicted map of the generator. In this experiment, the generator 

was first initialized and then combined with the discriminator to be trained using the unla-

beled data and limited labeled data. The networks of the generator and discriminator were 

equivalent to Co-GAN framework. For a fair comparison to F-Generator model, the ini-

tialized generator in Semi-GAN adopts seg1only, which means only one view of the train-

ing dataset was used to justify the effectiveness of GAN. In this experiment, the learning 

rate of the generator was set to 0.01 and the optimizer used was stochastic gradient descent 

(SGD). Meanwhile, the discriminator used a learning rate of 0.001, and the optimizer was 

root mean squared propagation (RMSprop). In the experiment process, the epoch was set 

to 60, and batch_size was set to 16 when using dataset 50/3,349, 100/3,299, and 200/3,199 

to train the model. While batch_size was set to 4 when using dataset 25/3,374, because 25 

labeled slices are too few, it was better to set batch_size to 4. The training strategy of 

SemiGAN was to train the generator 10 times before training the discriminator once to 

ensure GAN training stability using different training data settings. 

(C) Co-GAN 

The training dataset contains labeled and unlabeled data for semi-supervised learning 

based on Co-GAN. The training data settings were 25/3,374, 50/3,349, 100/3,299, and 

200/3,199, notated as labeled slices/unlabeled slices. In this paper, the labeled and unla-

beled datasets were fed into Generator 1, while the rotated labeled and rotated unlabeled 

datasets were fed into Generator 2. Co-GAN aimed to build two generators that can provide 

segmentation information for each other and used discriminators to distinguish between 

the predicted map and the ground truth. Through mutual guidance of two generators and 

adversarial training between generators and discriminators, Co-GAN was expected to 

achieve higher segmentation accuracy than F-Generator and Semi-GAN. The initialized 

two generators in Co-GAN were Seg1only and Seg2only, also used in the F-Generator ex-

periment. Nonetheless, the parameter settings of generators and discriminators were the 

same as Semi-GAN. 

3.3 Performance Evaluation 

In this section, three evaluation metrics used in this paper are described. They include-

ed Dice, Hausdorff distance (HD), and relative volume error (RVE).  

The Dice coefficient was used to evaluate the similarity between two samples. In 

medical image segmentation, the similarity or overlap between prediction result and 

ground truth can be calculated by the Dice function. A Dice value closer to 1 indicates a 

good segmentation result, while value closer to 0 shows a bad segmentation result. Given 

two sets A and B, the Dice index between them was defined as Eq. (14) [1], 
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=    (14) 

where A and B represent ground truth and predicted map, respectively. 
Hausdorff distance describes the similarity between two sets of points. It also defines 

the distance between ground truth boundaries and predicted results. Furthermore, it was 

sensitive to the boundary of segmentation. Hausdorff distance is defined as Eq. (15) [1], 

max(max(min( ( , ))),max(min( ( , ))))
j gt j pri pr i gt

H d i j d i j
  

=    (15) 

where i and j are points belonging to ground truth and predicted map, respectively. Mean-

while, d represents the distance between i and j.  
RVE describes the ratio of the absolute error of a measurement to the measurement 

being taken. In segmentation, it can be seen as an accuracy measurement. The lower the 

RVE is, the higher the segmentation accuracy is [35]. 

(| | | |)

| |
( , ) a b

b
a b

abs R R

R
RVE R R

−
=    (16) 

where Ra and Rb represent ground truth and predicted map, respectively.  

3.4 Discussion 

The experiment results are shown in Tables 2-5. Table 2 shows the mean Dice value 

for F-Generator, Semi-GAN and Co-GAN learning models. As stated earlier, the segmen-

tation results from two initialized generators are called Seg1only and Seg2only in F-Gen-

erator. Then, in Co-GAN, the segmentation results generated from Generator 1 is called 

Seg1CoGAN, and segmentation results generated from Generator 2 is called Seg2CoGAN. 

