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The performance of consultation methods, i.e., majority voting, the optimistic selec-

tion rule, and the pseudo-random number (PRN) ensemble method, are examined in 
computer chess using 2180 chess problems. Here, the optimistic selection rule selects a 
program that returns the highest search value, and the PRN ensemble consists of multiple 
individual copies of one base program, and each copy is diversified by adding random 
numbers to the evaluation function of the base program. We carried out empirical ex-
periments by using state-of-the-art chess-program Crafty as the base program. We found 
that the percentage of correct answers increased from 55.6 to 57.1% using optimistic se-
lection from the PRN ensemble. The experimental results indicated that the consultation 
methods allowed simple yet effective distributed computing in chess.   
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1. INTRODUCTION 
 

The old proverb of “two heads are better than one”, means that an ensemble of peo-
ple may be able to solve a problem that an individual cannot. This explains our original 
motivation for designing consultation methods in computer games. That is, an ensemble 
of game programs may be able to play a better move than an individual program can (see 
Fig. 1). Although much successful work with ensemble based systems in computer sci-
ence has been done [1], designing an ensemble in computer games still remains difficult. 

Thus far, three simple techniques of consultation have been reported in shogi, which 
is a Japanese chess variant. The first is majority voting to select a single move from mul-
tiple moves provided by the ensemble of programs. This selection rule had first been 
examined in 55 shogi, a shogi variant that uses a small board and a limited set of piec-
es [2]. Subsequently, majority voting was examined in standard shogi [3]. The second 
technique is the optimistic selection rule. A shogi program usually returns a search value 
in addition to a move to play. This selection rule makes use of the search value, and se-
lects a program that returns the highest search value [4]. The third technique is the pseu-
do-random number (PRN) ensemble. Here, the ensemble is built using multiple copies of 
one base program, and each copy is diversified by adding random numbers to the evalua-
tion function of the base program [3, 4]. 

The primary goal of the consultation methods is to strengthen base programs by 
composing an ensemble of these programs. In addition to the primary goal, these meth-  
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Fig. 1.  Methods of consultation and their goal. Best opinion is selected from multiple opinions. 
 

ods can be expected to provide a fail-safe distributed computing system. That is, the 
breakdown of a component in the entire system merely means the number of voters is 
reduced by one. 

We assessed the performance of these consultation methods, i.e., majority voting, 
the optimistic selection rule, and the PRN ensemble, in chess, which we report in this 
paper. We used Crafty as a fair implementation of the chess program [5]. It was devel-
oped by Dr. R. Hyatt and it finished second in both the 2010 Fifth Annual Americas’ 
Computer Chess Championships (ACCA) and the 2010 World Computer Rapid Chess 
Championships. We evaluated its performance by using 2180 chess problems. 

Chess is probably one of the most popular board games in the world and has several 
similarities to shogi in that (i) it is a two-player turn-based board game, (ii) it has the 
same origin as chaturanga, which was played before the 6th century in India, (iii) its 
main objective is to checkmate the opponent’s king by forcing it under inevitable threat 
of capture, (iv) it has a promotion rule, and (v) the best algorithms of tree searches for its 
strength are -search variants as far as is known. 

There are also some differences between these two games. One of the clearest dif-
ferences is the absence of the dropping rule in chess, i.e., in shogi, a captured piece can 
be dropped back onto the board. The absence of this dropping rule makes the number of 
choices smaller than in shogi [6, 7]. Therefore, it would be an interesting study to meas-
ure the performance of these consultation methods in chess. 

The remaining part of this paper is structured as follows. The next section reviews 
research related to the consultation methods in chess. The third section presents our re-
sults on the chess program, where the consultation methods are empirically evaluated. 
The last section is the conclusion. 

