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The method proposed in this paper utilizes the front and rear cameras of a user’s 

smartphone to distinguish drivers from passengers to prevent texting-while-driving. Since 

texting behaviors of drivers differ from those of passengers, the images captured by the 

front and rear cameras on a smartphone have distinguishable characteristics. These features 

can be cost-effectively employed to detect whether the smartphone is being used by the 

driver or a passenger. Our experimental results show that the accuracy of the proposed 

scheme is over 92% among most of the testing cases, which makes the proposed system a 

cost-effective tool for automotive safety via smartphone cameras. 
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1. INTRODUCTION 
 

Talking-and-texting while driving is a widely recognized dangerous behavior which 

dramatically increases the risk of traffic accidents. Competent authorities and studies have 

documented the link between distracted driving of texting (DDT) on smartphone and sig-

nificantly diminished safety. The National Highway Traffic Safety Administration of USA 

reported [1] that 13 percent of all fatal distraction-affected crashes in 2019 involved cell 

phone use and texting while driving. Since 2012, Taiwan drivers caught using smartphones 

without the hands-free kit while operating a vehicle could face a fine of NT$3,000 [2].  

Many researches have been focused on helping the driver and his/her passengers stay 

away from DDT. These related contributions can be classified into off-line or on-line pre-

ventions from DDT. For off-line DDT prevention, [3] proposed a game-based, multi-pla-

yer, online simulated training application with an integrated hazard warning system for 

further improving young and inexperienced drivers’ hazard perception skills. As for on-

line DDT prevention, [4] developed a mobile application coupled with an on-board em-

bedded system to monitor the mobile usage of a driver to acquire data from the vehicle to 

identify driver’s behavior with respect to phone usage, sudden lane changes, and abrupt 

breaking/speeding. All information was used in mobile application to control the driver’s 

mobile usage as well as to report driving behavior while driving. To automatically recog-

nize driver’s misbehaviors more than DDT, such as hands off the wheel, hand reaching 

behind, operating the radio, smoke, drinking and etc., [5] employed deep learning techni-
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ques to tackle the task. The multi-column CNN (convolutional neural network) was uti-

lized with feature fusion techniques to extract multi-scale features under different receptive 

fields in large-amount drivers’ recorded image datasets. With high computational power 

and large dataset, their off-line work achieved high classification accuracy in diversified 

driver behaviors. 

In on-line DDT preventions research, using automated techniques for real-time pre-

venting talking and texting on smartphone while driving has also become a significant 

topic. In the work of [6], drivers must first register their own smartphones with the mobile 

operator as the master smartphone. When the owner is moving, the base station will obtain 

the continuous position of the master smartphone and use this information to calculate the 

current speed. When the speed is below a certain limit during operation of the master 

smartphone, it is considered safe, otherwise it would be deemed dangerous and the mobile 

operator sends an alarm to warn the driver. The main problem with this method, beyond 

the reluctance of drivers to register their smartphone, is in determining whether the user is 

a driver or a passenger (DDP). 

In our paper, the proposed DDP scheme also requires the user’s own smartphone to 

determine whether the user is a driver or a passenger, but unlike most of the studies, cam-

eras on the smartphone are the only major sensors utilized in our proposed scheme. Since 

behaviors of driver or passenger are different while using phone in a vehicle, images cap-

tured by the front and rear smartphone cameras will have different recognition features. 

Based on these two features, two heuristics are proposed to cost-effectively perform DDP. 

The proposed DDP techniques can be cooperated with other related studies such as [7-10] 

to improve the overall system performance for on-line DDT preventions. 

The remainder of this paper is organized as follows. Details of related DDP works are 

discussed briefly in Section 2. The proposed DDP scheme is described in Section 3, and 

experimental results and evaluations from the proposed DDP scheme are shown in Section 

4. Conclusions and future work are given in Section 5. 

2. RELATED WORKS 

To automatically perform DDP, the study of [11] proposed a scheme based on the 

relative distance of sound reflection by sending a Bluetooth signal to the vehicle’s stereo 

sound system to instigate high frequency sounds. The smartphone then analyzes time dif-

ferences from the left, right, front and rear speakers to determine if the user is a passenger 

or the driver.  

In the study of iLOC [12], four smartphones are placed in the driver’s seat, the front 

passenger’s seat, the rear of the driver’s seat, and the rear of the passenger’s seat, respec-

tively. These smartphones will generate different accelerometer and gyroscope infor-

mation under various road conditions. The iLOC system uses these information to detect 

whether the smartphone user is the driver or a passenger. 

In the study of [13], additional cameras were installed in front of the driver’s seat to 

determine whether a user in the vehicle is a passenger or driver. This paper designs an 

activity recognition algorithm based on image processing technologies. This method can 

accurately detect whether the driver is texting-while-driving, but it requires additional ca-

meras deployed in vehicle. 
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In these aforementioned studies, additional equipment are required to detect whether 

the smartphone is being used by the driver or a passenger. To remedy this, Liu et al. pro-

pose a scheme by using only their own smartphone [7]. That scheme uses some of the 

special characteristics of phone use while driving, including reduced speed, hesitation 

while turning, and the phone being held upright. These behaviors generate special patterns 

in the gyroscopes, accelerometers, and GPS sensors of the smartphone, and these patterns 

can be used to conduct DDP. It is based on three special patterns when a driver is using 

the phone: reduced speed, hesitation when turning, and the phone being held upright. First, 

data captured by the gyroscope sensor can be used to discern the touchstroke-induced ro-

tation change of the smartphone. To validate the existence of first pattern, GPS sensor data 

is used to estimate the speed of the vehicle. If the speed before keystrokes is greater than 

that after keystrokes, then the first pattern is detected. To identify the second pattern, their 

scheme uses the GPS sensor data to detect turning behavior during keystrokes. Finally, 

accelerometer information is used to distinguish the phone orientation for detecting the 

third pattern. 

