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Mobile crowd sensing (MCS) makes full use of the sensing and wireless communi-

cation capabilities of smart mobile devices to collect real-time information effectively. It 
makes it possible to monitor people’s health condition in real time. Our health information 
collected through MCS can be used to improve healthcare service. Hypertension is a wide-
spread chronic disease, and preventing hypertension can effectively reduce the incidence 
of cardiovascular disease. In this paper, we propose a hypertension risk assessment ap-
proach based on mobile crowd sensing, which allows for real time health monitoring and 
warning. In order to stimulate the enthusiasm of MCS volunteers, optimized communica-
tion model is used to reduce the communication cost of non-data-users. Additionally, the 
current hypertension risk status of patients will be feed back to them in real time. In our 
approach, binary logistic regression is used to select risk factors of hypertension, and then 
the risk factors are used as the inputs of BP neural network to construct the risk prediction 
model. Furthermore, the hypertension risk is further divided into low risk, medium risk 
and high risk through cumulative distribution function. 4498 samples from a community 
health service center in Hefei area were used to evaluate the performance of the proposed 
approach. The experimental results show that the proposed approach can provide real-time, 
effective monitoring and dynamic feedback of the hypertension risk, offering a novel clin-
ical tool for the early warning of hypertension. The proposed approach also provides a 
general framework for risk assessment of other chronic diseases.     
 
Keywords: mobile crowd sensing, hypertension, risk assessment, BP neural network, real 
time  
 
 

1. INTRODUCTION 
 

Nowadays, with the aging of population and the prevalence of sub-health, the tradi-
tional interactions between doctors and patients have been unable to meet the increasing 
demands for healthcare. With the popularity of smart phones and development of wireless 
technology and sensors, a new sensing structure named mobile crowd sensing (MCS) has 
emerged [1]. Mobile crowd sensing refers to people sensing information about people and 
surrounding environment using smart phones and other mobile terminals carried around, 
and then providing useful information and services to users based on the collected in- 
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formation. MCS provides a new way for people to sense the world. It enables anyone who 
performs sensing tasks through mobile terminals to participate in the sensing process and 
provides universal services. As an important application branch, mobile health crowd sens-
ing is a major component of MCS. It combines mobile crowd sensing with telemedicine. 
Participants upload health data collected by mobile terminals to cloud server and enjoy 
various services provided by medical institutions. Among the applications of health service, 
developing and constructing an effective risk assessment model for chronic diseases is of 
great value in chronic disease management. At present, the disease risk assessment service 
is mainly implemented based on the experience of doctors, which consumes a lot of time 
and resources of doctors for one-to-one intervention and continuous assessment. Therefore, 
there is an increasing demand for an automated disease risk assessment system, which can 
make full use of the collected information and ultimately provide health care decision sup-
port. The system is of great value for disease prevention. In order to meet this requirement, 
we need to collect large amount of effective data in real time, at the same time, an effective 
disease risk assessment approach is also required. 

Chronic diseases are responsible for 70% of all deaths worldwide. Hypertension is a 
widespread chronic disease. At present, the total number of hypertensive patients can reach 
972 million worldwide and this number continues to grow [2]. Hypertension is also an 
important risk factor of cardiovascular and cerebrovascular diseases [3, 4]. Studies have 
shown that hypertension is the first risk factor leading to death and the third factor of eco-
nomic burden of disease [5]. According to the latest investigation [6], from 2012 to 2015, 
the prevalence rate for hypertension of Chinese adults had reached 27.9%, and keeps in-
creasing continuously. Especially for adolescents, the situation is also unoptimistic [7]. 
The awareness, treatment and control rates of hypertension for Chinese adults were 51.6%, 
45.8% and 16.8% respectively, which indicates that prevention and control of hypertension 
is unsatisfactory and needs to be improved in China at present.  

