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Automatic extraction of information from music data is an important and challeng-

ing issue in the field of content-based music retrieval. As part of the research effort, this 
study presents a technique that automatically identifies cover versions of songs specified 
by users. The technique enables users to search for songs with an identical tune, but per-
formed by different singers, in different languages, genres, and so on. The proposed sys-
tem takes an excerpt of the song specified by the user as input, and returns a ranked list 
of songs similar to the input excerpt in terms of the main melody. To handle likely dis-
crepancies, e.g., in tempo, transposition, and accompaniment, between cover versions 
and the original song, methods are presented to remove the non-vocal portions of the 
song, extract the sung notes from the accompanied vocals, and compare the similarities 
between the sung note sequences. Our experiments on a database of 594 cross-lingual 
popular songs show the feasibility of identifying cover versions of songs for music re-
trieval. 
 
Keywords: content-based music retrieval, cover version, main melody, polyphonic, ac-
companiments 
 
 

1. INTRODUCTION 
 

Recent advances in digital signal processing technologies, coupled with what are 
essentially unlimited data storage and transmission capabilities, have created an un-
precedented growth in the amount of music material being produced, distributed, and 
made available universally. At the same time, our ever-increasing appetite for music has 
provided a major impetus to the development of various new technologies. However, as 
the amount of music-related data and information continues to grow, finding a desired 
item among the innumerable options can, ironically, be more difficult. This problem has 
motivated research into developing techniques for automatically extracting information 
from music. Specific topics, such as music structural analysis [1-3], melody spotting [4, 
5], beat tracking [6, 7], music transcription [8, 9], genre classification [10, 11], singer 
identification [12, 13], instrument recognition [14, 15], and audio fingerprinting [16, 17], 
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are being extensively studied within the overall context of content-based music retrieval 
[18-23]. In tandem with these research topics, this study presents a preliminary investi- 
gation of automatic identification of cover recordings, which tries to locate songs whose 
main melodies are similar to that of the fragment of the song specified by the user.   

A cover version of a song refers to a new rendition of a song that was originally re-
corded and made popular by another artist. It is often used as a means to attract audiences 
who like a familiar song, or to increase the popularity of an artist by adapting a proven 
hit. Sometimes pop musicians gain publicity by recording a cover version that contrasts 
with the original recording. Over several years, thousands upon thousands of cover ver-
sions of songs have been recorded, some of which are virtually identical to the original 
version, while some are radically different. The only feature that is almost invariant in 
the different recordings is the main melody of the vocals. Usually, the main difference 
between an original song and a cover version is that they are performed by different 
singers. In such cases, the associated tempos, ornaments, accompaniments, etc., may be 
changed to cater to the taste of contemporary audiences, or to fit the theme of an album. 
Thus, it would be useful if a music retrieval system incorporated a search function for a 
song rendered by different singers or belonging to different genres. 

Other common differences between cover versions and the original song are that 
they have different lyrics and titles, or they are sung in different languages. Hit songs, in 
particular, are often translated into different languages, thereby making them more 
popular worldwide. Since a translation is usually not literal, cover-version identification 
based on the main melody could support a more feasible retrieval function than text- 
based retrieval for those wishing to listen to a song performed in a different language. In 
addition, it is commonplace for live performances to be recorded and then released as 
authorized cover songs. The method of cover-version identification could thus be applied 
to index and classify such undocumented live recordings. This would also help copyright 
holders detect unauthorized or bootleg concert recordings. 

In this work, we address the problem of identifying cover-versions for music re-
trieval by investigating how to determine if one or more music recordings contain main 
melodies that are similar to a specified song excerpt. According to the categorization for 
music retrieval presented in Table 11, this task belongs to the category of retrieving 
polyphonic music documents based on polyphonic music queries. In contrast to textual or 
symbolic music retrieval, which can be handled by a number of conventional informa-
tion-retrieval methods, the problems associated with acoustic documents/queries require 
digital audio signal processing, which involves many uncertain factors not considered by 
conventional information-retrieval methods. In addition, unlike mono- phonic music, in 
which only one note is played at any given time, polyphonic music often contains many 
notes that are played simultaneously. Consequently, it is difficult to extract the main 
melody from a piece of polyphonic music automatically [24]. Because of this difficulty, a 
large number of melody-based music retrieval systems [25-28] work within the mono-
phonic domain, which converts a monophonic audio query into a symbolic format to 
match a monophonic symbolic collection. Some studies [29, 30] focus on locating the 
major themes from a piece of polyphonic symbolic music, in which the note informa-
tion is given as a priori. However, very few systems operate in the mode of mono-
phonic audio queries on a polyphonic audio collection [31, 32], or in the mode of entirely  

1 Summarized from [3, 22, 23]. 
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Table 1. Problem categories in music-retrieval research. Depending on the combination 
of different types of music documents and users’ queries, music-retrieval re-
search could be divided into 25 problem categories. Example task for each 
category is given in the Table. 

