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Link prediction problems aim to project future interactions among members in a so-

cial network that have not communicated with each other in the past. Classical approach-
es for link prediction usually use local information, which considers the similarity of two 
nodes, or structural information such as the immediate neighborhood. However, when 
using a bipartite graph to represent activity, there is no straightforward similarity meas-
urement between two linking nodes. However, when a bipartite graph shows two nodes 
of different types, they will not have any common neighbors, so the local model will 
need to be adjusted if the users’ goal is to predict bipartite relations. In addition to local 
information regarding similarity, when dealing with link predictions in a social network, 
it is natural to employ community information to improve the prediction accuracy. In this 
paper, we address the link prediction problem in the bipartite editing graph used in Wik-
ipedia and also examine the structure of community in this edit graph. As Wikipedia is 
one of the successful member-maintained online communities, extracting the community 
information and solving its bipartite link prediction problem will shed light on the pro-
cess of content creation. In addition, to the best of our knowledge, the problem of using 
community information in bipartite for predicting the link occurrence has not been clear-
ly addressed. Hence we have designed and integrated two bipartite-specific approaches to 
predict the link occurrence: First, the supervised learning approach, which is built around 
the adjusted features of a local model and, second, the community-awareness approach, 
which utilizes community information. Experiments conducted on the Wikipedia collec-
tion show that in terms of F1-measure, our approaches generates an 11% improvement 
over the general methods based on the K-Nearest Neighbor. In addition to this, we also 
investigate the structure of communities in the editing network and suggest a different 
approach to examining the communities involved in Wikipedia.     
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1. INTRODUCTION 
 

Given a snapshot of a social network, projecting which new interactions among its 
members are likely to occur in the near future is formally known as “the link prediction 
problem.” The goal of link prediction is to understand which measures of “proximity” in 
a network lead to most accurate prediction [16]. Common approaches often consider the 
network as a general graph but not as a bipartite.  

In this paper, we focus on link predictions for bipartite networks for Wikipedia. Bi-
partite refers to an important class in networks, a class which contains edges between 
two types of entities, such as instant item rating graphs, authorship graphs and docu-
ment-feature networks. While bipartite graphs are a special case within the category of 
general graphs, popular local link prediction methods cannot be generalized to these 
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graphs. Link prediction problems are usually defined in relation to unipartite graphs, and 
local link prediction functions are limited by their dependence on the immediate neigh-
borhood of the two nodes being considered. In a bipartite network, two nodes belonging 
to different clusters will not have any common neighbors, and therefore the local meth-
ods cannot predict the edge occurrence without any specialization. 

Many unipartite networks can be reinterpreted as bipartite networks when edges are 
modeled as vertices, such as in co-authorship networks. For these bipartite cases, special 
link prediction algorithms are necessary. In earlier works, Benchettara et al. [4] created a 
unimodal graph from bipartite by projecting the graph over one type of its entities. This 
leads to two variations of link prediction problems: predicting links in a bipartite graph 
and predicting links in a unimodal graph. In experiments on the original graph and its 
unimodal graph, analysis reveals that taking into account the bipartite nature of the graph 
can substantially enhance the accuracy of the prediction model.  

Studies of link prediction problems have played an important role in social network 
evolution, serving as fundamental questions [6, 7, 13]. In fact, a number of areas can 
benefit from promising interactions or collaborations that have not yet been utilized 
within social network. The Wikipedia network is similar Web linked structure [9]. In this 
paper, we focus on the domain of the edit-network in Wikipedia. There are three main 
reasons this is worthy of study.  

First, Kittur and Kraut [11] have examined the development of and interactions be-
tween coordination and conflict in samples taken from several wiki production groups, 
and they find that the coordination mechanisms of Wikipedia, such as article talk and 
user talk, may be a social benefit to communication between editors, and as such reduces 
the likelihood of conflict between them. Thus, among the editors of Wikipedia, there are 
fruitful interactions (such as co-authorship) which are meaningful and can help improve 
the performance of prediction models.  

Second, in regards to member-maintained online communities, social science theory 
suggests that reducing the cost of contribution will increase members’ motivation to par-
ticipate [3]. With this in mind, it should be noted that the link prediction approach, par-
ticularly for Wikipedia, is similar to task recommendation. Thus, it can reduce the cost of 
finding articles that align with editors’ interests. We can therefore improve the quality 
and quantity of the articles on Wikipedia.  