The best way to improve the situation of hypertension is to prevent the occurrence of 
hypertension. Researches have shown the occurrence of hypertension is affected by hered-
ity, lifestyle etc. Improving unhealthy lifestyle before the onset of hypertension can reduce 
the risk of hypertension and prevent the occurrence of hypertension effectively [8]. There-
fore, the risk assessment of hypertension plays a vital role in preventing hypertension. Cur-
rently, the risk assessment of hypertension for Chinese people is still a challenge. For one 
thing, the data used to build the model are mainly from hospitals or specialized medical 
institutions. Most of the data are non-real-time with a long update cycle, and it is difficult 
to feed the assessment result back to individuals in real time. For another, the selection of 
hypertension risk factors and modeling methods are of vital importance on the performance 
of risk assessment model. In order to provide a basis for the primary prevention of hyper-
tension for Chinese population, a hypertension risk assessment approach based on mobile 
crowd sensing was proposed in this paper. First, hypertension relative information includ-
ing medical data, lifestyle data, individual characteristic data were collected through mo-
bile crowd sensing network, then binary logistic regression was used to analysis of risk 
factors of hypertension from the collected information, and then hypertension prediction 
model was constructed based on BP neural network training by selecting the optimal 
threshold to solve the unbalanced problem of training sample. Based on the risk value, 
cumulative distribution function was used to classify hypertension risk by controlling error 
rate. The remainder of this paper is organized as follows. Section 2 summarizes related 
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research work. Section 3 illustrates our proposed approach. Section 4 reports the experi-
mental results on real world medical data set and presents the performance study. Finally, 
Section 5 gives conclusions and future work of this study. 

2. RELATED WORK 

A large number of researches have constructed considerable work in investigating 
remote health monitoring based on wireless sensor network (WSN). For example, in a 
multi-source healthcare architecture called MSHA [9], multi-source data were from sen-
sors in wireless body domain networks and text-based input anywhere. Kaur et al. [10] 
proposed a general multi-sensor fusion method to realize continuous monitoring of remote 
patients using wireless body sensor network. Health risk assessment and decision making 
algorithm were used to make reliable health management decisions. However, the location 
of WSN is fixed and cannot monitor health information of individuals in various situations 
in real time. Mobile crowd sensing provides new ideas to solve these problems. Mehdi et 
al. [11] proposed a general MCS reference architecture for healthcare. Collection, net-
working and transmission of healthcare information in MCS were further studied [12, 13]. 
Yang et al. [14] and Wen et al. [15] explored how to take effective measures to encourage 
individuals to participate in MCS actively. Pryss et al. [16] taking a specific disease as an 
example, MCS was used in combination with data anonymization to provide a large num-
ber of daily data sets of patients at a low cost, thereby making clinical trials possible any-
where. In order to create an experimental database through MCS, Jovanovic et al. [17] 
proposed a machine learning method to determine the current hypertension status through 
ECG signals and to collect data of hypertensive patients. It indicated that it is feasible to 
determine hypertension status according to information collected from MCS. However, it 
only considered ECG signals to determine hypertension or not. In fact, there are many 
other risk factors and indicators for hypertension. 

Many researchers have studied the risk factors and prediction models of hypertension, 
which indicated that different populations have different characteristics of hypertension. 
Age, gender, BMI, diabetes and blood pressure were the most common predictors [18]. 
Logistic regression [19, 20] and neural network [21-23] were employed to establish corre-
sponding hypertension prediction models for different populations. Ture et al. [24] com-
pared the performance of hypertension prediction models established by decision tree, sta-
tistical method and neural network, and found that neural network performed the best. The 
Framingham heart research center calculated the risk of hypertension in the next 1, 2, 4 
years based on cohort studies [25]. Muntner et al. [26] and Mika et al. [27] researched the 
validation of Framingham prediction model for local residents, and the results showed that 
the model is validate for European population. But a South Korean study [28] showed that 
the Framingham hypertension risk prediction model underestimated the risk of South Ko-
reans. Researchers from Japan, India, Iran and Swedish have developed risk prediction 
models of hypertension for local residents [29-32]. The research of Zheng et al. [33] 
showed that the Framingham hypertension risk prediction model couldn’t assess hyperten-
sion risk of Chinese rural population effectively. Thus, it is urgent to develop a risk pre-
diction model of hypertension for Chinese people. Chien et al. [34] established a hyper-
tension risk assessment model for Chinese-Taiwanese. Li et al. [35] established a 15-year 
hypertension risk prediction model based on a cohort study of 3,899 people in 11 provinces 
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of China. But neither model included lifestyle risk factors, which limits their application 
in primary prevention of hypertension. In order to evaluate the hypertension risk of Chi-
nese steel workers, Wu et al. [36] established a hypertension risk score model for steel 
workers using LVQ neural network, which has a high accuracy. However, this model is 
only applicable to steel workers.  