Similarly, in 2017, Bo et al. proposed a system named TEXIVE for DDP by recog-

nizing rich micro-movements of smartphone [8]. TEXIVE first exploits unique patterns 

extracted from inertial sensors in smartphones to detect whether a user is entering a vehicle 

or not, from which side of the vehicle, and sitting in front or rear seats. Since typo data are 

different in focusing and distracted condition, TEXIVE then collects the typo texting pat-

tern by monitoring the backspace key. Based on the above information, a machine learning 

technique is employed to perform DDP.  

In 2018, Ahmad et al. use the smartphone inertial measurements and door’s signal for 

DDP [9]. In this study, a user in a car is classified into four types: driver, front passenger, 

rear passenger nearside, and rear passenger offside. A driver and a front passenger can be 

classified by the behavior whilst entering the vehicle by turning clockwise or counterclock-

wise. The doors signal is employed to distinguish the present of front or rear vehicle users. 

A probabilistic model utilizing salient relevant features of smartphone sensory data and 

doors signal is proposed for final driver/passenger classification. 

Mariakakis et al. propose a WatchUDrive system which identifies whether the wearer 

of smartwatch is the driver or a passenger in a vehicle by the accelerometer and the camera 

[10]. As a driver steer the vehicle, he/she must keep hold of the steering wheel for long 

periods of time. The wrist orientation of a driver is different to that of a passenger. This 

work utilizes the roll and pitch of the smartwatch’s accelerometer to classify the orientation 

of the user’s arm. Similarly, the surroundings captured by the camera of smartwatch be-

tween driver and passenger are different. They employ GIST features from [14] for DDP. 

Finally, a prediction aggregation is proposed to combine the above predictions. 

In 2020, Khurana et al. proposed a light-weight and software-only solution [15] using 

smartphone cameras to first observe the car’s interior geometry to find smartphone’s posi-

tion and orientation. Then, no matter where the smartphone is docked in car or held in hand, 

the obtained information can be applied by machine learning technique to detect the 

smartphone’s owner for DDP. Features from the detected lines in car’s interior geometry 

are used in random forest classifier with default parameter and 10 trees. Their real-time 

DDP classifier can achieve overall accuracy of 94% when the smartphone is held in hand 

and 92.2% when the smartphone is docked. They also claimed that if the smartphone IMU 

data is further applied, the overall accuracy can be pushed to 99.8%.   
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3. PROPOSED DDP SCHEME 

The proposed scheme uses images captured by the front and rear cameras on a user’s 

smartphone to determine whether the user is a driver or passenger (DDP). This direct 

method only requires cameras which are build-in sensors in almost every smartphone on 

current market. Images captured by cameras can easily be processed with Scale Invariant 

Feature Transform (SIFT) [16] and Speeded Up Robust Features (SURF) [17] to classify 

the user’s role in a vehicle, but these algorithms require high computational power which 

is beyond the capacity of most smartphones. We therefore proposed two heuristics to fur-

nish low-complexity in the DDP scheme. 

3.1 Heuristic 1 

Fig. 1 shows images of users using a smartphone in the vehicle. Fig. 1 (a) shows a 

side-view of the driver, and Fig. 1 (b) shows the passenger sitting in the front seat, Fig. 1 

(c) shows the passenger on one side of the rear seat, and Fig. 1 (d) shows a passenger sitting 

in the center of the rear seat. When a driver uses a smartphone while driving, his hand 

usually shakes and lifts slightly to facilitate seeing the content on screen of the smartphone 

as well as the road conditions. This causes the rear camera of the smartphone to capture 

other equipment in the vehicle (as shown in Figs. 2 (a) and (b)) or views outside the vehicle 

(as shown in Figs. 2 (c) and (d)). The differences between two successive images captured 

by the rear camera of the smartphone is obvious due to the movement of phone or vehicle. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1. Different images of users using the mobile phone in the vehicle: (a) the side-view image of 

the driver; (b) the image of the passenger sitting in the front seat; (c) the image of the passenger 

sitting in the side of the rear seat; (d) the image of the passenger sitting in the center of the rear seat. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Images captured by the rear camera of the mobile phone for the driver texting while driving: 

(a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4. 
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In contrast, when a passenger uses a smartphone, he/she usually holds the smartphone 

close to their chest and looks down at the screen, so the rear camera captures images of the 

vehicle floor or the user’s legs. Figs. 3-5 show successive images taken by a user sitting in 

the front passenger seat of the vehicle, in a side rear seat, and in the center of the rear seat, 

respectively. Differences between these images are very slight. Therefore, successive im-

ages captured by the rear camera of a smartphone can be utilized to discern whether the 

user is the driver or a passenger. If there are only slight differences between two successive 

images, the user is considered a passenger; otherwise, the user is considered a driver. This 

is the first heuristic used to determine whether the user is the driver or a passenger. 

 

 
(a) 

 
(b) 

Fig. 3. Images captured by the rear camera of user’s smartphone and the user was sitting in the front 

seat of the vehicle: (a) Image 1; (b) Image 2. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Images captured by the rear camera of user’s smartphone and the user was sitting the rear seat: 

(a) Image 1 from first side; (b) Image 2 from 2nd side; (c) Image 3 from center; (d) Image 4 from 

center. 