Third, over the past decade Wikipedia has become the largest online collaborative 
encyclopedia, even more remarkable because of its egalitarian, democratic, and trans-
parent nature: it can be edited by anyone on the Internet, and its entire editing history has 
been made publicly available as well. In addition, Wikipedia contains a wealth of infor-
mation and data, such as general terms, domain-specific lexicons, and named entities 
which belong to different fields. Among these fields, there are many kinds of relations, 
such as redirection, categories, disambiguation, and internal links for words that are se-
mantically relevant to a given context. This enormous scalability and its complete link 
structure have made Wikipedia an invaluable and convenient research resource. These 
are reasons why we have chosen it as our edit-network construction.  

For the above reasons we have constructed the edit graph using the history revisions 
of Wikipedia, which we have reformulated as a link prediction problem expressed as a 
two-class discrimination problem. We then extracted several features from the edit graph 
and fed them into a machine learning algorithm. The aim of this work is to build a super-
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vised machine learning approach for bipartite link prediction.  
The rest of this paper is organized as follows. In Section 2, we offer a brief over-

view of the related research; in Section 3, we describe the details of our approach, the 
system flow chart, and other experimental setup; in Section 4, we give the description of 
the dataset and how we obtain our samples; and in Section 5 we show the results we ob-
tained. Finally in Section 6 we discuss conclusions and future directions for useful relat-
ed research work. 

2. RELATED WORK 

Various link prediction approaches have been proposed in scientific literature relat-
ed to this topic. A brief overview of various approaches to link prediction is given as 
follows. 

 
2.1 Neighborhood based Methods 

 
For a node x, let Γ(x) denote the set of neighbors of x in graph G. A number of ap-

proaches are based on the idea that two nodes x and y are more likely to form a link in 
the future if their sets of neighbors Γ(x) and Γ(y) have large overlap; this follows the 
natural intuition that if nodes x and y represent authors with many colleagues in common, 
they are more likely to come into contact themselves. These methods are also classified 
as triangle-closing models in [15]. The most frequently used neighborhood based attrib-
utes are the following: 
 
Common Neighbors  This is the number of neighbors that x and y have in common. 
Newman [18] has computed this quantity in the context of collaboration networks, veri-
fying a correlation between the number of common neighbors of x and y at time t, and 
the probability that they will collaborate in the future. This measure is defined as:  

score(x, y) = |(x) ∩ (y)|.     (1) 

Jaccard’s Coefficient  This is a commonly used similarity metric in information re-
trieval [20]. It measures the probability that both x and y have a feature f, for a randomly 
selected feature f that either x or y has. If we take features here to be neighbors in G, the 
measure may be defined as: 

score(x, y) = |(x) ∩ (y)|/ |(x) ∪ (y)|.     (2) 

Adamic/Adar  Adamic and Adar [1] propose that friendship between two persons can 
be predicted by measuring their similarity to each other. The simple similarity can be 
measured by shared items, which are weighted towards uniqueness, i.e. attributes shared 
only by these two people (and not by others) are weighted more heavily than attributes 
shared among many people. Therefore the measure is defined as follows: 

( ) ( )

1
( , ) .

log ( )z x y

score x y
z 






     (3) 
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Preferential Attachment  Preferential attachment has received considerable attention 
as a model of the growth model of networks [17]. The basic idea is that the probability 
that a new edge will be incident on a node is proportional to the size of that node’s cur-
rent neighborhood. Barabasi et al. [2] have verified this idea through empirical analysis. 
This measure is defined as: 

score(x, y) = |(x)|  |(y)|.     (4) 

However, all the above neighborhood based methods, except the preferential at-
tachment model, are not applicable to bipartite graphs because they make some assump-
tions based on the triangle-closing model: triangle closing and clustering. The former 
asserts that new edges tend to form triangles and the latter indicates that nodes tend to 
form well-connected clusters in the graph. 

In bipartite graphs these assumptions are not true, since neither triangles nor larger 
cliques can appear. Because two vertices from different clusters which connect do not 
have any common neighbor, methods based on common neighbors are irrelevant. 
 
2.2 Distance Based Methods  

 
A number of methods refine the notion of shortest-path distance by implicitly con-

sidering the ensemble of all paths between two nodes.  
 
Shortest Distance  This is the shortest distance between two nodes. It is a basic ap-
proach that ranks node-pairs <x, y> by the length of their shortest path in G. Such a 
measure follows the idea that collaboration networks are “small worlds,” in which mem-
bers are related through a short chain with a small number of links [19].  
 