Although some progress has been made in the research of hypertension risk assess-
ment, there are still some difficulties and limitations in applying the current research to the 
prevention of hypertension in the Chinese population. Regarding the collection of model-
ing data and the feedback of assessment results, telephone follow-up or face-to-face ques-
tionnaire are the most common approaches, these approaches may cost lots of time and 
resources, which makes them difficult to apply to a large population. Mobile devices can 
monitor activity and behaviors effectively anytime and anywhere, and provide real time, 
dynamic feedback in response to collected information. Regarding the assessment of hy-
pertension risk, it is challenging to predict the risk of hypertension using risk factors. Im-
proper selection of risk factors and modeling methods may affect the performance of the 
model. The neural network has shown good classification performance, but now it is 
mostly used in predicting the occurrence of hypertension or not, but in fact, risks assess-
ment of hypertension is what we need. In order to solve the problems above, this study 
proposes a risk assessment approach for hypertension based on mobile crowd sensing. Ex-
perimental results show that the risk assessment approach can identify the risk of hyper-
tension effectively and give real time feedback to users, providing novel guidance for pri-
mary prevention of hypertension.  

3. PROPOSED APPROACH 

In this section, we first present the framework and the flow of hypertension risk as-
sessment approach, and then introduce the components of the framework. In the approach, 
a large amount of hypertension relative data, including medical data, lifestyle data and 
individual characteristic data can be collected via mobile equipment, which establishes a 
strong foundation for hypertension risk assessment. This risk assessment system learns 
medical knowledge from the collected information and simulates a doctor’s diagnosis us-
ing machine learning to provide reliable risk assessment. As illustrated in Fig. 1, the entire 
framework of the proposed approach can be divided into three modules: data collection 
module, communication network module and data processing module.  

The specific flow of the approach is shown in Fig. 2. When starting the task of build-
ing the model, in first step, health-relative information is collected by participants through 
smart phone. In the second step, the collected information is transmitted to cloud server 
for data storage through communication network. Third, the collected information is pro-
cessed in the cloud server. Data preprocessing is used to deal with missing values and 
finish data standardization. For data processing, first, logistic regression is used to analyze 
the risk factors of hypertension. Second, BP neural network is used to construct a model 
for outputting the risk value of hypertension. Third, the cumulative distribution function 
was used to stratify the risk of hypertension by controlling the error rate. In this way, we 
construct the hypertension risk assessment model. The model can provide real-time service 
for participants and some institutes.  
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Fig. 1. Framework of hypertension risk assessment approach based on mobile crowd sensing. 

 

 
Fig. 2. Flowchart of hypertension risk assessment approach based on mobile crowd sensing. 
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3.1 Data Collection Module 
 