Acoustic Document
Query Textual Symbolic 

Monophonic Polyphonic 
Image 

Textual 
e.g., retrieving 

lyrics via  
keywords 

e.g., retrieving 
MIDI or  

Humdrum music 
via keywords 

e.g., retrieving solo 
trumpet music via 

keywords 

e.g., retrieving 
popular songs via 

keywords 

e.g., retrieving 
scanned sheet 

music via  
keywords 

Symbolic 

e.g., retrieving 
lyrics via  

example MIDI 
music 

e.g., using one 
MIDI music to 
retrieve other 
MIDI versions

e.g., retrieving solo 
trumpet music via 

example MIDI 
music 

e.g., retrieving 
popular songs via 

example MIDI 
music 

e.g., retrieving 
scanned sheet 

music via example
MIDI music 

M
onophonic 

e.g., retrieving 
lyrics via 
humming 

e.g., retrieving 
MIDI music via 

humming 

e.g., retrieving 
solo trumpet 

music via  
humming 

e.g., retrieving 
popular songs via 

humming 

e.g., retrieving 
scanned sheet 

music via  
humming 

Acoustic Polyphonic 

e.g., checking 
the source of a 
pre-recorded 
popular song 

e.g., retrieving 
MIDI versions 

of a pre-recorded 
popular song 

e.g., retrieving solo 
trumpet versions 
of a pre-recorded 

popular song 

e.g., retrieving 
original/cover 
versions of a 
popular song 
(the problem 

investigated in 
this study) 

e.g., retrieving 
scanned sheet 

music of a  
popular song 

Image 

e.g., checking 
the source of  

a song via 
scanned sheet 

music 

e.g., retrieving 
MIDI music from 

scanned sheet 
music 

e.g., retrieving solo 
trumpet versions 

from scanned 
sheet music 

e.g., retrieving a 
symphony from 
scanned sheet 

music 

e.g., checking 
similar music  
via scanned  
sheet music 

 
polyphonic audio queries on a polyphonic audio collection [33-35]. This work differs 
from the above systems because of the need to compare the main melody present in the 
vocals of polyphonic music. To tackle this problem, we propose methods for removing 
the non-vocal portions of a song, extracting the sung notes from the accompanied vocals, 
and comparing the similarities between the sung note sequences. 

The remainder of the paper is organized as follows. An overview of the proposed 
method is given in section 2. The cover-version identification components, namely, non-  
vocal segment removal, main melody extraction, and similarity computation, are pre-
sented in sections 3, 4, and 5, respectively. We discuss the experiment results in section 6, 
and then present our conclusions in section 7. 

2. METHOD OVERVIEW 

Our goal is to design a system that takes an audio query from a fragment of a song 
as input, and produces, as output, a ranked list of songs that are similar to the query in 
terms of the main melody. Songs ranked high are then considered as either the original 
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version or cover versions of the song requested by the user. However, as cover versions 
may differ significantly from the original song in the way that the accompaniments are 
introduced, an arbitrary audio query could contain non-vocal (accompaniment-only) seg-
ments whose melody patterns are not present in the songs requested by the user, or vice 
versa. To simplify the problem during this initial development stage, we assume that a 
user’s query does not contain salient non-vocal segments. 

In general, the structure of a popular song can be divided into five sections: (1) intro, 
usually the first 5-20 seconds of the song, which is simply an instrumental statement of 
the subsequent sections; (2) verse, which typically comprises the main theme of the story 
represented in the song’s lyrics; (3) chorus, which is often the heart of the song, where 
the most recognizable melody is present and repeated; (4) bridge, located roughly 
two-thirds into the song, where a key change, tempo change or new lyric is usually in-
troduced to create a sensation of something new coming next; and (5) outro, which is 
often a fading version of the chorus or an instrumental restatement of some earlier sec-
tions to bring the song to a conclusion. Except for the intro and outro, the other sections 
may be repeated several times with different lyrics and melodies. For example, the song 
“Day Tripper” by The Beatles can be summarized as the structure “intro-verse-chorus- 
verse-chorus-bridge-verse-chorus-outro” [36]. In essence, the verse and chorus contain 
the vocals sung by the lead singer, while the intro, bridge, and outro are largely accom-
paniments. Since the vast majority of popular songs follow the structure of “intro-verse- 
chorus-verse-chorus-bridge-verse-chorus-outro”, we further assume that a user’s query is 
a fragment of the region between the intro and the bridge of a song. 

