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Products come from different lines with the same facility are tested under comparative
life tests which known with the jointly censoring scheme. In this paper, two sets of products
under the same facility have Weibull lifetime distributions are selected to test under Type-
I generalized hybrid censoring scheme (GHCS). The observed censoring data are used to
build the maximum likelihood (ML) estimators as well as approximate confidence intervals
for the model parameters. Also, Bayes estimators with the help of MCMC methods are
discussed. The analysis of simulated data set with Monte Carlo simulation study is used
to illustrate and compare the theoretical results. Finally, a brief comment is summarized in
concluding section.

Keywords: joint Type-I generalized hybrid censoring, Weibull distributions, maximum like-
lihood estimation, Bayesian estimation, MCMC

1. INTRODUCTION

The data obtained from the life tests experiments, may be complete or censored.
When the exact failure time of all units in the experiment can be obtained then, the data
called complete data. But, under consideration time and cost when failure time of some
units don’t observe until the end of the experiment, censoring data is applied. The com-
mon censoring scheme in life testing experiments is called Type-I and Type-II censoring.
In Type-I censoring scheme, the test time is constant and the number of failures is random
may be zero see, [1] but in Type-II censoring scheme, number of failures is constant and
the test time is random may be very large. Hybrid censoring scheme (HCS) is a mixture
of Type-I and Type-II censoring schemes which at the prior of the experiment the fixed
integer m and fixed time 7 are determined. The experiment is terminated when the num-
ber m of failures or time 7 has been reached. In Type-I HCS, the experiment is terminated
at min (7,,, 7), see in more detail [2, 3]. In Type-II HCS, the experiment is terminated at
max (7,,, T), see in more detail [4]. In the two types of censoring, Type-I HCS and Type-
II HCS number of failure units may be very few or even no failures or experiment has
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long period of time, respectively see [S]. Generalized hybrid censoring scheme (GHCS)
is applied to overcome of this problem see [6].

Type-I GHCS scheme described as follows, suppose n units are put on a life test
experiment and two fixed integer k, m such that 1 <k <m < n and time 7 € (0, o) is
determined. If 7 < 7 the experiment is terminated at min (7;,,, 7) but if T; > 7, the exper-
iment is terminated at 7;. Therefore, in Type-I GHCS experiment satisfies the minimum
number k of failures. Then, the data come from Type-I GHCS were summarized as

Case 1: If t, > 7, thent = (t1:y <2 < ... <lim),
t=1< Case2: Ifty, <7, thent = (t1, <toy < ... <lpy < .. <tyy) At by > T,
t=(tin <tim < ... <tmp)attmy < T,

(D

where different cases of censoring with Type-I GHCS are summarized in Fig. 1 below,
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Fig. 1. Different cases of Type-1 GHCS.

then the joint density function of Type-I GHCS given the parameters vector 6 is given by

n!(1— nb D
fion(10) = Lo EE T 10, @

where

Casel: D=kandC=1 atty, > T,
Case2: D=rk<r<mandC=r7Tatt,, > T, A3)
D=mand C =ty atty,, <T.

Studying the reliability of manufactured products to determine and measure the relative
merits of two life products through the competing duration has considerable in the last
view years. For more precise, we consider a manufactured products come from the two
different lines ®; and ®, are putted under the same conditions. The two independent
samples of size M and N are choosed from ®; and ®,, respectively, to placed together
under test. Then, the experimenter may be terminated for consideration of cost and time
after fixed number of failures occur. The two failure times and it is types will be recorded.
Different author discussed this type of censoring scheme see [7, 8]. Also, for the compar-
ing of the exact likelihood inference with bootstrap technique see [9]. And for progressive
Type-II censoring see [10, 11] . Recently, for the two Rayleigh lifetime distributions see
[12], for Accelerate life test of Rayleigh life time distribution see [13] and for compound
Rayleigh lifetime distributions see [14].
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A short development times for products in present time make some time limitations
over reliability tests, which impulse that joint censoring scheme need some modification
which save time and give a suitable number of failure which serve statistical inference.
Therefore, Type-I GHCS introduce a new scheme where save time and minimum number
that needing in statistical inference. Then, our objective in this paper present inferences
for important lifetime Weibull distribution under Type-I GHCS scheme, then problem of
parameters estimation of two weibull distributions when Type-I GHCS samples is avail-
able. Then, maximum likelihood as well as Bayes estimation are used to present the esti-
mation of unknown model parameters. Different estimators are discussed and compared
through simulation experiments and numerical example based on Type-I GHCS.