2. RELATED WORK 

Althöfer and Snatzke proposed 3-Hirn in two player games [8], where two pro-
grams make one proposal move, and a human selects a single move from these two and 
controls the time. They reported that human selection strengthens programs in the team 
by about 200 Elo points in chess, where the human has 1900 Elo points and is weaker 
than these programs. Because the consultation methods remove human intervention, 
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these can be regarded as a reduced form of 3-Hirn. An attempt to eliminate human inter-
vention from 3-Hirn can also be found in 2-Hirn [9]. Here, a sub-computer in addition to 
the main computer was used to obtain human-like playing styles. 

Obata et al. evaluated the performance of majority voting in shogi [3]. They ob-
served performance increments from 50-100 Elo points in their experiments on three 
state-of-the-art shogi programs. Sugiyama et al. also assessed the performance of the 
optimistic selection rule in shogi [4], and reported that it outperformed majority voting. 
Majority voting has also been applied to a go program that carries out Monte-Carlo tree 
searches [10]. Here, its performance was evaluated using a state-of the-art go program 
called Fuego [11], and it outperformed a method of standard root parallelization in dis-
tributed-memory environments. These methods did not perform better than tree-search 
parallelization in shared-memory environments in these studies on majority voting and 
the optimistic selection rule. 

Computer players that use majority voting can be found in recent computer shogi 
games, because consultation methods offer easy use of massive-scale distributed envi-
ronments for strength, make players safer against failures in the system, and they can be 
combined with different parallel-search methods. Monju won third prize in the 19th 
computer shogi championship in 2009 [12]. Here, the PRN ensemble was built using 
Bonanza, whose source codes are available online [7]. Moreover, Akara 2010, which 
defeated one of the top female shogi players, Ichiyo Shimizu, employed majority voting 
and consisted of four different computer programs, Gekisashi, GPS Shogi, Bonanza, and 
YSS [13]. All four programs have won the computer shogi championships in the past 10 
years. 

Because consultation methods use distributed computing environments to obtain 
better moves to play, they can be regarded as the simple distributed computing of game- 
tree searches. The concepts and mechanisms for the consultation methods differ from the 
common tree parallelization of chess programs in which each processor takes responsi-
bility for part of the game tree to conduct searches. One well-known method that has 
been applied to parallel searches in distributed environments is the young brothers wait 
concept (YBWC) [14]. Young brothers are child nodes expanded after the first child 
node and they are searched in parallel. YBWC assumes that the game tree is well ordered, 
i.e., the best child will be expanded first for most of the tree search. Note that a well- 
crafted -search program satisfies this assumption because a sequential -search is 
effective when this property is satisfied. A speedup of about 35 was obtained for 24 test 
positions for a distributed system with 64 processors. This work used a transputer (Inmos 
transputer T800), which is hardware intended for parallel computing and a chess pro-
gram called Zugzwang that ran on a single processor that only visited about 350 nodes 
per second. This hardware and software had totally different characteristics from those 
used today. 

Himstedt proposed the extended use of pondering methods for distributed compu-
ting in chess [15]. The expected move of an opponent in ordinary pondering methods is 
considered as already played, and a computer player starts searching during the oppo-
nent’s thinking time to avoid the computer from becoming idle while his/her opponent is 
thinking. The reported method starts searching speculatively ahead on the basis of the 
expected move sequence during both the player’s and opponent’s thinking times. The 
playing strength of GridChess in this study increased by 51 Elo points by using eight 
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workers. Himstedt also reported the performance of distributed tree searches using mod-
ern hardware and software on the basis of YBWC [15]. He built a parallelized version of 
Gaksch’s Toga, which is based on Letouzey’s Fruit, and observed an Elo difference of 
about 52 points between four- and one-node clusters, where each node contained four 
cores. Because the number of games was only 70, the Elo difference was not statistically 
significant. This work replicated a part of hash-table entries between all cluster nodes to 
keep the game tree well ordered. This replication incurred network communication, and 
high bandwidth and low latency interconnection networks were advantageous. 