Song 1

Non-vocal
Removal

Note
Sequence 1

Similarity
Computation
& Ranking

Ranked List

Main Melody
Extraction

Main Melody
Extraction

Audio Query

Indexing
Phase

Searching
Phase

Note
Sequence 2

Note
Sequence M

Song 2

Non-vocal
Removal

Main Melody
Extraction

Song M

Non-vocal
Removal

Main Melody
Extraction

 
Fig. 1. The proposed cover-version identification system for music retrieval. 

 
Fig. 1 shows a block diagram of our cover-version identification system for music 

retrieval, which operates in two phases: indexing and searching. The indexing phase gen-
erates the melody description for each of the songs (documents) in the collection. It com-
mences by removing non-vocal segments longer than two seconds, which probably be-
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long to the intro, bridge, or outro. Then, the main melody extraction component converts 
each song from waveform samples into a sequence of musical note symbols. In the 
search phase, the task is to determine which of the songs (documents) are relevant to a 
music query. This phase begins with main melody extraction, which converts an audio 
query into a sequence of musical note symbols, and is followed by comparison of the 
query’s note sequence and each document’s note sequence. The more similar the docu-
ment’s note sequence is to that of the query, the stronger the likelihood that the document 
is a cover version or the original version of the requested song. Then, a ranked list of the 
similarities between the query’s sequence and the document’s sequence is presented to 
the user.   

3. NON-VOCAL SEGMENT REMOVAL 

Although it would be advantageous if all the non-vocal regions in a music recording 
could be located automatically, the task of accurately distinguishing between segments 
with and without singing is rather difficult. In our previous work on this problem [37], 
we found that a vocal segment tends to be classified as non-vocal if it is mixed with loud 
background accompaniment. Although the effect of discarding a low “vocal-to-accompa- 
niment-ratio” segment is almost negligible in some applications, such as singer clustering 
[37], it can result in a very fragmented and unnatural melody pattern being extracted 
from a song. Thus, instead of locating all the vocal and non-vocal boundaries in a song 
document, we only try to detect non-vocal segments that are longer than two seconds. 

The basic strategy applied here is adapted from our previous work [37], in which a 
stochastic classifier is constructed to distinguish vocal from non-vocal regions. The clas-
sifier consists of a front-end signal processor that converts digital waveforms into frame- 
based cepstral feature vectors, after which a back-end statistical processor performs mod-
eling and matching. The classifier operates in two phases, training and testing, as shown 
in Fig. 2.  
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Fig. 2. Vocal/non-vocal classification. 



WEI-HO TSAI, HUNG-MING YU AND HSIN-MIN WANG 

 

1674 

 

During training, a music database with manual vocal/non-vocal transcriptions is 
used to form two separate Gaussian mixture models (GMMs): a vocal GMM, and a non- 
vocal GMM. Both GMMs are designed to model the spectral distribution of various 
broad acoustic classes by a combination of Gaussian components, in which the broad 
acoustic classes reflect some general vocal tract and instrumental configurations. We 
denote the vocal and non-vocal GMMs as λV and λN, respectively. The parameters of the 
GMMs are initialized via k-means clustering and iteratively adjusted via expectation- 
maximization (EM) [38]. 

In the testing phase, the recognizer takes as input the Tx-length feature vectors X = 
{x1, x2, …, xTx} extracted from an unknown recording, and produces as output the frame 
log-likelihoods log p (xt | λV) and log p (xt | λN), for 1 ≤ t ≤ Tx. Since singing tends to be 
continuous, it is better to perform the recognition task in a segment-by-segment manner, 
rather than a frame-by-frame manner. To reduce the risk of crossing multiple vocal/non- 
vocal boundaries, a segment is selected and examined in the following way. First, vector 
clustering is applied to all the frame feature vectors, and each frame is assigned a cluster 
index associated with its feature vector. Then, each segment is assigned the majority in-
dex of its constituent frames, and adjacent segments are merged as a homogeneous seg-
ment if they have the same index. Accordingly, a homogeneous segment can be hypothe-
sized as either vocal or non-vocal by using the following equation: 

1 1

0 0

vocal

non-vocal

1 log ( | ) log ( | ) ,
k k

k k

W W

s i V s i N
k i i

p x p x
W

λ λ η
− −

+ +
= =

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

>
∑ ∑ ≤     (1) 

where Wk and sk represent, respectively, the length and the initial frame of the kth homo-
geneous segment, and η is the decision threshold. 