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Images of the driver using the mobile phone under steering wheel: (a) Side-view image for 

driver; (b) Image 1 captured by the rear camera; (c) Image 2 captured by the rear camera; (d) Image 

3 captured by the front camera. 

 

3.2 Heuristic 2 

In most cases, Heuristic 1 can correctly distinguish whether the user is a driver or a 

passenger, but it fails when the driver uses the smartphone facing downwards, as shown in 

Fig. 5 (a). In this position, the rear camera would capture images of the vehicle floor or the 
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user’s legs, as shown in Figs. 5 (b) and (c). The difference between these successive images 

is so slight that Heuristic 1 cannot work correctly. 

In this situation, the driver tends to hold the smartphone more away from his/her chest 

in order to maintain a clear line of sight, so the image of the user’s face in the smartphone's 

front camera is smaller, as shown in Fig. 5 (d). Fig. 6 (c) shows a corresponding image of 

a passenger in the front seat of the vehicle. Heuristic 2 uses this feature to distinguish 

whether the user is a driver or a passenger. 

To reduce the calculation load, Heuristic 2 counts the number of skin pixels instead 

of computing the face size in image. For this intention, images captured by the front camera 

while users are texting are stored and processed to obtain the number of skin pixels, which 

is then used as thresholds in Heuristic 2. If the number of skin pixels captured by the front 

camera is within the range of these thresholds, the user is a passenger; otherwise, the user 

is a driver. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Images of the passenger sitting in the front seat of the vehicle for Heuristic 2: (a) Side-view 

image of the driver; (b) Image captured by the rear camera; (c) Image captured by the front camera. 

 

There are three phases in the proposed algorithm: the first phase is the color transform 

for preprocessing, while the second and third phases are Heuristics 1 and 2, respectively. 

In the first phase, pixels in the RGB color space are transformed into the YCbCr color space 

to overcome the light problem. Eq. (1) gives the corresponding transform function. 
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In the second phase, the differences between successive frames are computed to do 

background subtraction [16], and only Y values of pixels in frames are taken into account 

to reduce computation load. With Yi
j as the Y value in the ith frame of the jth pixel, differ-

ences of the ith frame are defined as 

1

1
| | / ,
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j jj
D Y Y n−

=
= −  (2) 

where n is the number of pixels in each frame. If Di > TH1, the second phase judges the 

user to be a driver. If not, the proposed algorithm performs the third phase. In this paper, 

TH1 is set to 10 which is based on results conducted previously. That is, if the difference 

in Y value per pixel between successive frames is greater than 10, the user of the smart-

phone is judged as a driver.  

The third phase uses skin detection to determine the face area of a user’s image [20]. 
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A pixel is classified as a skin pixel if the corresponding Y value is between 60 and 255, the 

Cb value is between 97 and 142, and the Cr value is between 134 and 176. With Si as the 

number of skin pixels in the ith frame, if Si > TH2 and Si < TH3, then the third phase judges 

the user to be a passenger. Otherwise, the user is judged to be a driver. To determine the 

values of TH2 and TH3, the user is asked to take a picture using the front camera of the 

smartphone in a normal texting pose when the proposed system is installed. With the num-

ber of skin pixels in the recorded picture as m, then TH2 and TH3 are set be to 0.9 ×  m and 

1.1 ×  m, respectively. It should be noted that different skin colors affect the skin detection 

algorithm. Therefore, different YCbCr models of skin colors are required for different skin 

colors. Fig. 7 shows the flowchart of the proposed system. 

 

DDP Start

1. Capture the RGB image frame i from the Rear camera of smartphone 

2. Transform the RGB image frame i to YCbCr via Eq.(1)

3. Then compute Di for frame i via Eq.(2) 

Di >TH1

output

Driver

output 

Passenger
DDP End

1. Capture the RGB image frame i 

from the Front camera of 

smartphone 

2. Transform the RGB image 

frame i to YCbCr via Eq.(1)

3. Then compute the Skin pixel 

number Si for frame i [17]

YES NO

TH2<Si <TH3

NO

YES

 
Fig. 7. Flowchart of the proposed DDP algorithm using Heuristics 1 and 2. 

 

3.3 Storage Consumption and Computation Complexity of Proposed DDP 

 

As shown in Fig. 7, there are three phases in the proposed algorithm. The first phase 

is the color transformation of the captured image frame from the rear camera on a smart-

phone. It requires 9 multipliers and 9 adders to transfer RGB color space into YCbCr color 

space for each pixel in a frame. If there are n pixels in a frame, the first phase costs 9 ×  n 

multipliers and 9 ×  n adders/subtractors. 

The second phase first computes the differences between successive Y-type frames. 

It requires one subtractor and one adder for each pixel in a frame. For a frame with n pixels, 

it requires 2 ×  n adders/subtractors. Without considering the storages for temporarily pro-

cessing image frames, two storages are necessary to keep Di and TH1. For each frame, one 

comparator for Di and TH1 is then employed to judges the user to be a driver or not.  

With the same color transformation as the first phase, the third phase uses skin detec-

tion to determine the face area of a user’s image from the front camera on a smartphone. 