It should be noted that Semi-GAN only used Seg1only to be the initialized generator. Semi-

GAN is used to justify the effect of using unlabeled data and is also used to explain the 

effect of mutual guidance between two generators, which is the co-training in Co-GAN.  

Dice is a commonly used segmentation evaluation metric. The segmentation perfor-

mance indicates better when the overlap of the predicted map and ground truth is closer to 

1 and is relatively intuitive to evaluate segmentation results. Table 2 shows the Dice values 

using four data settings, and the value shown in parenthesis are the variation of Dice values 

distribution. Table 2 demonstrates that the utilization of unlabeled data during training im-

proved image segmentation performance. On average, the Co-GAN model has the highest 

Dice value at 0.74025 (Seg2CoGAN). Meanwhile, Semi-GAN and F-Generator (Seg1only) 

scored Dice values of 0.72925 and 0.7255, respectively. When compared at the data set-

tings level, our proposed Co-GAN achieved the highest Dice values of 0.688 (Seg1CoGAN) 

using 25/3,374 labeled/unlabeled data, 0.735 (Seg2CoGAN) at 50/3,349 labeled/unlabeled 

data, 0.774 (Seg2CoGAN) at 100/3,299 and 0.783 (Seg1CoGAN) at 200/3,199 labeled/un-

labeled data. At the same time, Co-GAN achieved significantly higher Dice values com-

pared to F-Generator and Semi-GAN under 25/3,374 labeled/unlabeled data and 50/3,349 

labeled/unlabeled data. In contrast, Co-GAN improved slightly under 100/3,299 and 

200/3,199 labeled/unlabeled data. It signifies that Co-GAN is more effective when using 

less labeled data.  
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Furthermore, the variation of Co-GAN scored the lowest value compared to Semi-

GAN and F-Generator, which means that the Dice values distribution of Co-GAN has the 

average smallest degree of dispersion (0.0285) than F-Generator (0.032) and Semi-GAN 

(0.030). At each data settings level, our proposed Co-GAN model scored the lowest distri-

bution value of 0.035 (Seg1CoGAN) using 25/3,374 labeled/unlabeled data, 0.028 

(Seg2CoGAN) at 50/3,349 labeled/unlabeled data, 0.021 (Seg2CoGAN) at 100/3,299 and 

0.025 (Seg1CoGAN) at 200/3,199 labeled/unlabeled data.  

Overall, the semi-supervised models that are Semi-GAN and Co-GAN marginally 

outperformed the fully-supervised model F-Generator in segmenting the medical images. 

This shows that the unlabeled data can provide more information to the semi-supervised 

learning models to improve image segmentation.  

Upon closer inspection, our proposed Co-GAN showed promising results in leverag-

ing unlabeled data. The highest Dice value of Co-GAN at 0.783 by Seg1CoGAN was 

achieved using 200 labeled data and 3,199 unlabeled data. This is only slightly higher than 

the F-Generator model using 200 labeled data. When the Co-GAN model used 100 labeled 

data and 3,299 unlabeled data, it managed to get a Dice value of 0.774, which is marginally 

higher than the F-Generator model of 0.771 using 100 labeled data. Similarly, F-generator 

using 50 labeled data, Co-GAN using 25 labeled data, and 3,374 unlabeled data have com-

parable Dice values. Thus, the proposed Co-GAN can achieve similar results using less 

labeled data with the information of unlabeled data. 

 

Table 2. Mean dice values of F-Generator, Semi-GAN and Co-GAN. 