As the performance of the above recognizer crucially depends on the reliability of 
the vocal/non-vocal models, it seems necessary to use training data that covers all the 
vocal/non-vocal characteristics of various music styles. However, acquiring such a large 
amount of training data is usually cost prohibitive because labeling the music manually 
requires considerable effort. To circumvent this problem, we propose tailoring the vocal/   
non-vocal models for each of the individual test music recordings, instead of designing 
models that can cover universal vocal/non-vocal characteristics. The idea is to refine the 
vocal/non-vocal models based on the recognition results. It is assumed that the acoustic 
characteristics of the true vocal/non-vocal segments in each music recording can be 
largely inferred from the hypothesized vocal/non-vocal segments. Thus, the hypothesized 
segments can be used to refine the models, and the recognizer with the refined models 
then repeats the procedure of likelihood computation and decision-making, which should 
improve recognition. There are a number of ways to refine the models. This study uses a 
model adaptation technique based on maximum a posteriori estimation [39]. The classi-
fication and model adaptation procedures are performed iteratively, until the resulting 
vocal/non-vocal boundaries do not change further. Finally, non-vocal segments longer 
than 2 seconds are identified and removed from the recording.   
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4. MAIN MELODY EXTRACTION 

4.1 Note Sequence Generation 
 
Given a music recording, the goal of main melody extraction is to find the sequence 

of musical notes produced by the singing part of the recording. Let e1, e2, …, eN be the 
inventory of possible notes performed by a singer. The task, therefore, is to determine 
which among N possible notes is most likely sung at each instant. To do this, the music 
signal is first divided into frames by using a fixed-length sliding Hamming window. 
Every frame then undergoes a fast Fourier transform (FFT) of size J. Since musical notes 
differ from each other in the fundamental frequencies (F0s) they represent, we can de-
termine if a certain note is sung in each frame by analyzing the spectral intensity in the 
frequency region where the F0 of the note is located.   

Let xt,j denote the signal’s energy with respect to FFT index j in frame t, where 1 ≤ j 
≤ J. If we use the MIDI note number to represent e1, e2, …, eN, and map the FFT indices 
into MIDI note numbers according to the F0 of each note, the signal’s energy in note en 
of frame t can be estimated by  

, ,, ( )
max ,

∀ =
=t n t j

nj U j e
y x     (2) 

and 

2
( )( ) 12 log 69.5 ,

440
F jU j ⎢ ⎥⎛ ⎞= ⋅ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

    (3) 

where ⎣ ⎦  is a floor operator, F(j) is the corresponding frequency of FFT index j, and U(⋅) 
represents a conversion between the FFT indices and the MIDI note numbers [28].  

Ideally, if note en is sung in frame t, the resulting energy, yt,n, should be the maxi-
mum among yt,1, yt,2, …, yt,N. However, due to the existence of harmonics, note numbers 
that are several octaves higher than the sung note can also receive a large proportion of 
the signal’s energy. Sometimes the energy of a harmonic note number can be even larger 
than the energy of the true sung note number; hence, the note number receiving the larg-
est amount of energy is not necessarily the note that is sung. To determine the sung note 
more reliably, we adopt Sub-Harmonic Summation (SHS) [40] to solve the problem.  

The principle applied here is to compute a value for the “strength” of each possible 
note by summing the signal’s energy on a note and its harmonic note numbers. Specifi-
cally, the strength of note en in frame t is computed using   

, , 12
0

,
C

c
t n t n c

c
z h y +

=
= ∑     (4) 

where C is the number of harmonics considered, and h is a positive value less than 1 that 
discounts the contribution of higher harmonics. The result of summation is that the note 
number corresponding to the signal’s F0 receives the largest amount of energy from its 
harmonic notes. Thus, the sung note in frame t can be determined by choosing the note 
number associated with the largest value of the strength, i.e.,   
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One Measure

Singing Accompaniment
 

Fig. 3. An excerpt from the pop song “Let It Be” by The Beatles in which the tune is manually 
converted into a MIDI file. 