Other than chess, Brockington and Schaeffer proposed a distributed -search, cal- 
led asynchronous parallel hierarchical iterative deepening (APHID) [16]. Their method 
was based on a master/slave model of communication, where the master divided the 
game tree into fixed subsets and each slave took responsibility for some of the subtrees. 
It used the APHID table to control the work of all slaves. The Othello program Keyano 
sped up a 12-ply search of 74 test positions by around eight by using APHID on 16 pro-
cessors. Kaneko and Tanaka also proposed a distribute -search method using a mas-
ter/slave model in shogi [13, 17]. Their method divided the game tree on the basis of 
move ordering and the program GPS Shogi increased the winning percentage from 50 to 
70%. Their tree parallelization was successfully combined with majority voting by four 
different programs. Table 1 summarizes the details between different distributed-com- 
puting methods in chess and shogi. Kishimoto and Schaeffer proposed transposition- 
table driven scheduling alpha-beta (TDSAB) [18], which combined two different meth-
ods of transposition-table driven scheduling (TDS) of single-agent searches and a variant 
of  search MTD(f). Performance in their study was assessed with Awari and Ama-
zons.        

 

Table 1. Distributed computing using high-performance chess and shogi programs. The 
forth column shows our rough estimate of effectiveness. Note that each method 
has been demonstrated by using the different game and computational resources. 

Method Game Workers Effectiveness 

3-Hirn [8] Chess A human and different programs High 

Optimistic pondering [15] Chess Same programs Low 

Distributed tree search 
based on YBWC [15] 

Chess Same programs Medium 

Majority voting [13] Shogi Different programs Medium 

Majority voting using PRN ensemble [3] Shogi Same programs Low 

Optimistic selection 
using PRN ensemble [4] 

Shogi Same programs Low 

Distributed tree search 
based on Kaneko and Tanaka [13] 

Shogi Same programs Medium 

 

Consultation methods also have similarities to parallel dovetailing methods and par-
allel random search algorithms in single-agent puzzles and AND/OR-game solvers, 
where multiple solvers are executed for speedup [19-22]. Because the output of these 
solvers is the ‘game is solved’ or the ‘game is not solved yet’ rather than move candi-
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dates with evaluation values, the selection rules for these candidates are not necessary in 
dovetailing methods. 

3. EXPERIMENT 

We assessed the performance of consultation methods using Crafty-23.4 whose 
source codes are available online [5]. It uses state-of-the-art techniques such as the prin-
cipal variation search (PVS) [23-25], a capture search as a quiescence search, transposi-
tion tables indexed by Zobrist hashing [26], static exchange evaluation [27], killer and 
history heuristics [28, 29], null move pruning [30, 31], futility pruning [32, 33], and late 
move reductions [7, 34]. The base program in our research (i) receives a chess position, 
(ii) searched a game tree rooted at the position, and (iii) output a move with a search 
value. We allocated 1024 megabytes for the transposition table used by the tree search, 
which was sufficient for all the experiments. 

The PRN ensemble consisted of M base programs, and determined which move to 
play by selecting one from M programs. The evaluation function to diversify the outputs 
of the base programs was modified by adding pseudo-random numbers from an approx-
imated normal distribution N(0, ), where  is the standard deviation. The values were 
generated on the basis of a central limit theorem that generated 12 uniform random 
numbers in intervals of [0, ], added them all up, and subtracted six. As a result, the 
values were in intervals of [−6, 6]. We pre-computed 4096 random numbers in this 
way from N(0, ) and a random number and a game position were paired up with the 
Zobrist hashing key of the position [26], so that the modified evaluation function with 
the random number always returned the same value for the same position. This modifica-
tion was so simple that this hardly had any impact on the search speed. 