This paper is summarized as follows: The model formulation and main concepts
are discussed in Section 2. The maximum likelihood, the point and approximate intervals
estimators for the unknown parameters are derived in Section 3. Bayes estimators under
the concepts of MCMC method for point and credible interval estimation are presented
in Section 4. The analysis of simulated data sets exposed in Section 5. Reported some
of numerical results are discussed through simulation study in Section 6. Finally, a brief
comments about the obtaining numerical results are constructed in Section 7.

2. MODEL

Suppose we have two line of production, say ®; and ®, has produce the same prod-
uct under the same facility. Let two independent samples of sizes M and N are selected
from the lines ®; and ®, which has independent and identical distributed (i.i.d) lifetimes
X1, X2, ..., Xy and Y1, Vs, ..., Yy, respectively. The two lifetime samples has a populations
with probability density functions (PDFs) and cumulative distribution functions (CDFs)
given respectively by f;(.) and F;(.), j =1, 2. Let, k and m are prior integers and ideal
test time 7 are determined, then, the ordered lifetime sample (7;, T3, ..., Tp) which is
constructed from the sample {X;,X>, ..., Xy, Y1, Y2, ..., Yo, } with D =Mp +Np and D is
defined by Eq. (3) to be k, m or integer such that k < D < m is called joint Type-I GHS
sample. Hence, for each random lifetime in the joint Type-I GHSC is described with time
and type (T, ). Then, T =((T1,m1), (I2,M2), ..., Tp,Mp)) with 1 < D < M + N and the

D
value of 1; take the value (1 or 0) depends on X or Y failure. Let D1 = ), 7; denoted to
i=1

=

D
the number of units fails from the line ®; and D, = ¥, (1-1);) denoted to the number of
i=1

=
units fails from the line ®,. Then, the joint likelihood function of the observed sample
t :((tl ) n1)7 (t27 n2)7 ceey (tDa nD)) is giVen by

L) = M!N!

D
Y (M=D))I(N-Dy)! [TUA @™ 2] "] SO P [S2 00V 72,

i=1

4)

where S;(.), j =1, 2 denoted to reliability functions and C is #, t,, or fp corresponding to
the value of D given in Eq. (3).



1246 ALI ALGARNI, ABDULLAH M. ALMARASHI, G. A. ABD-ELMOUGOD

Under considerations that, the PDFs of the experimental unit come from lines ®
and &, is Weibull distributed with PDFs is given by

fi(t) = a;Bjt% "exp(—B;t%), t >0, aj, B; >0, j=1, 2. ®)

And CDFs, reliability functions S;(.), and hazard rate functions H;(.) of the Weibull
distributions are given, respectively, by

Fj(t) = 1 —exp(=Bjt%), (6)

Sj(t) = exp(—B;t%), @)
and

Hj(t):ajﬁjt"‘-f_l. (8)

3. MAXIMUM LIKELIHOOD ESTIMATION

For the joint Type-1 GHS data T =((T1,m1), (T2, M2), ..., (Ip,Mp)), the likelihood
function (4) with Weibull lifetime distributions in Eqs. (5) and (6) is reduced to

D D
L(ay,Br1,00,Blt) o< (061[51)D1(062ﬁ2)D26XP{(O€1—I)Znilogfi—ﬁlznm'm
i=1 i=1

D D
+ (-1 Y. (1—n)logti— B2 Y (1—n)t*
i=1 i=1
— (M —D1)BiC* — (N — D) pC*}. 9)

The likelihood function under the natural logarithm is reduced to

D
(o, Br,00,B]t) = Dilog(oufi)+Dalog(0nps)+ (ar—1) Y nilogi
i=1
D D D
— By nitt + (1) Y (1—m)logti — B Y (1 —mi)e
= i=1 i=1
— (M —=Dy)BiC* — (N —Dy) BC*. (10)

3.1 Point Estimation

MLE is a commonly used method for parameters estimation, more detail see [16-
18]. The likelihood equations are obtained from Eq. (10) by equating the first partial de-
rivatives respect to parameters vector ¥ = (@, 1, o, f32) to zero, then

dl (o, Bi, 00, Balt)
dB;

=0,j=12,
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are reduced to

D

B = : (1)
Y nit® + (M —D;)C*
i=1
and
D
Br=— 2 : (12)
(1=n)t*? + (N —D,)C®
i=1
Also,
95(0517[31;0527,32@ :07 ]: 1’ 27
Qaj
are reduced to
D 2 2 ol o
o + Y milogti— i Y mit? logt; — (M — Dy) BiC* logC =0, (13)
i=1 i=1

and

D D D
;j +Y (1—mi)logti — B2 Y (1 — M)t logti — (N — D2) oC*%1ogC = 0. (14)
i=1 i=1

Then, the likelihood equations are reduced to two nonlinear Egs. (13) and (14) which
solve with any iteration method such as Newton Raphson or fixed point to obtain & and
&, and hence, the maximum likelihood estimates of §; and 3, are obtained by substituting
in Egs. (11) and (12).