Katz  Another distance based measure frequently used in affiliation analyses between 
nodes in a graph is the measure proposed in [10]: it is generated by computing a weigh- 
ted sum of all paths between x and y.  

In a bipartite system, although the distance based measure of two vertices from dif-
ferent clusters can be computed with edges that cross the cluster, this is still unable to 
account for all cases, especially those with an unreachable side in the node-pair.  
 
2.3 Methods Based on Random Walk 

 
These approaches often predict edge occurrence using random walk. Random walk 

is a Markov chain describing the sequence of nodes visited by a random walker [21]. 
This process can be described by a transition probability matrix P.  

 
2.4 Methods Based on Similarity 

 
Commonly, two nodes are more likely to be connected if they are more similar, 

where a latent assumption is that the link itself indicates a similarity between the two 
endpoints and this similarity can be transferred through the links. 
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2.5 Methods Based on Temporal Information 
 
The number of approaches based on temporal information is relatively small. In 

other words, links established at different times are considered to have the same likeli-
hood of connection, when analyzed from most approaches. Recently, the temporal issue 
is taken into consideration in several studies. Examples are given in [22].  
 
2.6 Higher-Level Approaches 

 
A number of other methods can be used in conjunction with any of the methods 

discussed above.  
 
Unseen Bigrams  Link prediction is similar to the problem of estimating frequencies 
for unseen bigrams in language modeling: pairs of words that co-occur in a test corpus, 
but not in the corresponding training corpus (e.g. [5]). Related ideas are given in [14].  
 
Clustering  The performance of a predictor might improve through a clustering proce-
dure, which means running the predictor on a “cleaned-up” graph after deleting some 
“tenuous” edges in G. In the clustering procedure, one first computes the score(u, v) for 
all edges in G, and then deletes the  fraction of the edges with the lowest score. Once 
the graph has been cleaned up, the score(x, y) for the remaining edges can be recomputed; 
in this way the similarity of node-pairs is determined using only the edges. This approach 
gives more trustworthy results through the considered measure. 
 
2.6 Network Community Profile Plot 

 
Leskovec et al. [15] explored several questions related to identifying meaningful 

communities in social and information networks. Most networks may be viewed as hav-
ing a “core,” with no obvious underlying geometry and which contains a constant frac-
tion of the nodes, and then there are a large number of relatively small “whiskers” that 
only tenuously connected to the core. Using the Network Community Profile Plot, they 
have observed that as a function of increasing size, the best possible communities be-
come more and more “blended into” the remainder of the network. 

3. APPROACH 

For predicting whether an edge is likely to form between the particular node-pair in 
the future, we have built a classifier and trained it with the features extracted from the 
past snapshot of the edit-network, and then evaluated the trained models on the testing 
samples in the time period following the training period. Let Gobs be the observed graph 
that summarizes in some way the temporal sequence G = 〈Gt1, …, Gtn〉. Gtn+1 is referred 
as the labeling graph. As in many other works, Gobs is computed as the union of all 
snapshots in the sequence G. Two examples will be generated for each couple of nodes 
<x, y> such that x and y belong to both Gobs and Gtn+1. Let the time sequence be {t1, t2, …, 
tn, tn+1}, and partition the data into two sub-ranges. The training samples, which are the 
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observed snapshots of the graph, are obtained from the first sub-range, [t1, tn], and the 
testing samples are from the second sub-range [tn, tn+1]. The positive examples are the 
editor-article pairs that do not have an edge between them in t1, but have an edge by tn, 
meaning that the editor edited that particular article during this time frame. The negative 
examples are those that do not have an edge between the pair, both in t1 and tn, repre-
senting that the editor did not edit that article. We train our models with samples from [t1, 
tn]. Then, we make predictions with our trained models on editor-article pairs in tn. Fi-
nally we evaluate our predictions by examining tn+1. We have chosen SVM to be our 
classifier. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Flowchart of our approach. 
 

3.1 Baseline 
 

(1) Association Rule (AR) 
We apply the association rule algorithm of the general version to the edit graph. In 

the edit network, the editors are modeled as items, and the set of all the revisions of an 
article are modeled as a transaction. The rules derive from frequent itemset can be con-
sidered as the sets of editors that edit the same set of articles. Given an editor-article pair 
<Ei, Aj>, we want to predict if a new link will occur in the future. We check the associa-
tion rules that contain Ei, and count the number of editors in the association rule that 
have edited Aj. Using this baseline method, the greater the number of editors, the more 
likely an editor will edit that article. 