Health-related information is multi-dimensional, and physiological indicators during 

work, exercise and even travel are an important part of health-related information. This 
kind of dynamic health information cannot be obtained from traditional medical system. 
Mobile crowd sensing provides a solution to this problem. Mobile crowd sensing is a kind 
of voluntary action, participants volunteered to submit their health-related information for 
the sake of common interests and benefits. Therefore, appropriate incentive mechanism 
should be taken to maintain the enthusiasm of participants. In this study, each time partic-
ipants submit sensing information, the risk level of hypertension will be assessed and feed-
back to them as incentives. The hypertension relative information are gathered by smart-
phones, medical devices and then sent to the cloud server center. Data collection module 
is responsible for collecting medical data, lifestyle data, and individual characteristic data 
through mobile devices. For example, body fat scale can measure weight and body fat, 
blood pressure, blood lipids and blood glucose can be measured by blood pressure meter, 
blood lipid meter and blood glucose meter respectively; ECG can be measured by a single 
derivation electrocardiography sensor, temperature probe can measure temperature, and 
smart bracelet can collects information such as heart rate, sleep and physical activity; Life-
style data can be collected through questionnaire on the APP in the smartphone. Therefore, 
a large number of hypertension relative information can be relayed from the device to the 
smartphone and then to the Internet. 

3.2 Communication Network Module 

The data collected from the information collection module is transmitted to the cloud 
server center through wireless access communication network and IP-based core network. 
Among them, the wireless access communication network is the network that connects the 
customer and service provider directly. It varies from a few hundred meters to a few miles 
in diameter. The core network adopts fiber structure with high transmission rate.  

Wireless communication protocols for access communication networks include Zig- 
Bee (IEEE 802.15.4), Bluetooth (IEEE 802.15.1), Wi-Fi (IEEE 802.11) and 3G/4G/ 5G. 
In this study, ZigBee is excluded because it is not supported by smart phones at present. In 
order to meet the communication accuracy requirements, the distance between communi-
cation devices required for Bluetooth is between 10 meters and 100 meters. Therefore, in 
this system, the detection results of medical devices are transmitted to smart phones 
through Bluetooth. Wi-Fi is an important communication technology that can be used in 
mobile devices. Compared with Bluetooth, the transmission speed of Wi-Fi is faster and it 
can spread over a longer distance. Therefore, mobile users who have access to Wi-Fi can 
use Wi-Fi for data transmitting. For some scenarios where Wi-Fi is not available, mobile 
devices can transmit data over cellular network, which is the most widely used technology 
because of easy access to mobile phones despite their high cost. At present, full Wi-Fi 
coverage has not been achieved, and additional overhead may be incurred when using a 
cellular network for data transmission. Due to additional overhead, some users may not 
participate in mobile crowd sensing, especially for non-data-plan users. Therefore, inspired 
by researches [37, 38], the communication model we used in cellular network is shown in 
Fig. 3, the specific communication process is as follows: 
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Fig. 3. Communication model in cellular network. 

 

Step 1: Deploy and initialize base stations for data collection; 
Step 2: Participants who are data-plan users can apply to become temporary base station 
nodes (in this way, they will be rewarded accordingly); 
Step 3: Among the base stations within the allowed communication range, the participant 
chooses the base station with the shortest distance to submit the sensing data. In this case, 
Bluetooth and Wi-Fi are the most commonly used communication media; 
Step 4: Base station nodes forward all collected data to the cloud service center through 
one or multiple hops. 

 
This communication model can reduce the energy consumption of data transmission 

and balance the load of cellular network while encouraging users to participate in mobile 
crowd sensing.         

3.3 Data Processing Module 

In cloud service center, many kinds of analysis with health information can be imple-
mented to provide medical and health management decision support for health service pro-
viders and also provide real-time health care services for individuals. For our approach of 
hypertension risk assessment, the data processing consists of three steps. Firstly, binary 
logistic regression was used to analyze the risk factors of hypertension. Secondly, BP neu-
ral network was used to construct hypertension prediction model which can output the risk 
value of hypertension. Third, the cumulative distribution function was used to stratify the 
risk of hypertension by controlling the error rate. 

 
(A) Logical regression analysis 

Logistic regression is a statistical method, which can explore the relationship between 
a categorical dependent variable and several independent variables. It has been widely used 
in epidemiological risk factor analysis. According to the number of possible values of de-
pendent variables, logistic regression can be divided into binary logistic regression and 

Base station
Participant

Communication between participants and base stations

Communication between base stations

Cloud 
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multivariate logistic regression. Taking the risk factors for hypertension as an example, 
binary logistic regression analysis is required. 