Remark: Egs. (11)-(12) showed that under consideration of D; = 0 then a; and 3; do
not exist. Also, D, :AO thenA o and B3, do not exist. Also, The exact distributions for
estimators ¥ = (6, B, 0, Bo) is difficult to obtain see [15].

3.2 Approximate Interval Estimation

The approximate confidence intervals for the model parameters ¥ = (o, B, a2, B2)
under the large sample approximation can be obtain from approximate Fisher information

matrix of the parameters Q = —F (W) , 0, j=1,2,3, 4. In different cases
the minus expectation of second partially derjivative of log-likelihood function cant be
obtain. Hence, we can replace it by the estimate Qy(&1, Bi, &2, B2) . Then, the interval
estimation of the parameters o, 1, 0 and 3, can be presented by the asymptotic normal-
ity distribution of &, P, 6 and 3, with mean (o4, 81,0, B2) and variance covariance

matrix Qg (6, Bi, 6o, B) as

(61,B1,00,B2) = N ((051,1317(12,[32) ,961(&1,ﬁ17&2,32)) , (15)
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where Qg (o, Bi, 0, B,) is considered as observed information matrix presented by

%oy Br.on.Balt)  9%(au,Bi,02.Bolr)

da? doydpy
_ 9%y Br.on.Bolt)  9*(on.Br.aa.Bolt)
dpday 8[312
%oy By oo, Balv)  9H(a,Bi,00.Bot)
8a28a1 80528[31
_92“0‘9123!33052:[32@ _ 32%(05(1;}?197%2,132\")
— o
Qo(0, By 02, B2) =~ yeuia pran i) _ 2etoy Bronol) (16)
Balaaz aalaﬁz
_9%M(ay Lo Bolt)  9%0(ay 1.0, Bol0)
8/318a2 J ,8
_0%(ay By .o Bolt) (e . Br.0n.Bolt)
daZ d0pdfB;
Moy Bra.Bolt)  9%(ay.Br.oa.Balt)
Ihrde 9By at (&1,B1,82.B,)
Where
9% (o, B, 00 ﬁ2|f) —D;
LS At =1,2, (17)
2 2 b .]
Ip; B;
82€(a1 ﬁl (%) l|l‘) azf(al ﬂl (0% ﬁ2|t) D o
T Tl Lt el — = — it-ll ti—(M—D c] C,
aalaﬁl aﬁ]aal Zn i 0g ( 1) 0og
(18)
82€(al7ﬁl7a27ﬁ2|£) _ aze(al,ﬁl,az,ﬁzh) -0 (19)
8061(9062 (906280(1 ’
99, dprday ’
9%l (ou,Br,00,Blt)  —
( aﬁaf Bolo) _ ﬁlZnt (log;)*> — (M —Dy) BiC* (logC)*, (21)

9% (au, ﬁ17052,ﬁ2|f) —D

D
21_17, 2 (logt;)? — (N — D2) BoC* (logC)?,

do?
(22)
and
I* (o, By tlt) _ 9*¢(au,Br. o0, Bolr)
D00 B dBrday
D
= =Y (1-n,)tf*logt; — (N — D) C* logC. (23)

Il
-

1

Then, the 100(1-27)% approximate confidence intervals for ¢, i, ap and B, respec-
tively given by
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(?1 Fz/qu

BrFavam (24)
o+ /933

B2 F zy\/qaa

where the diagonal of the covariance matrix Q ! present the values ¢11, ¢22, ¢33 and a4
and the value zy is the percentile of the normal (0,1) with right-tail probability y.