 
(2) K-Nearest Neighbor (KNN) 

We set the editing record as the main feature and classify each editor-article pair as 
positive (linked) or negative (non-linked) by finding the nearest editors. Since the adja-
cency matrix of the edit network is quite sparse, the majority of the editors are biased and 
we cannot use the majority of the editors to classify the pairs. Instead, we count the 
number of editors that have edited the article being tested. When we extract a list of 
nearest neighbors for each editor, which has a size K, we find it is likely that an editor 
will edit the articles edited by his nearest neighbors. Just because two editors have simi-
lar editing behavior does not always mean that they are interested in the same topics. 
 
(3) Graph Partitioning (GP) 

In an edit network, we consider the articles as the tasks. To predict the links occur-
ring between editor-article pairs is similar to recommending articles for editors. The 

 

 

 

 

 

  Article Dumps 
Of Wikipedia 

Calculate  
Direct Feature 

Edit-network 
Construction Classifier

Features of 
Nodes’ Pair 

Projection of 
Bipartite 

Calculate  
Indirect Feature 



BIPARTITE EDITING PREDICTION IN WIKIPEDIA 

 

593

 

number of edges between partitions in the edit network should be minimized based on 
the graph partitioning algorithm. Unlike the community in a social network, the size of 
each partition is regularized. However, the partition can still be seen as a sort of commu-
nity if we take different p. 
 
3.2 Supervised Leaning Approach 
 

We now describe our two main approaches in detail. The first approach is summa-
rized in Fig. 2. For predicting whether an edge is likely to form between a particular 
node-pair, we build a classifier and train it with the features extracted from the past 
snapshot of the edit-network and then evaluate the trained models on the testing samples 
in the time period following the training period. We train our models with samples from 
[t1, tn] and then make predictions with our trained models on editor-article pairs in tn. 
Finally we evaluate our predictions by examining tn+1.  

 

Fig. 2. Supervised learning approach.         Fig. 3. Community-awareness approach. 
 

3.3 Community-Awareness Approach 
 
The second approach is illustrated in Fig. 3. In the community detection module, we 

employ the Stanford Network Analysis Project (SNAP). Using the local spectral algo-
rithm [3] and each editor as a seed, we cut a set of nodes for each seed-editor in the net-
work.  

In the unipartite graph, all nodes are of the same type; the cut-set can be considered 
as a community straightforwardly. However, since we apply this approach to bipartite, 
the set of nodes will contain two types of entities: editor and article. Because the cut-set 
with smaller conductance means that the number of edges inside the set is relatively 
greater than the number of cut-edges, we can reinterpret the cut-set of bipartite as a 
community of editors together with the articles that they are more interested in. 

If we project the bipartite to the editor-side, we will get a co-edit graph. In the co- 
edit graph, the weight of the link between editor-nodes represents the amount of articles 
edited by them directly. Intuitively, we can seek the relevance between editors through 
the co-edit links. However, in this way we will not be able to find the relevance between 
two editors if they do not edit the same article, even though there may be relevance be-
tween these editors. Our goal here is to find the relevance for these cases. Therefore, in 
addition to the cut-set for each seed-editor, we also introduce a weight ω determined by 
the notion of intersection between two cut-sets:  
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 , where Si and Sj are two cut-sets derived from editor ei and ej. 

With the intersection score, we can expand the original cut-set by jumping across 
the different cut-sets. We first set up a threshold Ω and examine the intersection of two 
cut-sets for each editor-pair (ei, ej). If the weight ω reaches the score Ω, we then create 
an edge between these two editors since the article-nodes in the intersection are the po-
tential articles that will interest the editors in both sets to edit. The edge can be consid-
ered as an indicator of the relevance of topics. Using these edges, we can build an edi-
tor-intersection network and extract a list of editors and articles, which is similar to the 
list of nearest-neighbors. We use the integer level C to crawl across the network. If the 
target in editor-article pair is ei and C = 1, we expand cut-set of ei with cut-sets of the 
first neighbor of ei. If C = 2, we further expand the set with the neighbor of the next level. 
In Fig. 4, if editor-node (id 2451) is the target editor and C = 1, we will expand the set 
with its neighbors (yellow nodes). In other words, we will expand the community of id 
2451 with the three communities of id 1036, 1268 and 1269. 

 
3.4 Edit-Network Construction 

 
For the edit-network construction, we consider Wikipedia as an undirected bipartite 

graph, where articles and editors are nodes in the graph, and an edge between a particular 
editor-article pair represents an editor editing that article at some point in the past. To 
predict the edge occurrence between an editor-article pair is similar to deciding whether 
a particular article is a good candidate to recommend to some editors.  