Dataset 

settings 
(labeled) 

F-Generator 
Dataset 

settings 
(labeled/ 

unlabeled) 

Semi-GAN Co-GAN 

Seg1only Seg2only Seg1semiGAN Seg1CoGAN Seg2CoGAN 

25 
0.669 

(0.040) 

0.329 

(0.052) 
25/3,374 

0.666 

(0.039) 

0.688 

(0.035) 

0.677 

(0.038) 

50 
0.691 

(0.037) 

0.727 

(0.030) 
50/3,349 

0.709 

(0.035) 

0.717 

(0.032) 

0.735 

(0.028) 

100 
0.760 

(0.025) 

0.771 

(0.024) 
100/3,299 

0.766 

(0.022) 

0.771 

(0.021) 

0.774 

(0.022) 

200 
0.782 

(0.026) 

0.771 

(0.028) 
200/3,199 

0.776 

(0.026) 

0.783 

(0.025) 

0.775 

(0.026) 

Average 
0.7255 

(0.032) 

0.6495 

(0.0335) 
 

0.72925 

(0.0305) 

0.73975 

(0.0285) 

0.74025 

(0.0285) 

 

To further describe the Dice values distribution in testing data, the number (Dice > 

0.8) of the three models in Table 3 gives a statistical analysis for Dice values that are larger 

than 0.8. Meanwhile, the maximum Dice value of the three models in Table 4 can be used 

to show whether the experiments can improve the Dice value. Tables 3 and 4 show that 

Co-GAN improved the number of segmented data with high similarity Dice values. For 

example, Co-GAN segmented 112 and 120 testing data with Dice value larger than 0.8 

successfully under dataset setting 50/3,349. While F-Generator just achieved 87 and 117 

testing data segmentation using the same dataset setting in Table 3. 
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Table 3. The number of (Dice > 0.8) of F-Generator, Semi-GAN and Co-GAN. 

Dataset 

setting 
(labeled) 

F-Generator Dataset 

setting 
(labeled 

/unlabeled) 

Semi-GAN Co-GAN 

Seg1only Seg2only Seg1semiGAN Seg1CoGAN Seg2coGAN 

25 85 0 25/3,374 82 90 75 

50 87 117 50/3,349 112 112 120 

100 136 146 100/3,299 138 139 148 

200 168 164 200/3,199 165 166 167 

 

Table 4. Maximum Dice values of F-Generator, Semi-GAN and Co-GAN. 

Dataset 

setting 
(labeled) 

F-Generator Dataset 

setting 

(labeled/ 

unlabeled) 

Semi-GAN Co-GAN 

Seg1only Seg2only Seg1semiGAN Seg1CoGAN Seg2CoGAN 

25 0.918 0.744 25/3,374 0.915 0.922 0.925 

50 0.933 0.934 50/3,349 0.929 0.929 0.936 

100 0.947 0.928 100/3,299 0.949 0.948 0.938 

200 0.929 0.954 200/3,199 0.928 0.933 0.955 

 

In Table 4, the maximum Dice values in Co-GAN are 0.922 and 0.925 using dataset 

setting 25/3,374, while F-Generator scored maximum Dice values of 0.918 and 0.744 using 

the same dataset setting. This means Co-GAN is effective when more information is gath-

ered from unlabeled data. Table 5 illustrates the relative volume error (RVE) values of the 

three models, and the value in the parenthesis is the variation of RVE values distribution. 

The Co-GAN model scored the lowest average RVE of 0.3105, while F-Generator has the 

highest RVE of 0.41255. This indicates that Co-GAN has a higher accuracy than F-Gen-

erator in performing image segmentation. The Co-GAN model outperformed F-Generator 

and Semi-GAN at the data settings level using 25/3,374 and 50/3,349 labeled/unlabeled 

data. However, the RVE of the F-Generator was smaller than Semi-GAN and Co-GAN at 

data settings of 100/3,299. Finally, at data settings 200/3,199, Semi-GAN scored the low-

est RVE at 0.308. At the same time, Co-GAN can achieve significantly lower RVE values 

compared to F-Generator and Semi-GAN under 25/3,374 labeled/unlabeled data and 

50/3,349 labeled/unlabeled data. It means Co-GAN is more effective when using less la-

beled data. Even though the results of RVE are a bit inconsistent, semi-supervised models 

of Semi-GAN and co-GAN showed that the use of unlabeled data during the training could 

improve image segmentation. Further investigation needs to be done to improve the semi-

supervised models further. 