4. BAYESIAN MCMC ESTIMATION

In this section, we discuss Bayes estimators for the unknown parameters as well as
the corresponding credible intervals under joint Type-I GHCS. This problem needs some
assumptions about the form of the prior distributions for the unknown model parameters
Y = (a4, Bi, 0, Bo), the informative gamma prior densities are considered for each
parameters as follows

ni*(lpi) o< \P?iil exp(—b,-‘}’i), lI’i > 07 (ai7 bi > O)? i= 1727354’7 (25)
where ¥| = o, ¥, = Bi, ¥3 = o, and ¥, = f3>. Hence, the joint prior density presented
by

4
" (au, Br, o, Bo) o< [ ¥ exp(—by¥y). (26)

i=1

From the likelihood function (9) and prior density (26) the joint posterior density function
n(ay, B, 0, B |t) can be built by

- m* (a1, Bi, 02, Bo)L(0u, Bi, 02, Bolt)
m(on, B o2 Palt) = Jo (o, B, 00, B2)L(a, Bi, 00, Bo|t)dardBidond s @7

Also the Byes estimtors for any function of the parameters g(c, B1, 02, B2) under squared
error loss function (SEL) is given by

A

88 = Ega.propin(8ar, B, p))
= /Pg(alaﬁl,062,132)”(0617131,azﬁz\é)daldﬁldazdﬁz- (28)

Eq. (28) has a ratio of two integral which can be approximate with different methods
such as numerical integration and Lindely approximation. One of the most important
methods which can be applied is MCMC method describe as follows.

MCMC Approach

Since, the variety types of MCMC schemes, the formulation of posterior distribu-
tion determine the type of MCMC schemes which is applied. From the different avil-
able schemes of MCMC method, the important sub-class of them is Gibbs algorithms or
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in general Metropolis Hasting (MH) under Gibbs. When compare MCMC method with
MLEs, it has advantage of obtaining a reasonable interval estimate of the unknown model
parameters from empirical posterior distribution. This property is also true of any real
function of the model parameters

The joint posterior density function of a;, i, @, and 3, can be written as

R0 Bri oo, falt) o Pl gE Il qut D gat Dl e g
— by —byPr(ay — 1)inilogt,-—ﬁ1 initi““
) i=1 ) i=1
+ (ocz—1);(1—n,-)logti—ﬁzigi(l—ni)tl“z
— (M —Dy)BiC* — (N —Ds) C*}. (29)

From the joint posterior distribution in Eq. (29), the conditional posterior PDF’s of model
parameters are defined as follows

Bil(ar, a2, Ba,t) — Gamma(az + Dy, Uy ), (30)
B2|(ar, a2, Bi,t) — Gamma(as + D2, Us), (31)
where
D
Uy =b2+2nit,-°”+(M—D1)C“‘, (32)
i=1
and
D
Uy =by+ Y (1-0;)t{> + (N — D) C™, (33)
i=1

D
at|(Br,0a,Ba,t) = a1 exp {—bwq +a Y nilogt;
i=1

D
— B Y nat' —(M—Dy)BiC* }7 (34)
i=1

and

a2|(alaﬁl7ﬁ27£)

R

D
06;3+D271 exp { —b30n + o Z(] — T[,) logt;
i=1

i=1

D
- pY( —Tli)f,qz—(N—Dz)ﬁzcaz}- (35)

The two conditional distribution of parameters ¢ and ¢ given by Egs. (34) and (35) are
more similar to normal populations. Then, the operation of generate data from these dis-
tributions are built with MH algorithms see Metropolis et al. [19] under normal proposal
distributions as follows.
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MCMC algorithms (MH under Gibbs sampling)

Step 1:

Step 2:

Step 3:

Step 4:
Step 5:
Step 6:

Step 7:

Step 8:

with

Put the initial vector ¥(©) = (&, 1, &, ) and the indicator p = 1.

From equations (30) and (31) two values ﬁl(p ) and Bz(p ) are generated from condi-
tional gamma densities.

Under normal proposal distributions of two values afp ) and (xz(p ) are generated with
MH algorithms.

Then, the vector ¥(P) = (Ocl(p ), ﬁl(p ), Océp ), ﬁz(p )) is constructed.
Putp=p+1.
Steps from 2 — 5 are repeted S times.

If §* is the MCMC number that is needing to achieved the stationary distribution
(burn-in), then the Bayes MCMC point estimate of W is given by

1 S ;
wl)
o & ¥ (36)

li’B :E(\PE) =

and the corresponding posterior variance of W is given by

1 S

V(¥|r) =

After arrang the vector ¥ in aseding order, the corsponding 100(1 —2y)% credible
interval of ¥ is given by

(Pyis-s), Pa-p(s-54)) » (38)

where ¥ = ( ay, Bi, o, B).