The formal definition of the edit-graph is as follows, G is the bipartite graph, with 
two sets of nodes, E and A, and a set of edges L, where an edge exists between some e  
E and a  A if editor e has edited article a at some time point in the past.  

 
 
 
 

Fig. 4. Example of an editor network built by intersection. 

3.5 Features of a Node Pair 
 
The main component of our approach is to come up with a list of features that we 

believe are informative to feed into the machine learning algorithms. Since the edit-graph 
is a bipartite, we adapted the measures mentioned above, which are commonly used in 
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unipartite graphs. First, however, we must adopt the following notation: for a node x, we 
define Γ(x) to be the set of x’s neighbors, and Γ(x) = ⋂y∈Γ(x)Γ(y), which is the set of x’s 
neighbors’ neighbors. 
 
(a) Direct Feature 

We define the following measures as direct features based on the equations men-
tioned above, since they can be derived from the original bipartite graph directly without 
any transformation of the graph: 
 
SN (Sum of Neighbors)  For an article, this is the number of editors that edited it. For 
an editor, it is the number of articles he/she has edited. Therefore each pair will have two 
referents, one for editor, one for article. The sum of neighbors might be meaningful be-
cause the more articles an editor has edited, the more likely he/she will edit more articles 
because it suggests that he/she is more active than those who have edited fewer articles. 
We denote both as SN. 
 
CN (Common Neighbors)  For an editor-article pair <e, a>, common neighbors is de-
fined to be |(e)∩(a)|. This feature is adapted to form the intersection of the articles 
that editor e has edited, and the articles that edited by who edited the article a. This basi-
cally captures the idea of “people who edited this article also edited …” We denote this 
feature as CN. 
 
JC (Jaccard’s Coefficient)  Similar to the common neighbors, this feature measures 
the similarities between two sets. In the bipartite graph, this is defined as |(e)∩(a)|/ 
|(e)∩(a)|. It is the normalized version of common neighbors, which should be more 
informative. We denote this feature as JC. 
 
AA (Adamic/Adar)  This feature uses the frequency of common features to compute 
the similarity between two nodes. In the bipartite graph, the feature is the neighbors, and 
this feature is defined as ∑z(e)∩(a)1/log|Γ(z)|. This feature is used to capture the notion 
that if in the intersection of articles the number of editors that edited a particular article is 
smaller than for other articles, then to some extent this article is more important to be 
associated with this editor than other editors. We denote this feature as AA. 
 
PA (Preferential Attachment)  This is similar to “the sum of neighbors” measure 
above and suggests how active the editor is and how popular the article is. Taking the 
scalar multiplication of the two features can quantify the neighborhood’s size. It is de-
fined as |Γ(e)|×|Γ(a)|, and we denote it as PA. 
 
SD (Shortest Distance)  This is the minimum hop count between an editor and an arti-
cle. We hypothesize that the shorter the distance between an editor and an article, the 
more likely the editor will be to edit the article. We denote this feature as SD. 

All the above features, except Sum of Neighbors, can be categorized into a set of 
topological features which characterizes the roles of nodes in the unipartite network. For 
a bipartite graph, the meaning of topological features is slightly different than for a uni- 
partite one. The links in a unipartite graph are between nodes of the same type, while the 
links in a bipartite graph are between nodes from different clusters. 
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(b) Indirect Feature 
In the following approach we apply the same general idea of works as presented in 

[4]. We formulate the link prediction as a supervised learning problem. The goal is to 
discriminate between linked classes (positive examples) against not-linked classes (nega-
tive examples.) A bipartite graph is defined as follows: G = <X, Y, E> where X and Y are 
two mutually exclusive sets of nodes. E is a set of edges of G and is a subset of X × Y. A 
unimodal graph can be obtained from a bipartite graph by projecting the graph over one 
of its nodes’ sets. For example, the projection over the set of X is defined by a unimodal 
graph where nodes from X are tied if they are linked to at least n common nodes in the 
initial bipartite graph G. To express this in a more formal way, let Γg(x) bet the set of 
neighbors of node x in a graph g. Projections of a bipartite graph G are then defined as 
follows:  

Gn
X = (VX ⊆ X, E = {(a, b): a, b  X, |G(a)∩G(b)|  n})    (5) 

Gm
Y = (VY ⊆ X, E = {(a, b): a, b  Y, |G(a)∩G(b)|  m})    (6) 