It also spends computation of 9 ×  n multipliers and 9 ×  n adders/subtractors in color trans-

formation. A pixel classified as a skin pixel requires 6 comparators. Three storages are 

necessary to keep Si, TH2 and TH3. For each frame, two comparators are then used to judges 

the user to be a driver or a passenger. For a frame with n pixels, it requires 3 additional 
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storages and 9 ×  n multipliers, 9 ×  n adders/subtractors, 6 ×  n + 3 comparators. 

Therefore, DDP will require constant storage consumption of 5 additional storages 

and O(n) computation complexity in 20 ×  n multipliers, 20 ×  n adders/subtractors and 6 ×  n 

+ 4 comparators. We believe that proposed DDP scheme can help resource-constraint 

smartphone to cost-effectively distinguish drivers from passengers for texting-while-driv-

ing. 

4. EXPERIMENTAL RESULTS AND EVALUATIONS 

4.1 Preliminary Experimental Setting 

In this paper, all experiments are conducted on a Sony Xperia C3 smartphone with a 

Qualcomm Snapdragon S4 Pro APQ8064 processor, 2GB memory and the Android 4.4.4 

operating system. Because the proposed DDP system must run in real time, the camera 

image resolution is set to 176 ×  144 pixels so that Sony Xperia C3 can handle up to 13 

images per second (i.e. video frame rate is 13) for each camera. To verify the DDP detec-

tion ratio of the proposed algorithm, we used 10 testing videos filmed in different situations. 

Six videos (Videos 1-6) test whether the proposed algorithm can correctly judge whether 

the user of the video is a driver and 4 videos (Videos 7-10) determine if the user of the 

video is a passenger. There are two men in a car in these videos. The driver aged 50 drives 

the car and the passenger aged 26 has a seat in different locations of the car in different 

videos. 

 

rear 

camera 

      

front 

camera 

      
 (a) (b) (c) (d) (e) (f) 

Fig. 8. Representative images for Videos 1-6: (a) Video 1; (b) Video 2; (c) Video 3; (d) Video 4; (e) 

Video 5; (f) Video 6. 

4.2 Preliminary Experimental Results 

Fig. 8 shows representative images captured by the rear camera and the front camera 

from Videos 1-6. Table 1 gives the detection rate of the proposed algorithm. There are 241 

frames in Video 1 where a driver holds a smartphone with his right hand in front of him, 

and his hand movement causes large difference between successive images. Heuristic 1 

can correctly determine the user to be a driver for most frames. However, since this paper 

uses a fixed value of TH1, it is not suitable for all testing images. In Video 1, there are 7 

frames can’t be correctly judged as a driver. From the viewpoint of individual frames, the 
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accuracy of Video 1 is 97%. However, from the viewpoint of the video, Video 1 can be 

regarded as a video with a driver. The behavior in Video 2 is similar to that of Video 1, 

with the driver’s hand shaking and moving. From the viewpoint of individual frames, the 

accuracy of Video 2 is 94%, and it also can be considered as a video with a driver from the 

viewpoint of the video. 

 

Table 1. Detection rates of the proposed algorithm for Videos 1-6. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 1 241 234 7 97% Driver 

Video 2  125 117 8 94% Driver 

Video 3  233 224 9 96% Driver 

Video 4  117 109 8 93% Driver 

Video 5  250 240 10 96% Driver 

Video 6  106 97 9 92% Driver 

 

In Video 3, a driver holds a smartphone in front of him with his left hand, and part of 

the steering wheel is captured by the rear camera in this video. The movements of the 

steering wheel cause a lot of image changes. Heuristic 1 successfully determined that the 

user is a driver. The accuracy of the proposed algorithm for Video 3 is 96%. In Video 4, a 

driver holds a smartphone with his right hand, and part of the steering wheel is also cap-

tured by the rear camera in this video. Similar to Video 3, a lot of image changes are caused 

by the movement of the steering wheel. The accuracy of the proposed algorithm for this 

video is 93%, so Videos 3 and 4 can be considered as videos with a driver.  

In Video 5, the driver holds a smartphone with his right hand resting on an object, so 

there are fewer differences in successive images captured by the rear camera and Heuristic 

1 misjudges the user to be a passenger. However, Heuristic 2 determines that the user is a 

driver since only a part of the faces is captured by the front camera in Video 5. The accu-

racy of the proposed algorithm for Video 5 is 97% in the view of individual frames. Video 

5 can be considered as a video with a driver. 

In Video 6, the smartphone is held directly in front of the driver. Since the rear camera 

is static now and there are few differences between successive images, Heuristic 1 does 

not work correctly. However, Heuristic 2 can effectively determine that the user is a driver 

since the number of skin pixels is not within the proposed threshold range. Of the 106 

frames for this video, 97 are correct, so the accuracy of the proposed algorithm for Video 6 

is 92% according to individual frames. Video 6 can also be considered as a video with a driver. 

Fig. 9 shows representative images captured by the rear camera and the front camera 

for Videos 7-10. Table 2 gives the corresponding detection rates of the proposed algorithm. 

In Video 7 a passenger is sitting in the front seat, while in Videos 8 and 9 a passenger is 

sitting on the left and on the right sides of the rear seat, respectively. In Video 10, there is 

a passenger sitting in the center of the rear seat. The images in Videos 7, 8 and 9 are very 

stable, with only slight differences between successive images. Heuristic 1 and Heuristic 

2 can correctly determine that the user of these videos is a passenger. The accuracy of the 

proposed algorithm for Videos 7, 8 and 9 is 100%. In Video 10, some images captured by 

the rear camera have large vibrations incurred by the vehicle accelerating or braking, which 

causes an incorrect detection by the proposed algorithm. Of the 754 frames in Video 10, 
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46 frames incorrectly determine that the user is a driver, for an error rate of 6%. Neverthe-

less, the overall accuracy rate of the proposed algorithm is still 94%. In the view of indi-

vidual frames, the above detection rates are all greater than 90%. These videos can be 

considered as videos with a passenger. 