The ensemble in our research behaved as follows: (i) M programs received the same 
chess position, (ii) M programs searched the same position individually using different 
series of pseudo-random numbers, (iii) M programs output multiple moves and corre-
sponding search values, and (iv) a single move was selected based on majority voting or 
the optimistic selection rule. Majority voting is one of the most popular decision rules. 
When three programs output move A and two output B, the majority of move A is se-
lected. However, the optimistic selection rule selects a program that returns the highest 
search value. An auxiliary rule for random selection is used in both cases to break a tie. 

We evaluated the performance of programs by the percentages of correct answers to 
2180 chess problems from the Encyclopedia of Chess Middlegame (the second section of 
879 problems) [35], Win at Chess (300 problems) [36], and 1001 Winning Chess Sacri-
fices (1001 problems) [37]. 
 
3.1 Controlling Computational Resources through Nodes 

 
We limited the computational resources for all tree searches by the number of nodes. 

All programs, i.e., the base programs in the ensemble and the original program, searched 
50, 100, and 200 kilonodes. The first reason as to why we limited computational re-
sources by the number of nodes was the reasonable correlation between searched nodes 
and search time. The second reason was that the search results were irrelevant to com-
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puter hardware specifications, so that a set of experiments could be conducted using 
multiple different computers in a laboratory. Moreover, because network communication 
between M base programs was only caused at the beginning and the end of game-tree 
searches, the communication overhead was not taken into account. 

We first examined the setup for the experiments and the performance of the diversi-
fied base program by using standard deviation . Table 2 lists the dependence of stand-
ard deviation on the percentage of correct answers. Note that  = 0 means that there were 
no modifications to the original program and the results for  > 0 were averaged over 16 
sets of experiments using different series of pseudo-random numbers. We can see that 
the original program that searched 50,000, 100,000, and 200,000 nodes gave respective 
correct answers to 54.6, 60.5, and 66.1% of problems. We can also see that the random 
numbers in the evaluation function did not decrease the performance of the base program 
if the standard deviation  was less than 10 centipawns. Note that the base program val-
ued one pawn at 100. 

 

Table 2. Percentage P() of correct answers using base program, where  is standard 
deviation for random numbers. 

Nodes P(= 0) P(1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
 50,000 54.6 54.7 54.6 54.6 54.5 54.3 53.9 53.0 51.2 
100,000 60.5 60.6 60.7 60.7 60.8 60.5 59.8 59.3 57.6 
200,000 66.1 66.0 65.9 65.9 65.8 65.4 65.1 64.4 63.1 

 

Table 3. Diversity of base program, where D() is percentage to output different answer 
from original and  is standard deviation for random numbers. 

Nodes D(= 0) D(1) D(2) D(4) D(8) D(12) D(25) F(50) D(100) 
 50,000 0.0 6.5 10.2 14.1 16.9 19.5 22.1 26.4 32.6 
100,000 0.0 6.6 9.7 12.4 14.5 16.0 18.4 22.4 27.5 
200,000 0.0 6.5 9.0 10.8 12.8 13.6 16.2 19.0 23.1 

 

These results indicate that such a small standard deviation suffices for the base pro-
gram to diversify its outputs by a sufficient amount. Table 3 summarizes the diversity of 
the base program, where the results for  > 0 were also averaged over 16 sets of experi-
ments using different series of pseudo-random numbers. The base program with  = 8 in 
this table output a different answer from the original with probabilities of 10% or more. 
Moreover, there was a preferred tendency, i.e., the deeper the base program searched the 
game tree the less the random numbers diversified the output of the base program. That 
is, the increment in the number of nodes from 50,000 to 200,000 at  = 8 increased the 
percentage of correct answers from 54.5 to 65.8% and decreased the percentage to output 
a different answer from the original from 16.9 to 12.8%. 

Table 4 lists the percentages of correct answers using majority voting in M base 
programs. We can see from this table that the more M increases, the more the percentage 
of correct answer increases. However, the increment in the percentage of correct answers 
was very small and majority voting in 16 base programs with 200,000 nodes improved 
the percentage from 66.1 to 66.7%. This means that majority voting in the PRN ensem-
ble was not effective in solving chess problems. 
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Table 4. Percentage P() of correct answers using majority voting, where  is standard 
deviation for random numbers and M is size of ensemble players. 