Dependent variable y stands for hypertension or not, independent variables x1, x2, …, 
xn stand for n possible risk factors associated with hypertension. Logistic regression model 
formula is shown in Eq. (1), where i stands for the coefficient of xi. 

0 1 1 2 2ln( ) ...
1 n n

p
x x x

p
       


   (1) 

We can express the predicted probability of y as Eq. (2). Logistic prediction model 
can be used to analyze x1, x2, …, xn one by one, and finally obtain influential factors from 
the n independent variables. 

0 1 1 2 2

1

1 exp[ ( ... )]n n

p
x x x   


     

   (2) 

In this paper, binary logistic regression analysis is used to explore the correlation be-
tween independent variables (medical data, lifestyle data, individual characteristic data) 
and dependent variable (hypertension or not), so as to explore the risk factors of hyperten-
sion. 
 
(B) BP neural network 

Neural network is a supervised learning method, which can learn the law of the train-
ing data, thus can transform input data into the appropriate output, because the nerve can 
solve the problem of collinearity and interaction among variables and have strong tolerance 
of fault, the neural network has been widely applied to diseases prediction [39, 40]. 

BP neural network is a feed forward neural network model for classification and pat-
tern recognition. The structure of typical neural network includes input layer, hidden layer 
and output layer, full connection is between one layer and another, that is, any neuron of 
each layer has connections to all neurons of the layer before, so that the relationship from 
input to output can be learned. The network is developed by updating weight iteratively 
using the back propagation algorithm and optimization algorithm, which contributes to 
reducing the error between the desired output and the actual output progressively. Algo-
rithm 1 presents the pseudo-code of BP neural network. 
 
Algorithm 1: Neural network learning with the back propagation algorithm 
Input: N train samples (x1, y1), (x2, y2), …, (xn, yn), with inputs xi and corresponding outputs 
yi, xi = (xi1, xi2, …, xik), where is xi1, xi2, …, xik is k features of xi. 
Output: a BP neural network 
1: Initializing weight W(wij) and threshold value B(bj) of network 
2: Input a training sample (xi, yi), i = 1, 2, …, n.  
3: Calculate the output value of each node j of the hidden layer and output layer: 

  
1

( )

m

j ij i j
i

j j

I w z b

z f I

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

  

  Where m is the number of nodes in the previous layer  
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4: Calculate the error of each node j in the output layer: 
  errj = f (Ij)  (yij  zj) 
  For (the last hidden layer: the first hidden layer) 

Calculate the error of each cell j of the hidden layer:  
errj = f (Ij)  i(erri  wij) 

Where i is the neuron in the next layer of j 
5: Adjust the weights and thresholds between two layers adjacent: 

wij = wij +   errj  zi 

bj = bj +   errj 
  Where  is the learning rate           
6: If termination condition not satisfying, goto step 2; Else, stop 
 
(C) Risk stratification method 

Based on the risk value output by neural network, we used the accumulation distribu-
tion function to find the boundary between high risk and medium risk, medium risk and 
low risk in the training data [41], and divided the risk of hypertension into high, medium 
and low risk. The boundary between high risk and medium risk is chosen when 10% of 
non-hypertension was assessed as high risk, the boundary between medium risk and low 
risk is chosen when 10% of hypertension population assessed as low risk. Algorithm 2 
presents the pseudo-code of risk stratification method. 

 
Algorithm 2: Risk stratification method 
Input: m risk values rh1, rh2, …, rhm for hypertension, rhi is the risk value of hypertension 

sample i, 
k risk values rl1, rl2, …, rlk for non-hypertension, rli is the risk value of non-hyper-
tension i     

Output: boundary between risk levels B = {B1, B2}, B1 is the boundary between medium 
risk and low risk, B2 is the boundary between high risk and medium risk. 