 

rear 

camera 

    

front 

camera 

    
 (a) (b) (c) (d) 

Fig. 9. Representative images for Videos 7-10: (a) Video 7; (b) Video 8; (c) Video 9; (d) Video 10. 

Table 2. Detection rate of the proposed algorithm for Videos 7-10. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 7 1007 0 1007 100% Passenger 

Video 8 758 0 758 100% Passenger 

Video 9 773 0 773 100% Passenger 

Video 10 754 46 708 94% Passenger 

 
Table 3. Evaluation of Heuristic 1 vs. Heuristic 2 (D indicates driver video, P indicates pa-

ssenger video). 

 Video 1 

(D) 

Video 2 

(D) 

Video 3 

(D) 

Video 4 

(D) 

Video 5 

(D) 

Video 6 

(D) 

Video 7 

(P) 

Video 8 

(P) 

Video 9 

(P) 

Video 

10 (P) 

H.1 D D D D P P P P P P 

H.2 P P P P D D P P P P 

H.1 & H.2 D D D D D D P P P P 

 

Now we look at the effectiveness of the proposed schemes for Videos 1-10 when 

Heuristic 1, Heuristic 2, and both are applied. Table 3 gives the corresponding results from 

the viewpoint of the video. Heuristic 1 can correctly determine the user to be a driver for 

Videos 1-4 and the user to be a passenger for Videos 7-10. It misjudges the user to be a 

passenger for Videos 5 and 6. The total detection rate is 80% for Heuristic 1. For Heuristic 

2, it misjudges the user to be a passenger for Videos 1 and 4. Heuristic 2 correctly deter-

mines the user to be a driver for Videos 5 and 6 and the user to be a passenger for Videos 

7-10. The total detection rate is 60% for Heuristic 2. Therefore, Heuristic 1 and Heuristic 

2 cannot be utilized individually. The proposed algorithm combines Heuristic 1 and Heu-

ristic 2 to achieve 100% detection rate. 
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4.3 Evaluations with More Experiments in Different Metrics 

 

From Videos 1-6, different drivers’ use cases are tested, and use cases of passengers in 

different position in a vehicle are examined in Videos 7-10. Only users’ roles and their 

ways of using smartphone are taken into account. In the following subsections, we further 

look into the effect of various conditions to the system performance: user’s wearing, car 

vibrating, in-car luminance, position of the phone, weather and vehicle types. Then, we 

further compare the performance of our DDP scheme with other DDP schemes using 

smartphone cameras only including [15] and using deep neural network. Finally, we dis-

cuss the limitations of our work.  

 

rear 

camera 

      

front 
camera 

      
 (a) (b) (c) (d) (e) (f) 

Fig. 10. Representative images captured by the rear camera and the front camera for Videos 11-16: 

(a) Video 11(D); (b) Video 12(P); (c) Video 13(D); (d) Video 14(P); (e) Video 15(D); (f) Video 

16(P). 

Table 4. Detection rates of proposed DDP algorithm for Videos 11-16. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 11 (D) 245 245 0 100% Driver 

Video 12 (P) 280 280 0 0% Driver 

Video 13 (D) 260 251 9 96% Driver 

Video 14 (P) 195 39 156 80% Passenger 

Video 15 (D) 260 252 8 97% Driver 

Video 16 (P) 224 5 219 97% Passenger 

(A) Performance from different user’s wearing 

The effect caused by different wearing is first analyzed in Fig. 10. Videos 11 and 12 

show a man wearing a mask driving a car and a passenger wearing a mask sitting in a 

backseat of a car, respectively. Similarly, Videos 13 and 14 are videos of a man wearing a 

hat. Videos 15 and 16 show a woman wearing a skirt driving a car and sitting in the back-

seat of a car.  

Fig. 10 shows representative images captured by the rear camera and the front camera 

for Videos 11-16. Table 4 gives the frame detection rates of the proposed algorithm for 

these videos. Results show that the detection rates are greater than 90% except Videos 12 
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and 14. For Video 11, the proposed algorithm can correctly determine it as a video with a 

driver since the differences of the successive frames captured by the rear camera are obvi-

ous. However, the proposed algorithm misjudges Video 12 as a video with a driver. In this 

video, the mask covers the user’s face, resulting the number of skin pixels is not within the 

proposed threshold range.  

For Videos 13 and 14, the proposed algorithm classifies them into the right types. It 

should be noted that the proposed algorithm would make a wrong decision for Video 14 if 

the hat covers more user’s face like Video 12 with a mask. For Video 15, the rear camera 

captures images of the skirt. Since the skirt is static, differences between the above succes-

sive images are few. Heuristic 1 does not work correctly. However, Heuristic 2 can effec-

tively determine that the user is a driver since the number of skin pixels captured by the 

front camera is not in the threshold range. The proposed algorithm correctly determines 

that the user is a passenger in Video 16 as well. 

 

rear 

camera 

      

front 
camera 

      
 (a) (b) (c) (d) (e) (f) 

Fig. 11. Representative images captured by the rear camera and the front camera for Videos 17-22: 

(a) Video 17(D); (b) Video 18(P); (c) Video 19(D); (d) Video 20(P); (e) Video 21(D); (f) Video 

22(P). 