50,000 nodes (percentage using original program is 54.6%) 
M P( = 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
4 54.6 55.0 54.6 55.0 55.5 55.3 54.4 52.6 
8 54.4 54.9 54.9 55.7 55.4 55.3 54.4 53.7 

16 54.7 54.6 55.1 55.6 55.9 55.3 55.0 54.8 
100,000 nodes (percentage using original program is 60.5%) 

M P( = 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
4 60.7 60.9 61.1 61.2 61.1 61.4 59.9 60.3 
8 60.6 60.9 61.2 61.5 61.7 61.1 61.1 60.4 

16 60.6 61.0 61.1 61.6 61.1 61.0 61.2 60.6 

200,000 nodes (percentage using original program is 66.1%) 
M P( = 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
4 66.4 66.1 66.2 66.0 65.6 66.1 65.3 64.9 
8 66.2 66.1 66.2 66.3 66.1 66.3 65.6 64.9 

16 66.1 66.0 66.3 66.6 66.7 66.2 66.0 65.4 
 

Table 5. Percentage P() of correct answers using optimistic voting, where  is standard 
deviation for random numbers and M is size of ensemble players. 

50,000 nodes (percentage using original program is 54.6%) 
M P( = 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
4 55.3 55.6 55.6 56.3 56.1 56.2 55.7 54.3 
8 55.3 56.1 56.0 56.5 56.4 56.6 56.0 54.7 
16 55.3 56.2 56.2 57.1 56.8 57.0 57.4 55.0 

100,000 nodes (percentage using original program is 60.5%) 
M P( = 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
4 61.3 62.1 61.7 62.1 62.3 62.2 61.0 59.9 
8 61.5 62.6 62.8 63.2 62.4 62.4 62.0 60.8 
16 61.5 62.7 63.0 63.3 63.3 62.8 62.3 60.8 

200,000 nodes (percentage using original program is 66.1%) 
M P( = 1) P(2) P(4) P(8) P(12) P(25) P(50) P(100) 
4 66.8  66.8 66.6 66.1 66.7 66.9 66.0 65.0 
8 66.8  67.4 67.2 66.8 67.3 67.0 66.4 65.7 
16 66.9  67.7 67.6 67.4 67.6 67.4 67.0 66.1 

 

Table 5 summarizes the percentages of correct answers using the optimistic selec-
tion rule. Here, we observed greater improvements to performance than those with ma-
jority voting. The ensemble player of 16 base programs with 50,000 nodes improved the 
percentage from 54.6 to 57.1%, that with 100,000 nodes improved the percentage from 
60.5 to 63.3%, and that with 200,000 nodes improved the percentage from 66.1 to 67.7%. 
Although the optimistic selection rule sufficiently improved performance, this method 
did not seem to outperform the original program that searched twice more nodes of the 
game tree. Increments in the nodes from 50,000 to 100,000 improved the percentage in 
the original program from 54.6 to 60.5%. 
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Finally, we assessed how the number of correct answers increased due to the opti-
mistic selection rule. Table 6 lists two kinds of numbers. The first is the number of chess 
problems where the original program returned a correct answer and the ensemble pro-
gram returned an incorrect answer (denoted as CorrectIncorrect). The second is the 
number of chess problems where the original program returned an incorrect answer and 
the ensemble player returned a correct answer (denoted as IncorrectCorrect). These 
results indicate that the changes between correct and incorrect answers are stochastic. 
That is, the performance of the base program was improved by optimistic selection for a 
specific chess problem with a certain probability. However, this method also had the 
probability of performance worsening for another specific chess problem. 

 
Table 6. Changes in number of correct and incorrect answers, where M is size of en-

semble players and each base program searches 50,000 nodes for chess prob-
lem with standard deviation for random numbers,  = 12. 