,
1

arg max .
≤ ≤

=t t n
n N

o z     (5) 

However, since most popular music contains background accompaniment during 
most or all vocal passages, the note number associated with the largest value of the 
strength may not be produced by a singer, but by the instruments being played concur-
rently instead. To alleviate the interference of the background accompaniment, we pro-
pose suppressing the strength of the notes that are probably produced by the instruments. 
The method is motivated by an observation made about popular music that, compared to 
the vocals, the principal accompaniment often contains a periodically-repeated note. Fig. 
3 shows an example of a fragment of a pop song, where the tune is converted into a 
MIDI file. For ease of illustration, it is shown by the software CakewalkTM. From the fig- 
ure, we observe that the melody produced by the principal accompaniment tends to be 
repeated in the adjacent measures, unlike the main melody produced by singing. There-
fore, it can be assumed that a note number associated with the constantly-large value of 
the strength within and across adjacent measures is probably produced by the instruments. 
Based on this assumption, we modify the computation of strength in Eq. (4) by   

1 2

2 1

, , , ,
2 1

1 ,
2( 1)

−

+ +
=− =

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟− + ⎝ ⎠

∑ ∑
L L

t n t n t l n t l n
l L l L

z z z z
L L

    (6) 

where L1 and L2 specify, respectively, the regions [t − L2, t − L1 ] and [t + L1, t + L2 ] in 
which the average strength of note en is computed. Implicit in Eq. (6) is that the strength 
of note en in frame t will be largely suppressed if the average strength of note en com-
puted from the surrounding frames is large. Accordingly, the sung note in frame t is de-
termined by  

,
1

arg max .
≤ ≤

=t t n
n N

o z     (7) 

4.2 Note Sequence Rectification 
 

The above frame-based generation of note sequences may be improved by exploit-
ing the underlying relation or constraints between frames. The most visible constraint 
between frames is that the length of a note is usually several times longer than a frame; 
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hence, there should not be a drastic change, such as jitter, between adjacent frames. To 
remove jitter from a note sequence, we apply median filtering, which replaces each note 
of the frame with the local median of its neighboring frames.  

In addition to the short-term constraint between adjacent frames, we exploit a long-   
term constraint to rectify a note sequence. This constraint is based on the fact that the 
notes sung in a music recording usually vary far less than the range of all possible sung 
notes. Furthermore, the range of the notes sung within a verse or chorus section can be 
even narrower. Fig. 4 shows a segment of a pop song, in which the singing part is con-
verted into a MIDI file. It is clear that the range of the notes in the verse can be distin-
guished from that of the chorus, mainly because the sung notes within a section are not 
spread over the range of all the possible notes, but are only distributed within their own 
narrower range. An informal survey using 50 pop songs shows that the range of sung 
notes in a complete song and in a verse or chorus section is around 24 and 22 semitones, 
respectively. Fig. 5 details our statistical results. The range of sung notes serves as a long- 
term constraint to rectify a note sequence. 

Verse Chorus

 
Fig. 4. An excerpt from the pop song “Yesterday” by The Beatles; the singing is converted into a 

MIDI file. 
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(a) The range of sung notes in a complete song.   (b) The range of sung notes in a verse or chorus. 

Fig. 5. Statistics of the range of sung notes in 50 pop songs, in which the percentage of songs whose 
range of sung notes is less than R semitones is shown. 

 
The principle of rectification involves locating incorrectly estimated notes that re-

sult in a note sequence beyond the normal range. Since the accompaniment is often 
played several octaves above or below the vocals, the incorrectly estimated notes are 
probably the octaves of their true notes. Therefore, we can adjust some problematic notes 
by moving them several octaves up or down, so that the range of notes in an adjusted se- 
quence conforms to the normal range. Specifically, let o = {o1, o2, …, oT} denote a note 
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sequence estimated using Eq. (7). Then, an adjusted note sequence o′ = {o′1 , o′2 , …, o′T } 
is obtained by 

, if | | ( / 2)

/ 2
12 , if  ( / 2) ,

12
/ 2

12 , if  ( / 2)
12

t t

t
t t t

t
t t

o o o R

o o R
o o o o R

o o R
o o o R

⎧
− ≤⎪

⎪
⎪ − +⎢ ⎥⎪′ = − × − >⎨ ⎢ ⎥⎣ ⎦⎪
⎪ − −⎢ ⎥⎪ − × − < −⎢ ⎥⎪ ⎣ ⎦⎩

   (8) 

where R is the normal range of the sung notes in a sequence, say 24, and o  is the mean 
note computed by averaging all the notes in o. In Eq. (8), a note, ot, is considered incor-
rect and needs to be adjusted if it is too far from o , i.e., |ot − o | > R/2. The adjustment is 
performed by moving the incorrect note ⎣(ot − o  + R/2)/12⎦ or ⎣(ot − o  − R/2)/12⎦ oc-
taves.   