Table 5. Detection rates of proposed DDP algorithm for Videos 17-22. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 17 (D) 240 236 4 98% Driver 

Video 18 (P) 220 13 207 94% Passenger 

Video 19 (D) 235 223 12 95% Driver 

Video 20 (P) 224 43 181 81% Passenger 

Video 21 (D) 240 240 0 100% Driver 

Video 22 (P) 240 240 0 0% Driver 

(B) Performance from car vibration 

In this subsection, the effect to the proposed system caused by different vibrating is 

discussed. Videos 17 and 18 are videos in which the vibrating is the result of uneven roads. 

Videos 19 and 20 are videos in which the user touching the screen of the smartphone fre-

quently. Videos 21 and 22 are videos where the user shakes the smartphone on purpose. 

Fig. 11 shows representative images captured by the rear camera and the front camera for 



COST-EFFECTIVE SMARTPHONE-CAMERA-BASED SCHEME TO DDP FOR TWD 281 

Videos 17-22. Table 5 gives the frame detection rates of the proposed algorithm for these 

videos.  

Performance results show that the detection rates are also greater than 80% except 

Video 22. For Videos 17-20, the proposed algorithm can correctly classify them into cor-

responding types since the vibration caused by the uneven roads and the user touching the 

screen is not clear, although there is some distortion in images captured by cameras. How-

ever, the vibration caused by shaking the smartphone on purpose is significant in Videos 

21 and 22. Such vibration makes more differences between successive images captured by 

the rear camera, resulting that the proposed algorithm misjudges in Video 22. The proposed 

algorithm determines them as videos with a driver.  

 

rear 
camera 

    

front 

camera 

    
 (a) (b) (c) (d) 

Fig. 12. Representative images captured by the rear camera and the front camera for Videos 23-26: 

(a) Video 23(D); (b) Video 24(P); (c) Video 25(D); (d) Video 26(P). 

Table 6. Detection rates of proposed DDP algorithm for Videos 23-26. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 23 (D) 224 213 11 95% Driver 

Video 24 (P) 220 42 178 81% Passenger 

Video 25 (D) 242 242 0 100% Driver 

Video 26 (P) 250 250 0 0% Driver 

(C) Performance from different in-car luminance  

This paragraph analyzes the effect to the proposed system caused by different light. 

Videos 23 and 24 are testing videos for driving at dusk and Videos 25 and 26 are testing 

videos for driving in a night. Fig. 12 shows representative images captured by the rear 

camera and the front camera for Videos 23 to 26. Table 6 gives the frame detection rates 

of the proposed algorithm for these videos. Results show that the detection rate are greater 

than 80% except Video 26. The proposed algorithm can correctly classify them into cor-

responding types for Videos 23 and 24. This indicates that the proposed algorithm works 

well under the condition of driving at dusk. However, it makes some mistakes under the 

condition of driving in a night.  

For Video 25, the proposed algorithm can correctly determine it as a video with a 

driver since the in-car luminance in the nights makes the differences between successive 

images captured by the rear camera greater than the threshold. However, the proposed al-



SHIH-YU HUANG AND CHIA-HUI WANG 

 

282 

 

gorithm misjudges Video 26 as a video with a driver because that the number of skin pixels 

captured by the front camera is too few in the night, resulting that Heuristic 2 does not 

work correctly. 
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camera 

      

front 

camera 
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Fig. 13. Representative images captured by the rear camera and the front camera for Videos 27-32: 

(a) Video 27(D); (b) Video 28(P); (c) Video 29(D); (d) Video 30(P); (e) Video 31(D); (f) Video 

32(P). 

 

Table 7. Detection rates of proposed DDP algorithm for Videos 27-32. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 27 (D) 224 207 17 92% Driver 

Video 28 (P) 224 5 219 98% Passenger 

Video 29 (D) 224 215 9 96% Driver 

Video 30 (P) 224 4 220 98% Passenger 

Video 31 (D) 224 222 2 99% Driver 

Video 32 (P) 224 0 224 100% Passenger 

 

(D) Performance from different position of the phone 

In this subsection, the effect to the proposed system caused by different position of 

the phone is discussed. Three modes are defined to evaluate the performance: the near, 

moderate, and far modes. The near denotes that the distance between the phone and the 

face is about 20 centimeters. The corresponding distances for moderate and far modes are 

30 and 40 centimeters, respectively. Fig. 13 shows representative images captured by the 

rear camera and the front camera for these modes in Videos 27 to 32. Table 7 gives the 

detection rates of the proposed algorithm for these videos. Videos of drivers can be suc-

cessfully judged by the proposed scheme as Driver since images captured by the rear cam-

era are almost the contents outside of cars in which the differences between the corre-

sponding images are significant. The corresponding accuracies are 92%, 96%, and 99% 

for the near, moderate, and far modes in Videos 27, 29 and 31, respectively. Note that, the 

detection rate for Video 27 (the near mode) is the lowest among them. This is the results 

that the phone is so close to the face that there is a great possibility to capture the steering 



COST-EFFECTIVE SMARTPHONE-CAMERA-BASED SCHEME TO DDP FOR TWD 283 

wheel by the rear camera. Steering wheel is more stable, resulting in the lower differences 

between frames and lower accuracy. For Videos 26, 30 and 32, the proposed scheme can 

successfully judge them as Passenger since the differences between the corresponding im-

ages captured by the rear camera are tiny. The detection rates are in a range from 98% to 

100%. 
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Fig. 14. Representative images captured by the rear camera and the front camera for Videos 33-38: 

(a) Video 33(D); (b) Video 34(P); (c) Video 35(D); (d) Video 36(P); (e) Video 37(D); (f) Video 

38(P). 