Based on the results shown in Tables 2-5, the segmentation performance of Co-GAN 

model is better than F-Generator by comparing the different methods under one data set-

ting. The variations of Dice values are reduced when using unlabeled data. The experiment 

results show that unlabeled data can improve segmentation accuracy. While in the experi-

ments, the time cost of the proposed method is affected by the hardware, the size of model 

and input data. The experiments were conducted on Kaggle platform, thus the training time 

is mainly affected by model size and input data in this paper. The Co-GAN has two gen-

erators and needs two data views for training, which will cost more training time compared 

to semi-GAN and F-generator.  
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Table 5. RVE values of F-Generator, Semi-GAN and Co-GAN. 

Dataset 

setting 
(labeled) 

F-Generator Dataset 

settings 

(labeled/ 

unlabeled) 

Semi-GAN Co-GAN 

Seg1only Seg2only Seg1semiGAN Seg1coGAN Seg2CoGAN 

25 
0.340 

(0.188) 

0.716 

(0.007) 

25/3,374 

 

0.342 

(0.196) 

0.336 

(0.211) 
0.319 

(0.150) 

50 
0.443 

(0.824) 

0.345 

(0.426) 

50/3,349 

 

0.322 

(0.312) 

0.321 

(0.420) 
0.312 

(0.505) 

100 
0.328 

(0.565) 
0.308 

(0.488) 

100/3,299 

 

0.325 

(0.603) 

0.321 

(0.597) 

0.319 

(0.564) 

200 
0.279 

(0.376) 

0.280 

(0.375) 

200/3,199 

 
0.276 

(0.360) 

0.279 

(0.360) 

0.292 

(0.416) 

Average 
0.3475 

(0.48825) 
0.41255 

(0.324) 
 

0.31625 

(0.36775) 

0.31425 

(0.397) 
0.3105 

(0.40875) 

 

Fig. 9 represents the segmentation results of one slice. The segmentation results of 

different experiments under four training data settings are presented for this slice. It can be 

seen that more labeled data produced better segmentation results. When comparing the 

results of different experiments under the same dataset setting, the segmentation results 

must be compared by using evaluation metrics. The main reason might be due to the gen-

erators in Co-GAN that adopted the initialized generators in F-Generator, which has been 

optimal. Thus, generators in Co-GAN must be modified to get clearer improvements in the 

future. 

 

                     

Original image          Ground truth        Rotated ground truth 
25/3,374     

     

0.407 0.438 0.909 0.909 0.893 
50/3,349     

     

0.892 0.893 0.899 0.898 0.897 
100/3,299     

     

0.907 0.904 0.909 0.909 0.905 
200/3,199     

     

0.918 0.926 0.917 0.919 0.926 
Seg1only          Seg2only        Seg1semiGAN      Seg1CoGAN    Seg2CoGAN 

Fig. 9. The segmentation results of different methods. 
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4. CONCLUSIONS 

This paper proposes semi-supervised learning based on Co-GAN to implement med-

ical image (anterior hippocampus) segmentation. Based on the experiment results analysis, 

semi-supervised learning based on Co-GAN can achieve better segmentation performance 

by using co-training between two generators and an adversarial training strategy between 

the generators and discriminator. In the discriminator, not only the target region infor-

mation is used, but the background information also provides help in training. According 

to the results of the comparative experiments, semi-supervised learning based on Co-GAN 

can utilize unlabeled data to enhance segmentation performance. Moreover, Co-GAN is 

more effective when using less labeled data. However, according to the present experi-

ments that we done, it is necessary to retrain and tune the parameters to adapt different 

datasets. And the initialized generators must be modified in the future to achieve higher 

improvements. In the next study, we aim to study and optimize the initialization of gener-

ators and try to segment more different medical images.  
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