5. SIMILARITY COMPUTATION 

After representing music data as a sequence of note numbers, cover-version identi-
fication can be transformed into a problem of comparing the similarity between a query’s 
note sequence and each of the documents’ note sequences. Since cover versions often 
differ from the original song in terms of key, tempo, ornament, etc., it is virtually impos-
sible to find a document sequence that matches the query sequence exactly. Moreover, 
main melody extraction is known to be frequently imperfect, which introduces errors of 
substitution, deletion, and insertion into the note sequences. To ensure reliable melody 
similarity comparison, an approximate matching method tolerant of occasional note er-
rors is therefore needed. 

Let q = {q1, q2, …, qT}, and u = {u1, u2, …, uL} be, respectively, the note sequences 
extracted from a user’s query and a music document to be compared. The obvious prob-
lem we face is that the lengths of q and u are usually unequal. Thus, it is necessary to 
temporally align q and u before computing their similarity. For this reason, we apply 
Dynamic Time Warping2 (DTW) to find the mapping between each qt and u , 1 ≤ t ≤ T, 1 
≤  ≤ L. DTW operates by constructing a T × L distance matrix D = [D(t, )]T × L, where 
D(t, ) is the distance between the note sequences {q1, q2, …, qt} and {u1, u2, …, u }. It is 
computed by 

( 2, 1) 2 ( , )
( , ) min ,( 1, 1) ( , )

( 1, 2) ( , )

D t d t
D t D t d t

D t d t
ε

− − + ×⎧
⎪= − − + −⎨
⎪ − − +⎩

    (9) 

and  

d(t, ) = |qt − u |,    (10) 

where ε is a small constant that favors the mapping between notes qt and u , given the 

2 Similar work can be found in [27, 28, 41]. 
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distance between note sequences {q1, q2, …, qt-1} and {u1, u2, …, u -1}. The boundary 
conditions for the above recursion are defined by 

(1, 1) (1, 1)
( , 1) , 2
(2, 2) (1, 1) (2, 2)

.
(2, 3) (1, 1) (2, 2)
(3, 2) (1, 1) 2 (2, 2)
( , 2) , 4

D d
D t t T
D d d
D d d
D d d
D t t T

ε

=⎧
⎪ = ∞ ≤ ≤⎪
⎪ = + −⎪
⎨ = +⎪
⎪ = + ×
⎪

= ∞ ≤ ≤⎪⎩

   (11) 

After the distance matrix D has been constructed, the similarity between q and u can be 
evaluated by  

[ ]
/2 min(2 , )

max 1/ ( , ) , if  /2
( , ) .

, if  /2
T T L

D T L T
S q u

L T
≤ ≤

⎧ ≥
⎪= ⎨

∞ <⎪⎩

    (12) 

Here, we assume that (1) the end of a query’s sequence should be aligned to a certain 
frame between T/2 and min(2T, L) of the document’s sequence; and (2) a document whose 
sequence length is less than T/2 is not relevant to the query. 

Since a song query may be performed in a different key or register than the target 
music document, i.e., the so-called transposition, the resulting note sequences of the 
query and the document could be rather different. To deal with this problem, the dynamic 
range of a query’s note sequence needs to be adjusted to that of the document to be com-
pared. This can be done by moving the query’s note sequence up or down several semi-
tones, so that the mean of the note sequence is equal to that of the document under con-
sideration. A query’s note sequence is adjusted by 

( ),t tq q u q← + −     (13) 

where q  and u  are the means of the query’s note sequence and the document’s note se-
quence, respectively. However, in our experiments, we found that the above adjustment 
could not fully resolve the transposition problem, since the value of ( )q u− only reflected 
a global difference in key between a query and a document. In other words, the adjust-
ment cannot characterize partial transpositions or key changes over the course of a query. 
To handle this problem better, we further modify the DTW similarity comparison by 
considering the key shifts of a query’s note sequence. Specifically, a query sequence q is 
shifted by ± 1, ± 2, …, ± K semitones to span a set of note sequences {q(1), q(-1), q(2), 
q(-2), …, q(K), q(-K)}. For a document sequence u, the similarity S (q, u) is then determined 
by choosing the sequence among {q(0), q(1), q(-1), q(2), q(-2), …, q(K), q(-K)} that is most 
similar to u, i.e.,  

( )( , ) max ( , ),k

K k K
S q u S q u

− ≤ ≤
=     (14) 

where q(0) = q. 
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6. EXPERIMENTS 

6.1 Music Data 
 
The music database used in this study consisted of 794 tracks3 from pop music CDs 

that covered the following five genres: soundtracks, country, folk, jazz, and rock. We 
divided the database into three sub-sets. The first sub-set, DB-1, contained 47 pairs of 
tracks (a total of 94 tracks) comprised of cover/original songs. In this sub-set, the differ-
ence between a cover version and the original song was characterized by the following 
factors: L: language (including English, Mandarin, and Japanese); S: singer; A: principal 
accompaniment; T: tempo; and N: non-vocal melodies. A summary of the differences in 
each pair of tracks is given in Table 2. 