 

Table 8. Detection rates of proposed DDP algorithm for Videos 33-38. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 33 (D) 224 222 2 99% Driver 

Video 34 (P) 224 138 86 38% Driver 

Video 35 (D) 224 216 8 96% Driver 

Video 36 (P) 224 7 217 97% Passenger 

Video 37 (D) 224 223 1 99% Driver 

Video 38 (P) 224 83 141 63% Passenger 

 

(E) Performance from different weather conditions 

This paragraph analyzes the effect to the proposed system caused by different weather 

conditions. Videos 33 and 34 are testing videos for driving in a sunny day. Videos 35 and 

38 are testing videos for driving in a rainy day. Fig. 14 shows representative images cap-

tured by the rear camera and the front camera for videos 33 to 38. Table 8 gives the frame 

detection rates of the proposed algorithm for these videos. The proposed algorithm can 

correctly classify Video 33 into Driver type. The corresponding accuracy is 99%. This 

indicates that the proposed algorithm works well under the condition of a driver texting in 

a sunny day. However, the proposed algorithm misjudges in Video 34 where a passenger 

is texting in the front seat in a sunny day. The ratio of accuracy is 38%. Thus, Video 34 is 

classified into Driver type too. The wrong reason is that the front seat is directly lightened 

in a sunny day resulting the differences between some images captured by the rear camera 

are larger than the threshold in Heuristic 1. Videos 35 and 36 are testing videos for driving 
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in a drizzle day. The experimental results indicate that the proposed algorithm works well 

under the condition of driving. Videos 35 and 36 are successfully classified into Driver 

and Passenger types. The ratios of accuracies are 96% and 97%, respectively. Videos 37 

and 38 are testing videos for driving in a heavy rainy day. For Video 37, the proposed 

algorithm can successfully determine it as a video with a driver since the heavy rains makes 

the differences between successive images captured by the rear camera are significant. The 

corresponding ratio of accuracy is 99%. For Video 38, the ratio of accuracy to detect a 

passenger drops to 63%. The reason is that the luminance is low in a rainy day, resulting 

differences between some successive images captured by the rear camera greater than the 

threshold in Heuristic 1.   
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camera 

      

front 
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Fig. 15. Representative images captured by the rear camera and the front camera for Videos 39-44: 

(a) Video 39(D); (b) Video 40(P); (c) Video 41(D); (d) Video 42(P); (e) Video 43(D); (f) Video 

44(P). 
 

Table 9. Detection rates of proposed DDP algorithm for Videos 39-44. 

 Frames 
Driver 

Frame 

Passenger 

Frame 

Frame 

Accuracy 

Classified 

Type 

Video 39 (D) 224 217 7 97% Driver 

Video 40 (P) 224 2 222 99% Passenger 

Video 41 (D) 224 220 4 98% Driver 

Video 42 (P) 224 3 221 99% Passenger 

Video 43 (D) 224 222 2 99% Driver 

Video 44 (P) 224 214 10 5% Driver 

 

(F) Performance from different vehicle types 

The above experiments are performed in ordinary cars. To test the performance of the 

proposed scheme different vehicle types, a four-wheel drive, a van, and a truck are chosen 

to evaluate the effect of various heights of seats in these vehicles. In the experiment, the 

truck comes with the highest seats and the van with the lowest seats. Fig. 15 shows repre-

sentative images captured by the rear camera and the front camera for Videos 39-44. Table 

9 gives the frame detection rates of the proposed algorithm for these videos. Videos of 

drivers can be successfully judged by the proposed scheme as Driver since the differences 
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between the corresponding images captured by the rear camera are significant too. The 

ratios of accuracy are 97%, 98%, and 99% for videos in a four-wheel drive, a van, and a 

truck (Videos 39, 41 and 43), respectively. For videos of passengers in a four-wheel drive 

and a van, they are also successfully judged by the proposed scheme as Passenger. The 

ratio of accuracy is 99% in Videos 40 and 42. However, the proposed scheme makes a 

wrong decision for the video of a truck (Video 44). It judges it as Driver. The ratio of 

accuracy is only 5%. This phenomenon is the results that the seat height of a truck is so 

high that the front seat of a truck is directly lightened and part of the scenes outside the 

truck are captured by the rear camera of the passenger, resulting in a larger difference and 

a lower accuracy ratio.  

(G) Comparison with related DDP works 

This paragraph illustrates the comparison with related DDP works. The major differ-

ence between the proposed scheme and the other works is the utilized sensors to distinguish 

drivers from passengers in texting-while-driving. Table 10 gives the comparison table in-

cluding the model size of the number of different sensors utilized in each work. In re-

searches of [7-13], sensors such as gyroscopes, accelerometers, or GPS are usually utilized 

for their DDP scheme. In [10], they use smartwatch’s accelerometer sensor and camera to 

accomplish DDP. Particularly in [11], the Bluetooth in smartphone and car’s stereo system 

are coupled to perform DDP. Our proposed DDP and research of [15] both utilized cameras 

of user’s smartphone only. Therefore, Table 11 is illustrated for the comparison table be-

tween our proposed DDP and [15] of using smartphone cameras only. The well-known 

machine learning model of random forest is utilized in [15]. Their required resource con-

sumption is medium and the detection accuracy is 94%, 92.2% and 99.8% for smartphone 

held in hand, docked and with IMU, respectively.  