With these unimodal graphs, we can define the indirect features. Let fG(e  E, a  A) 
be a direct feature. In comparison with the direct features, the indirect features cannot be 
computed from the original bipartite graph. With a unimodal graph, we can introduce the 
following two indirect features:  

),()( uef i

Gau n
EG

     (7) 

),()( avf i

Gev m
EG

    (8) 

These two features are built from f, and are computed in the projected graph as GX 
and GY, respectively. Without loss of generality, let us consider the first indirect feature. 
It computes f between e and all neighbors of a in GE. An aggregate function  selects the 
most appropriate value from the set {min, max}, depending on the feature. For example, 
if the feature is the number of shared neighbors,  will be the max function. If the feature 
is the shortest distance,  will be the min. function. Notice that both projection parame-
ters n and m can take different values. 

4. EXPERIMENT EVALUATION 

After choosing editor-article pairs, we computed the aforementioned features on all 
the pairs for the training and testing sets and obtained 460,569 samples in the training set, 
and 227,722 samples in the testing set. Both sets are balanced with 50% positive and 
50% negative samples. The statistics for the sample collection is shown in Table 1. 

We also checked the number of different groups of editors. As the number of edi-
tors and pairs are shown in Tables 2 and 3, we can see that only 40% of the editors make 
revisions in new articles that they have never written before. Furthermore, it is not sur-
prising that the editors identified only by IP-address contribute less (32.4%) than regis-
tered editors (49.1%), while they both account for half of the editor-nodes in training 
graphs. The bot group is much smaller than the others; however the number of pairs con-
tributed by bots is close to the group of IP-address.  
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Table 1. Number of the sample collection. 
 Editors Articles Total pairs Positive pairs Negative pairs 

Training 48,406 10,657 460,569 231,589 228,980 
Testing 19,798 10,657 227,722 114,481 113,241 

Table 2. Number of editors. 
 Editors Registered Bot IP

Training 48,406 24,268 162 23,976
Testing 19,798 11,934 79 7,785

Table 3. The number of pairs of different editor-groups in testing graph. 
 Positive class Negative class Both classes

Bot 13,618 12,585 26,203
IP 15,024 15,022 30,046

Registered 85,839 85,634 171,473
Total 114,481 113,241 227,722

 
We use three common metrics in our evaluation: precision, recall and F1-value. F1- 

value is the aggregation of precision and recall, which considers both. For the link pre-
diction of Wikipedia, since the number of articles in Wikipedia is quite large, we can pay 
more attention on the precision measure. We randomly divide all the training samples 
into five groups, each of which is balanced with half positive and half negative. Then we 
evaluate each group by using a testing set. Since the results for all five groups are similar 
and we focus on the pros and cons of the features chosen, we take the average to be the 
precision score of the prediction model. The results are shown in Table 5. 

Depending on how the different features are combined, these results give us a sense 
of how well the models can predict whether links will form in the Wikipedia edit graph. 
Since we are more interested in recommending articles to authors than in filtering out 
unwanted articles for one specific editor, we will concentrate on the prediction of the 
positive samples. When doing this, the most suitable measures to use for comparison are 
precision and recall for positive classes. The F-value is a harmonic mean of precision 
and recall, so it takes both values into account. Note that the Neighborhood is the set of 
features: Common Neighbor (CN), Jaccard’s Coefficient (JC), Adamic/Adar (AA) and 
Preferential Attachment (PA).    

The Sum of the Neighbors (SN) model has the highest precision, 0.73, when com-
pared with the other combinations of features. However, when the Shortest Distance (SD) 
and Neighborhood are taken into account, the precision is reduced to 0.68. If we exclude 
the SD, the precision will recover to 0.69. When SD is taken into account, the recall of 
positive class is reduced to 0.40, which is quite low. The reason that SD does not per-
form well might be because the category of articles dumped is not broad enough. Since 
all the articles are in the same category, it is easy to link an editor to any article that 
he/she has never worked on. Thus, using the SD can result in lots of false positive sam-
ples. However, if we take the weighted distance, the results might be different.  

It is interesting to note that if we combine the indirect Common Neighbor with SN, 
the recall of positive class will climb to 0.79. In the projection of authors, the indirect 
common neighbor stands for the number of co-authors. The reason why other features do 
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not work well might be the characteristics of different classes of editors. We divide the 
result into three classes, Bot (BOT), IP Address (IP) and Registered User (REG). The 
results are shown in Table 4. We can see that the F-value of other features has a better 
performance for REG class. BOTs are programmed and anonymous users seldom con-
tribute to articles. Therefore, we can focus on the editors of the REG class, which shows 
that the more informative features such as JC and AA still lead us to a better result. 