1: for (r = 0:0.001:1) do 
2:  h = 0 
3:  for (r = rh1 : rhm) do 
4:   if (r  r) do 
5:    h = +1 
6:   end if 
7:  end for 
8:  if (h/m  10%) do 
9:    B1 = r 
10:   break 
11: end if 
12: end for 
13: for (r = 1:0.001:0) do 
14: l = 0 
15: for (r = rl1 : rlk) do 
16:  if (r  r) do 
17:   l = +1 
18:  end if 
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19: end for 
20: if (l/k  10%) do 
21:   B2 = r 
22:   break 
23: end if 
24: end for 

4. EXPERIMENTS 

This section investigates the performance of the proposed approach against previous 
hypertension risk prediction model in hypertension detection, which is measured in terms 
of the sensitivity, specificity, AUC and Youden’s index. In addition, the consistency of the 
training set and testing set is also investigated. 

4.1 Datasets and Risk Factors of Hypertension 

This subsection illustrates the preparation of the simulation data. The data analyzed 
in this paper is from a community health service center in Hefei area. There were a total of 
4550 samples from April 2018 to July 2019, among which 52 samples were with missing 
values, and a total of 4498 cases were complete data. There were 1098 cases of hyperten-
sion and 3400 cases of non-hypertension in the sample. In addition to general physical 
examination and laboratory measurements, relevant lifestyle behaviors and habits, includ-
ing history of chronic disease, lifestyle and physical activity habits were collected through 
face-to-face questionnaires by a professional worker in the community health service cen-
ter. According to the diagnostic criteria of the Chinese guidelines for the prevention and 
treatment of hypertension, hypertension is defined as having been diagnosed as hyperten-
sion in hospital, or having an average systolic blood pressure greater than 140 or diastolic 
blood pressure greater than 90 during physical examination. According to previous re-
searches, the risk factors of hypertension mainly include: gender, age, height, weight, Body 
Mass Index (BMI), family history of hypertension (“family history” was used for short in 
the rest of article), smoking, high-salt diet, diabetes, hyperlipidemia, physical activity, etc. 
[18]. Firstly, all these factors were included in the study. BMI is defined as weight (Kg) 
divided by square of height (m2). Diabetes is defined as being told suffering diabetes by 
the doctor or fasting blood glucose is greater than 7.0mmol/L or 2 hours postprandial blood 
glucose is greater than 11.1mmol/L. Hyperlipidemia was defined as being told suffering 
hyperlipidemia by the doctor or total cholesterol is or greater than 5.2mmol/L or triglycer-
ide is or greater than 1.7mmol/l or LDL-cholesterol is or greater than 3.4mmol/L or HDL-
cholesterol is less than 1.0mmol/L. Family history is defined as parents or brothers and 
sisters having hypertension. Smoking is defined as total amount of smoking is more than 
100 or smoking now. High-salt diet is defined as taking more than 6g of salt per day at 
ordinary times. Physical activity is divided into three categories, those with regular exer-
cise habits (at least 3 times a week, 30 minutes each time) are defined as “regular exercise”, 
those only with housework but without regular exercise were defined as “housework”, and 
those without any regular physical activity are defined as “no exercise”.  

Logistic regression analysis has the capacity to determine significant factors. There- 
fore, the binary logistic regression was used to analyze the sample data, the dependent 
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variable was hypertension or not, 1 stand for hypertension and 0 stand for non-hyperten-
sion. The independent variables including continuous variables: age, BMI, and categorical 
variables: gender, family history, smoking, high-salt diet, diabetes, hyperlipidemia, phys-
ical activity. When setting critical value of statistical significance p at 0.05, the correlation 
of dependent variable and each independent variable showed that age, BMI, family history, 
smoking, high-salt diet, diabetes, hyperlipidemia and physical activity was significantly 
correlated to hypertension (p < 0.05), which indicate they are predict indicators of hyper-
tension that should be included into the model. While gender was not significantly corre-
lated to hypertension (p > 0.05), but clinical studies have shown that gender is one of the 
influence factors of hypertension, so we would include gender as hypertension risk factors 
into the model. 