Majority voting 
 M = 4 M = 16 
Incorrect  Correct 71 99 
Correct  Incorrect 44 55 
Optimistic Voting 
 M = 4 M = 16 
Incorrect  Correct 83 129 
Correct  Incorrect 41 72 

 
3.1 Controlling Computational Resources by Depth 

 
We limited the computational resource for tree searches by using the nominal depth 

of the programs. All programs, i.e., the base programs of the ensemble and the original 
program, search with a depth of eight plies. Note that Crafty employs some methods of 
search-depth extensions and reductions for particular moves. Therefore, the nominal 
depth specified in this experiment was not equal to the depth of the actual game tree. 

 
Table 7. Percentage P() of correct answers using base program, where  is standard 

deviation of random numbers and nominal depth is eight. 
    

P() 59.0 59.2 58.2 
Average nodes searched 65511 84951 173010

 

We examined the setup for the experiments and the performance of the diversified 
base program by using standard deviation . Table 7 lists the dependence of standard 
deviation on the percentage of correct answers and the number of averaged nodes. We 
can see that the random values from N(0,10002) decreased the percentage from 59.0 to 
58.2%. This decrement is unusually small, considering that the standard deviation equals 
a value of 10 pawns (corresponding to two rooks). 
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Table 8. Percentage P() of correct answers with nominal depth of eight, where  is 
standard deviation for random numbers and M is size of ensemble players. 
Percentage using original program is 59.0%. 

Majority voting 

M P( = 12) P(25) P(50) P(100)

4 59.5 60.1 59.9 61.2 

8 59.8 60.2 59.8 61.6 

16 59.7 60.2 60.6 61.3 

Optimistic voting 

M P( = 12) P(25) P(50) P(100)

4 61.6 62.3 62.8 64.7 

8 62.4 63.7 64.0 66.2 

16 63.4 64.7 65.6 68.1 
 

We can also see that the random values increased nodes that had to be searched 
with the depth of eight plies. This means that the random values decreased the amount of 
tree pruning and increased the size of the search space. This is why the percentage of 
correct answers did not decrease so much with a  of two rooks. These results indicate 
that even when the computational resources were limited by the number of nodes the 
random values also diversified the search space from the original, and the PRN-ensemble 
player covered a larger search space than the original program did. 

Table 8 summarizes the percentages of correct answers. Note that  = 0 means that 
there are no modifications from the original program. When computational resources 
were limited by the search depth, we observed an unusual property in that the percent-
ages increased even when  was close to 100. Because the number of searched nodes 
increased with , these results do not tell us about the performance of consultation 
methods. As we observed in the previous subsection, the more M increases, the more the 
percentages increase. Also, the optimistic selection rule was better than majority voting. 

5. CONCLUSION 

We evaluated the performance of consultation methods, i.e., majority voting, the 
optimistic selection rule, and the PRN ensemble, in chess. We found that optimistic se-
lection from the PRN ensemble increased the percentages of correct answers by a suffi-
cient amount, whereas majority voting of the PRN ensemble did not. We also found that 
the PRN ensemble not only diversified the evaluation values but also the search space for 
the chess problems. As a result, the PRN-ensemble player covered a larger search space 
than the original did. 

The experimental results indicated that these consultation methods allow simple yet 
effective distributed computing in chess. However, although optimistic selection from 
the PRN ensemble sufficiently improved performance, these methods did not seem to 
outperform the original program that searched twice as many nodes of the game tree. We 
concluded from these observations that the selection rules discussed in this paper were 
rather unsophisticated. Human selection from two programs is capable of improving 
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performance by about 200 Elo points and doubling search time would not achieve this 
improvement [8], which implies the existence of more sophisticated methods for better 
ensemble systems. Building such systems in games would be an interesting problem in 
artificial intelligence. We would like to leave this problem for future work. 
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