Table 4. F1-measure of different editor-classes. 
 BOT IP 

SN 0.6540 0.7878 
SN+JC 0.6593 0.7876 
SN+AA 0.6442 0.7768 

 

Table 5. Results (Neighborhood = {CN+JC+AA+PA}). 
Features used Accuracy Class Precision Recall F-value 

SN only 
70.60% 

0 0.68 0.75 0.71 
1 0.73 0.65 0.69 

SN+SD+ 
Neighborhood 

60.77% 
0 0.57 0.81 0.67 
1 0.68 0.40 0.50 

SN+ 
Neighborhood 

66.91% 
0 0.65 0.72 0.68 
1 0.69 0.61 0.65 

SN+ Indirect CN
(n = 5, m = 6) 

68.55% 
0 0.69 0.66 0.67 
1 0.67 0.71 0.69 

SN+ Indirect CN
(n = 5, m = 3) 

65.43% 
0 0.71 0.51 0.59 
1 0.62 0.79 0.69 

 

4.1 Supervised Learning Approaches 
 
(a) Pre-evaluation 

In this step, we have around 460 thousand pairs to train and 220 thousand pairs to 
test. To do this, we randomly divide all the samples into five groups for training and 
testing sets respectively; each set is balanced with half positive and half negative. Once 
the sets are properly organized, we evaluate each goup with a testing set. The results for 
the five groups are similar and we focus on the pros and cons of the features chosen, 
using the average as the performance score of the prediction model. The result is pro-
vided in Table 6. 

Table 6. Result of SVM on the five subsets. 
Features used on the five subsets Precision Recall F-measure 

SN 0.7315 0.6559 0.6916 
SN+JC+AA+PA 0.7308 0.6307 0.6771 

SN+JC+AA+PA+CN 0.6926 0.6148 0.6514 
SN+JC+AA+PA+CN+SD 0.6864 0.4046 0.5091 
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The SN model is able to achieve a precision level of 0.73, which is higher than the 
other combinations. However, when the Shortest Distance (SD) and other Neighbor-
hood-based features (JC, AA, PA and CN) are taken into account, the precision is re-
duced to 0.68 and the recall is reduced to 0.40, which is quite low. If we exclude the SD, 
the precision will recover to 0.69. The SD might not perform well because the categories 
of the article dumped are not broad enough. Since all the articles are in the same category, 
it is easy to link an editor to any article that he/she has never written before. Thus, using 
the SD can result in lots of false positive samples. However, if we take the weighted dis-
tance, the results might be different. In addition to the impact of SD, we can see that the 
SN can be a dominating feature in the five subsets. 
 
4.2 Results of Supervised Learning Approach and Baseline 

 
After excluding the SD, we apply a supervised learning approach to the whole sam-

ple collection. The results are given in Table 9. In the baseline methods, the precision of 
the Association Rule (AR) is higher than for the other methods (0.77). However, since 
there are few pairs that correspond to the rules, we have a poor recall using the associa-
tion rule (0.10).  

Due to the relative paucity of rules, the number of pairs that editor corresponds to 
association rules is not very much. Even if we lower the support from 20 to 10, the in-
creasing number of rules still cannot include all the pairs that are potentially positive. 
Apart from the number of rules, we also notice that the average size of the frequent edi-
tor-set is around four, which represents the average number of editors that will consecu-
tively edit an article. However, it should be noted that the Association Rule does not 
consider time sequence. Hence, we cannot know which one editor affects the others from 
these rules. A few rules are listed in Table 7. 

Table 7. Rules derived from edit history. 
Support Confidence Left-hand editor-set => Right-hand editor-set 

22 0.957 Neonblak => Floydspinky71 
28 0.875 Supertigerman => Tewapack
10 0.833 Faigl.ladislav => Eliyak
46 0.807 Chochopk => Japanese Searobin 

27 0.771 Persian Poet Gal => Can’t sleep, clown will eat 
me

13 0.765 Tecmobowl => Masonpatriot
12 0.750 Hut 8.5 => RexNL
 

In Table 8, the result of the graph partition baseline is as expected: simply parti-
tioning the graph into equal sized parts fails to represent the different communities in the 
edit network. Increasing the number of partitions results in smaller sized partitions, 
which is similar to the smaller k in KNN. Therefore, if we take the number of partitions 
to be two to four, the result will be similar to KNN of from k = 100 to 300. Nevertheless, 
since partitioning the graph reduces the cost of finding nearest neighbors, the result of 
GP-KNN is slightly better than KNN if we take various sizes of partitions, as the result 
of the Graph Partition data in Table 8 shows. 
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Table 8. Results of KNN and GP. 
 Precision Recall F-measure 