Table 2. A summary of the differences in each pair of cover/original tracks in sub-set 
DB-1. 

Type of within-pair difference No. of pairs 
L 8 

L + S 7 
L + T 3 

L + S + T 7 
L + T + N 6 

L + S + T + N 4 
L + A + T + N 2 

L + S + A + T + N 10 

 
The second sub-set, DB-2, contained 500 tracks, none of which was a cover version 

of any track in DB-1, but some of the singers in DB-2 also appeared in DB-1. The third 
sub-set, DB-3, contained 200 tracks, performed by 13 female and 8 male singers, none of 
whom appeared in DB-1 and DB-2. Sub-sets DB-1 and DB-2 were used to evaluate the 
cover-version retrieval system, while DB-3 was used to create the vocal and non-vocal 
models. Manual annotation of vocal/non-vocal boundaries was only performed on DB-1 
and DB-3. To exclude high frequency components whose vocal information is usually 
sparse, the waveform signals were down-sampled from a CD sampling rate of 44.1 kHz 
to 22.05 kHz, to exclude high frequency components whose vocal information is usually 
sparse. 

 
6.2 Experiment Results 

 
The first experiment, using DB-1 as test data, was run in a “leave-one-out” manner, 

whereby one track at a time in DB-1 was used as a trial query to retrieve the remaining 
93 tracks. We rotated through all 94 tracks in this manner. To approximate a real-use 
scenario, each query was composed of only a verse or chorus, obtained by manual seg-
mentation. The length of the queries ranged from 31 to 54 seconds. The performance of 
the song retrieval method was evaluated in terms of the retrieval accuracy as follows: 

3 The database did not contain the 50 pop songs described in section 4.2, which were used for analyzing the 
range of sung notes. 
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# queries whose target songs are ranked first 100%.
# queries

×  

We also computed the Top-N accuracy rate, defined as the percentage of queries whose 
target songs are among the Top-N. 

Table 3. Performance of cover-version retrieval for different configurations used in 
main melody extraction; each method is based on five-frame median filtering. 

Accuracy (%) Main melody 
extraction method Top 1 Top 3 Top 10

Eq. (5) 60.64 71.28 78.72 
Eq. (7) 

(L1 = 64, and L2 = 192) 70.21 73.40 80.85 

R = 22 65.96 72.34 74.47 
R = 24 76.60 78.72 87.23 
R = 26 74.47 77.66 86.17 

Eqs. (7) and (8) 

R = 28 70.21 77.66 85.11 
 

Table 3 shows the retrieval results for different configurations used in main melody 
extraction. In this experiment, each document was a track from which non-vocal seg-
ments had been removed manually. The inventory of possible sung notes consisted of the 
MIDI numbers from 41 to 83, which corresponded to the frequency range of 87 to 987 
Hz. In FFT computation, the frame length and the overlap between frames were set to 
2048 and 1704, respectively. In addition, for melody similarity comparison, we used K = 
2 in Eq. (14) to handle the transposition problem. From Table 3, we observe that the re-
trieval performance obtained by using Eq. (5) was the least effective of the three methods 
compared. This is because the method determines the sung notes based on the strength 
computed from the observed signal, which is vulnerable to interference from the back-
ground accompaniment. It is clear from Table 3 that a better estimation of the note 
strength can be obtained by using Eq. (7), which discounts the note numbers associated 
with the constantly-large values of the strength within and across adjacent measures. Ta-
ble 3 also shows that melody extraction can be further improved by using the note se-
quence rectification method defined in Eq. (8). 

Table 4 shows the retrieval results for the different configurations used for melody 
similarity comparison. In this experiment, main melody extraction was performed us-
ing Eqs. (7) and (8) with R = 24, i.e., the best results reported in Table 3. The results in 
Table 4 show that the retrieval performance improves as the value of K increases. This 
indicates that the more the possible changes of key are taken into account, the greater the 
chance that a query’s sequence will match the correct document’s sequence. However, 
increasing the value of K substantially increases the computational costs because similar-
ity comparison requires two extra DTW operations whenever the value of K is increased 
by one. An economic value of K = 2 was thus chosen for all the experiments. 