4.2 Hypertension Prediction Model Based on BP Neural Network  

Hypertension prediction model is established based on BP neural network. Where the 
input layer constitutes of nine risk factors, they are age, gender, BMI, family history, smok-
ing, high-salt diet, diabetes, hyperlipidemia and physical activity. A node is used to repre-
sent the output; the output is a decimal number 0 or 1, which can show the risk of hyper-
tension, and the greater the value means the higher the risk of hypertension. We set one 
hidden layer, thus can not only reduce the amount of computation, but also prevents over-
fitting. As regard to the number of nodes in the hidden layer, which is not only related to 
the number of nodes in the input and output layer, but also related to the complexity of the 
problem to be solved, the type of conversion function and the characteristics of sample 
data. In order to avoid the phenomenon of “over-fitting” and ensure the performance of the 
network, the most basic principle to determine the number of hidden layer nodes is mini- 
mizing the number of nodes in the hidden layer on the premise of meeting the requirements 
of precision. The number of nodes in the hidden layer in this model is determined to be 10, 
which contributes to the smallest correction error of the model. The Tanh was selected as 
activation function referring to previous research results [22]. Therefore, the predict model 
is shown in Fig. 4. 

4.3 Experimental Results and Analysis  

In order to implement the risk assessment approach of hypertension, sample data were 
randomly divided into training samples and testing samples according to the ratio 7 (a total 
of 3148 cases, in which 768 cases hypertension, 2380 cases non-hypertension): 3 (a total 
of 1350 cases, in which 330 cases hypertension, 1020 cases non-hypertension). The train-
ing samples were used to train the model, while the testing samples were used to verify the 
validity of the model. Referring to previous studies [42], to generate the binary hyperten-
sion status (Yes or No), the threshold is set at 0.5. But due to the unbalanced character of 
our sample data, which means hypertension population is far less than non-hypertension 
population, we consider all thresholds. The optimal threshold is the threshold which makes 
the sum of sensitivity and specificity of the training set reach the maximum value. A person 
is identified as hypertension when the output of neural network is larger than the threshold 
value, otherwise, he will be predicted as non-hypertension. We use the testing set to verify 
the performance of the model.  
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Fig. 4. Risk prediction model of hypertension based on neural network. 

 

The accuracy, sensitivity, specificity, area under the curve (AUC) and Youden’s in-
dex were used to evaluate the diagnostic performance of our model. Accuracy presents the 
probability of correctly identifying hypertension and non-hypertension. Sensitivity is de-
fined as the probability of correctly identifying hypertension. Specificity refers to the prob-
ability of correctly identifying non-hypertension. AUC is defined as the area bounded by 
the coordinate axis under the receiver operating characteristic (ROC) curve, as a value, the 
classifier with larger AUC has better performance. Youden’s index is equal to the sum of 
specificity and sensitivity minus 1. The sensitivity and specificity at different threshold for 
both training set and testing set are shown in Fig. 5, and the ROC curves of training set 
and testing set are shown in Fig. 6. Under the optimal threshold, for training set, the accur- 
 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Specificity and sensitivity of training set and 
testing set at different threshold value.

Fig. 6. ROC curves of training set and test-
ing set.
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acy was 77.78%(95%Confidence Interval(CI):77.73%-77.81%), the sensitivity was 87.73% 
(95%CI:87.69%-87.78%), the specificity was 74.61%(95%CI:74.57%-74.65%), and the 
AUC was 0.88(95%CI:0.87-0.90). The accuracy, sensitivity, specificity and AUC of the 
testing set were 77.95% (95%CI: 77.91%-77.99%), 87.82% (95%CI: 87.78%-87.86%), 
74.75% (95%CI: 74.70%-74.80%), and 0.88(95%CI: 0.86-0.90) respectively. It is obvious 
that the training set have good consistency with the testing set in accuracy, sensitivity, 
specificity and AUC. 

We compared the performance of the prediction model in this paper with the previous 
hypertension prediction models, and the results are shown in Table 1. This model outper-
forms other models in specificity, Youden’s index and AUC, and also performs well in 
sensitivity. 