KNN 0.653 0.532 0.586
GP-KNN (P = 4) 0.657 0.701 0.678
GP-KNN (P = 3) 0.644 0.710 0.675
GP-KNN (P = 2) 0.583 0.886 0.703

Table 9. Results of SVM on the whole collection. 
Features used on whole collection Precision Recall F-measure 

Association Rule 0.7740 0.1000 0.1770 
K-Nearest Neighbor 0.6530 0.5320 0.5860 
Graph Partition 0.6940 0.4450 0.5420 
SN 0.7442 0.6621 0.7007 
SN+JC 0.7453 0.6630 0.7017 
SN+AA 0.7468 0.6573 0.6992 
SN+PA 0.7388 0.6526 0.6930 
SN+JC+PA 0.7400 0.6509 0.6926 
SN+AA+PA 0.7294 0.6732 0.7002 
SN+JC+AA 0.7486 0.6567 0.6996 
SN+JC+AA+PA 0.6954 0.6789 0.6871 
SN+CN+JC+AA 0.7032 0.6893 0.6962 
SN+CN+AA+PA 0.7300 0.6734 0.7005 
SN+CN+JC+PA 0.6978 0.6783 0.6879 
SN+CN+JC+AA+PA 0.7018 0.6894 0.6956 

 

For the results of SVM, although SN is the dominant feature for supervised learning 
in the smaller subset, the combination of the JC and AA scores can still improve the per-
formance for the whole sample collection. 

The reason why other features do not perform much better might be the characteris-
tics of different classes of editors. Therefore we divide the result into three groups, Bot 
(BOT), IP Address (IP) and Registered User (REG). The precision is shown in Table 10. 
We can see that the precision of other features can achieve a better performance for REG 
class. BOT is programmed, and anonymous users seldom contribute to articles. There-
fore, we can focus on the editors of the REG class. Analyzing this shows that the more 
informative features such as JC and AA can still lead us to a better results. 

Table 10. Precision on different editor groups. 
TOTAL BOT IP REG

SN 0.7442 0.7004 0.7987 0.7406
SN+AA 0.7468 0.6715 0.8004 0.7494

SN+JC+PA 0.7400 0.6750 0.7990 0.7512
 

To observe the performance on the group that we are interested in, we locked in on 
the REG editors and then filtered out the registered editors that have edited less than 50 
times (i.e. the number of submitted revisions is smaller than 50) and obtained a set com-
posed of 2115 editors (REG_50). At this point in our study we had around 140 thousand 
training pairs and 90 thousand testing pairs. The results are given in Table 11. 
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It is worth noting that if we combine the indirect Common Neighbor (iCN), the re-
sults can be improved. In the projection of editors, the indirect common neighbor stands 
for the number of co-authors. Since it is known that there are large numbers of “talk 
pages” between the aggressive Wikipedians, it is more likely that one edit an article un-
der the influence of the co-authors. Therefore it is intriguing to detect the community to 
improve the prediction model. 

Table 11. The result on the REG_50 group. 
Direct features Indirect features Precision Recall F-measure 
SN  0.6519 0.7131 0.6745 
SN+JC+AA  0.7383 0.6487 0.6906 
SN+CN+JC+AA  0.7361 0.6579 0.6948 
SN +iCN 0.7105 0.6508 0.6793 
SN+JC+AA +iCN 0.7407 0.6484 0.6915 
SN+CN+JC+AA +iCN 0.7386 0.6560 0.6949 

6. DISCUSSION 

Our observation shows that nodes with a high degree can still be an important factor 
to the link prediction model. It is important to note that we only evaluated these algo-
rithms over a small period of time and for a specific category. The supervised link pre-
diction model is based on the amount of historical information available for some editors 
or articles. Thus, we would like to know what kind of information on the bipartite net-
work can improve the performance significantly in the future. With the right kind of data, 
perhaps in the future we could predict the edge occurrence even for nodes with low or 
average degrees. Furthermore, we would like to examine whether different communities 
exist in Wikipedia and get a better idea of the scale of these communities. Since the com- 
munity can be a core part of social network, studying the characteristics of different com- 
munities might improve the prediction model. 
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