Next, we examined the performance of cover version retrieval based on the auto-
matic removal of the non-vocal segments of each document. The number of Gaussian 
densities used in the vocal and non-vocal models was empirically determined to be 64;  
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Table 4. Performance of cover-version retrieval for different configurations used in mel-
ody similarity comparison. 

Accuracy (%) Value of K in Eq. (14) 
Top 1 Top 3 Top 10 

0 64.89 67.02 77.66 
1 73.40 75.53 80.85 
2 76.60 78.72 87.23 
3 76.60 79.79 88.30 

Table 5. Performance of cover-version retrieval obtained by removing and not removing 
the non-vocal segments of each document. 

Accuracy (%) Non-vocal segment 
removal method Top 1 Top 3 Top 10
Manual removal 76.60 78.72 87.23 

Automatic removal 65.96 69.15 72.34 
Without removal 54.26 59.57 64.89 

Table 6. Results of cover-version retrieval for the collection of 594 tracks in DB-1 and 
DB-2. 

Accuracy (%) Non-vocal segment 
removal method Top 1 Top 3 Top 10 

Automatic removal 63.83 65.96 72.34 
Without removal  47.87 54.26 60.64 

 
and the length of a segment, W, in Eq. (1) was set at 200. Table 5 shows the experiment 
results, in which the results of “Manual removal” correspond to the results of “K = 2” in 
Table 4. From Table 5, we observe that, although there is a significant performance gap 
between the manual and automatic removal of the non-vocal segments, the performance 
obtained with automatic non-vocal removal is much better than that obtained without 
non-vocal removal. 

We also conducted experiments to evaluate the retrieval performance of the pro-
posed system for a larger collection of songs. We used the 94 queries, one at a time, to 
retrieve the 593 tracks in DB-1 and DB-2. Since no manual annotation of vocal/non-vo- 
cal boundaries was performed on DB-2, the experiment was run on the basis of automatic 
removal of the non-vocal segments of each document. Table 6 shows the experiment 
results. As expected, the increased number of non-target songs reduced the retrieval ac-
curacy. Comparing Table 6 with Table 5, we find that the retrieval accuracy deteriorates 
sharply when the system operates on a larger collection of songs without removing the 
non-vocal segments. Once again, this demonstrates the importance of removing non- 
vocal regions. 

Fig. 6 details the retrieval results for the 94 trial queries, where each point indicates 
the rank of each query’s target song among the 593 documents. Nearly all the target 
songs of queries belonging to “L” and “L + T” were ranked among the Top 3, whereas a 
large proportion of the target songs of queries belonging to “L + S + A + T + N” were 
ranked outside the Top 10. This reflects the fact that the greater the difference between  
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Fig. 6. The rankings of the 94 queries’ target songs. 

 
the cover version and the original song, the more difficult it is to retrieve one song by 
using another song as a query. Although the overall performance could be improved fur-
ther, our system shows the feasibility of identifying polyphonic cover recordings for mu-
sic retrieval. 

7. CONCLUSION 

We have examined the feasibility of identifying cover versions of popular songs for 
music retrieval. The proposed system tries to determine which songs in a database of 
songs contain similar main melodies to the melody in a user’s query. To exclude factors 
that are irrelevant to the main melody of a song, we remove non-vocal segments that are 
longer than a whole rest. We have also proposed a method to minimize the interference 
of background accompaniment during the estimation of the sung note at each instant. The 
estimated sung note sequences are then further refined by limiting the range of sung 
notes in a sequence to 24 semitones. In addition, we have devised a method for compar-
ing the similarity of a query’s note sequence with the documents’ note sequences. The 
method can handle the discrepancies in tempo and transposition between original songs 
and cover versions of them.   

Despite the potential of the methods proposed in this study, they only provide base-
line solutions to the cover-version retrieval problem. Like other research on retrieving 
polyphonic documents based on polyphonic queries, more work is needed to improve 
both melody extraction and melody similarity comparison. The improvement should not 
only be made on the system’s effectiveness, but also be made on the efficiency. In par-
ticular, one of the factors that dominate our system’s efficiency is the DTW-based simi-
larity comparison, which may be too costly expensive to deal with a large number of 
music documents. To accelerate the similarity comparison, a strategy based on key-in-   
variant encoding [42] could be incorporated into our system. In addition, the tradeoff 
between system’s effectiveness and efficiency needs to be further studied. As a result, to 
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support the future work on cover-version retrieval, the music database should be scaled 
up to cover a wider variety of music styles, genres, singers, and languages. 
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