 

Table 1. Comparison of hypertension prediction models. 
Model Method Sensitivity (%) Specificity (%) Youden’ index (%) AUC 

Fernando2018 [19] logistic regression 77.00 68.00 45.00 0.73 
Wang 2015 [22] neural network 72.76 67.96 40.72 0.77 
Mevlut Ture 2005 [24] logistic regression 90.48 64.10 54.58 0.79 
This approach neural network 87.82 74.75 62.57 0.88 

 

The above results show that our model has good performance on predicting hyperten-
sion. But in fact, our goal is to predict the risk of hypertension, and finally realize early 
warning of hypertension. Good performance of hypertension diagnostic, which can ensure 
the accuracy of risk degree, is the basis of risk classification. So, risk stratification of hy-
pertension needs to be implemented further. Different from hypertension prediction, we 
let output of the neural network is not 0 or 1, but a continuous value between 0 and 1, 
which shows the risk of hypertension. We divided the risk of hypertension into high, me-
dium and low, using the accumulation function to find boundaries between high risk and 
medium risk, medium risk and low risk in the training data. The boundary between high 
risk and medium risk is chosen when 10% of non-hypertension were predicted as high risk, 
the boundary between medium risk and low risk is chosen when 10% of hypertension pop-
ulation were predicted as low risk. The result of risk stratification is shown in Fig. 7.   

 
Fig. 7. Result of risk stratification. 
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We used the testing set to verify the performance of the risk stratification method. 
The results were shown in Table 2. Among 330 hypertension population, 22 (6.7%) were 
predicted as low risk, 88 (26.7%) were predicted as medium risk, 220 (66.7%) were pre-
dicted as high risk. Among 1020 non-hypertension population, 652 (63.9%) were predicted 
as low risk, 250 (24.5%) were predicted as medium risk, and 118 (11.6%) were predicted 
as high risk. which shows that our risk stratification method can effectively identify the 
risk of hypertension and provide a new idea for the early warning of hypertension. 

 

Table 2. Performance of the risk stratification method in testing set. 
 Total #Low risk %Low risk #Medium risk %Medium risk #High risk %High risk 

hypertension 330 22 6.7% 88 26.7 % 220 66.7% 

Non-hypertension 1020 652 63.9% 250 24.5% 118 11.6% 

5. CONCLUSIONS 

In the paper, we propose a hypertension risk assessment approach based on mobile 
crowd sensing. The participants can access the system through smart phones and upload 
their hypertension-related information anytime and anywhere. In order to encourage par-
ticipants, the assessment results will be feed back to them in real time. Additionally, opti-
mized communication model is used to reduce the communication cost of non-data-users. 
Then the collected information can be relayed to the cloud service center through the com-
munication network. The data are processed and analyzed in the cloud service center to 
provide corresponding health care services. In our approach, binary logistic regression is 
used to identify risk factors of hypertension, and then BP neural network with risk factors 
as input is used to calculate the risk value of hypertension. Finally, further risk stratification 
of hypertension is realized by cumulative distribution function.  

4498 samples in Hefei area were used to implement the simulation experiment. Re-
sults show that the average accuracy, sensitivity, specificity and AUC of this model are 
77.95%, 87.82%, 74.75%, 0.88 respectively. In addition, the performance of training set 
is well consistent with the testing set, thus the model outperform the previous hypertension 
prediction model. Referring to risk level, the error is controlled within 10%, indicating the 
approach can assess hypertension risk effectively. Compared with the traditional health 
care service mode, this approach can collect a large number of hypertension related infor-
mation effectively and provide real time, dynamic feedback in response to the collected 
information, which will effectively improve the interaction between individuals and doc-
tors and the benefits of health care. This study provides a new idea for the early warning 
of hypertension. Although this paper only considers hypertension, this approach is also 
applicable to risk assessment of other chronic diseases. For future, we will explore effec-
tive approaches to alleviate network congestion which is caused by massive real-time data 
transmission. 
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