Our proposed DPP can further apply two kinds of DDPs using smartphone cameras 

only. The first one is based on heuristics mentioned above. The required resource con-

sumption is low. The detection accuracy is 83.7% and 96.2% with and without noises, 

respectively. The second one is based on Mobilenetv2 model [20] of deep neural network. 

Then, the required resource consumption is medium and the detection accuracy is higher 

than 99%. We believe that the proposed DDP scheme is a good alternative for resource-

constraint smartphone to cost-effectively distinguish drivers from passengers in texting-

while-driving. 

 

Table 10. Comparison table between proposed DDP scheme and other related works. 

DDP Schemes Different Utilized Sensors in Model Model Size 

T&D [7] accelerometer, gyroscope and GPS sensors of smartphone 3 

TEXIVE [8, 9] accelerometer and gyroscope sensors of smartphone 2 

WatchUDrive [10] accelerometer sensor and camera of smartwatch 2 

[11] stereo sound speakers in car and Bluetooth of smartphone 2 

iLOC [12] 
accelerometer and gyroscope sensors of 4 smartphones 

on 4 seats 
24 

CarSafe [13] 
cameras, accelerometers, gyroscopes and GPS of 

smartphone 
4 

Proposed DDP 

and [15] 
cameras of smartphone only 1 
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Table 11. Comparison table of smartphone DDP schemes using cameras only. 

Camera-only DDP Detection Accuracy 
Classifier 

Model 

Resource  

Consumption 

Eyes on the Road [15] 
94% (held in hand),  

92.2%(docked), 99.8(with IMU) 
Random Forest Medium 

Proposed DDP 
83.7% 

96.2% (without noises) 
Heuristics Low 

Proposed DDP  

using Mobilenetv2 
99% above Shallow DNN Medium 

 

Mobilenets is a light-weight deep neural network for mobile and embedded vision 

applications based on a streamlined architecture that uses depth-wise separable convolu-

tions. It uses two global hyper-parameters that efficiently trade-off between latency and 

accuracy to allow model builders to choose the right-sized model for their applications. 

Mobilenets demonstrates the effectiveness across a wide range of applications and use 

cases including object detection, fine-grained classification, face attributes and large-scale 

geo-localization. 

 

 
Fig. 16. Mobilenetv2 deep learning performance metrics for DDP. 

Table 12. Confusion matrix of detection rates from Mobilenetv2 [21]. 
 Driver Passenger Per-class Accuracy 

Driver 701 4 99.43% 

Passenger 1 809 99.88% 

 

Therefore, to validate detection rates for determining whether the user is a driver or a 

passenger via deep learning, approximate 4500 frames from aforementioned Videos 1-10 

are applied in the on-device deep learning models of Mobilenetv2 [21]. The Mobilenetv2 

performance metrics for DDP are shown in Fig. 16 and the confusion matrix is shown in 

Table 12. The detection rates for the driver and the passenger are 99.43% and 99.88%, 

respectively. These results indicate that the Mobilenetv2 can help our proposed heuristic 

DDP scheme to perform better accuracy, but the storage consumption and computation 

complexity of Mobilenetv2 are larger than that of the proposed heuristic DDP scheme. 
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Fig. 17. Demonstration examples of the fixed smartphone via hand-free kit in a vehicle. 

 

(H) Limitations of this work 

Furthermore, there is a trend that hand-free kits are used to hold the smartphone in a 

vehicle and some use cases are shown in Fig. 17. In such a scenario, the rear camera of 

smartphone usually captures the outside images. Thus, the difference between the succes-

sive captured images is obvious and proposed DDP algorithm will detect the user of the 

video as a driver. It results in that the texting is not allowed in vehicle. However, it’s one 

of failure cases of the proposed DDP algorithm, if the outside images captured from rear 

camera keep changing. This problem cannot be overcome by images captured from cam-

eras of a smartphone. If the smartphone charger is not available in car, power consumption 

is another problem to capture images from camera of a smartphone. One ideal solution is 

to combine the proposed scheme with other techniques utilizing the information of the 3-

axes accelerometer of a smartphone. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we proposed an intelligent DDP scheme to prevent driver from using 

mobile phone while driving. Based on information captured by the front and rear cameras 

of user’s smartphone, the proposed three-phase image processing scheme identifies wheth-

er the user is a driver or a passenger (DDP). Experimental results showed that the low-

complexity DDP system has greater than 92% accuracy in about 80% of the testing cases, 

which makes it an efficient alternative to distinguish drivers from passengers using mobile 

phone in a moving vehicle. The proposed heuristics are camera-based approaches, so the 

cameras are the only sensors on the smart phone being used. Therefore, our proposed tech-

nique can be cooperated with other techniques using different sensors on smartphone to 

further improve the overall system performance for distracted driving of texting (DDT). 

As mentioned in previous section, the DDP prototype implemented on the smartphone 

could only process up to 13 images per second, which incurs processing images from the 

front and rear cameras separately. To improve our proposed DDP system for practical DDT 

prevention in real-time is one of our near future works. A deep learning approach is one of 

the possible solutions to improve the accuracy of differentiating driver/passenger. How-

ever, a huge dataset is necessary for deep learning. To cost-effectively implement such an 

on-device deep learning system for resource-constrained smartphone DDP is also our fu-

ture work. 
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