S. ILLUSTRATIVE EXAMPLE

Different threoritical results devolped in this artical are discussed through this section
a simulated data set as follows. Under given the prior parmeters a;, b;, i =1, 2, 3,

4 generate a sample of size 100 and the true parameter is selected to be the mean of this
samle. Hence, for the given (a; =5, by = 3) and (ay = 1, by = 3) the true parameters
values are selected to be o; = 1.73 and B; = 0.39. Also, for given (a3 = 5, b3 =2), and
(aqy =4, by = 4) the true parameters values are selected to be oy =2.7 and $, =0.7. Then

with

the parameter vector W = (1.73, 0.39, 2.7, 0.7) and given M = N = 30, (k, m) = (20,

30)and = 1.0

From Weibull distribution with parameters (¢, ;) = (1.73, 0.39) generate a sample

of size M = 30 as follows (data from line @)



1252 ALI ALGARNI, ABDULLAH M. ALMARASHI, G. A. ABD-ELMOUGOD

X={0.4974, 0.5250, 0.5741, 0.6362, 0.6377, 0.7313, 0.7571, 0.7919, 0.8199, 0.9143, 1.1239,
1.1522, 1.2628, 1.3187, 1.3874, 1.4449, 1.4733, 1.5024, 1.5264, 1.5781, 1.6429, 1.8642, 1.9706,
2.1925,2.3227,2.4023, 2.4113, 2.4515, 2.8872, 2.9222}.

Also, from Weibull distribution with parameters (o, f2) = (2.7, 0.7) generate a
sample of size M = 30 as follows (data from line ®;)

Y={0.2585, 0.3766, 0.6252, 0.8052, 0.8102, 0.8430, 0.8543, 0.8586, 0.8758, 0.8909, 0.8942,
0.9236, 0.9687, 0.9962, 1.0057, 1.0332, 1.0540, 1.1154, 1.1213, 1.1668, 1.1697, 1.2849, 1.2971,
1.3847, 1.4399, 1.5787, 1.6376, 1.6382, 1.6981, 1.8230}.

Table 1. The joint Type-I GHS data with (k, m) = (20, 30) and 7= 1.

d=24
0.2585  0.3766  0.4974  0.5250 0.5741  0.6252  0.6363  0.6377  0.7313  0.7571
0 0 1 1 1 0 1 1 1 1
0.7919  0.8052  0.8102  0.8199  0.8430  0.8543  0.8586  0.8758  0.8909  0.8942
1 0 0 1 0 0 0 0 0 0
09143 09236  0.9687  0.9962
1 0 0 0

Table 2. The point and 95% confidence intervals (ACIs and ClIs) of MLEs Bayes estimates.

Pa.s (oML ()BMcMc  95% ACls Length 95% Cls Length

o =173 2.8985 23629 (1.2118,4.5851) 3.3732  (1.3842,3.5626)  2.1785
P1 =039 04216 0.4012 (0.1582,0.6849)  0.5267  (0.1982,0.6765)  0.4783
op =270 3.9742 4.6326 (1.9875,5.9609) 3.9734  (1.2056, 9.5594)  8.3538
B> =0.70  0.6065 0.6718 (0.2857,0.9273)  0.6416  (0.3939, 1.0412)  0.6473

Then from two samples with value (k, m) = (20, 30) and 7 = 1.0, the observed joint
Type-I GHC data given in Table 1. From the data given in Table 1 the point MLE and
Bayes MCMC estimate are given in Table 2. Also, the corresponding 95% approximate
and credible intervals are given in Table 2. Figs. 2-5 show simulation number of the model
parameters generated by MCMC method and the corresponding histogram. This figures
show that the convergence in generation data from the posterior distribution under MCMC
algorithms.

6. SIMULATION STUDIES

The theoretical results of two ML and Bayes estimates developed in this article are
compared and assessed by building Monte Carlo simulation studies. In this problem, we
measure the effect of change sample sizes (M, N), affect sample size and time (k, m, 7)
and parameters values. The two terms average (AVG) and mean square error (MSE) are
used to measure the validity of the point estimates as follows
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Fig. 2. Simulation number of ¢} and the corresponding histogram generated by MCMC method.

Table 3. The AVGs and MSEs of estimates with (aq, f1, a3, f2) = (2.0, 0.3, 3.0, 0.5).

(M,N) (k,m,T) Pa ML BMCMCprior, BMCMChprior,
AVGs  MSEs  AVGs  MSBEs  AVGs MSEs

(30.30)  (20,30,10) O 22045 04607 22029 04625  2.1949 0.4007
Bi 03330 00510 03311 00502 03372 0.0444

O 33062 09151 33178 09124 32464 0.7261

B 05331 00812 05312 00801 05771 0.0744

(30.30)  (30,50,10) O 22039 03633 21002 03600 2.1789 03432
Bi 03311 00422 03397 00402 03256 0.0351

O 31268 07892 31285 07872  3.1005 05812

B> 05221 00582 05201 00573 05251 0.0493

(30.30)  (20,30,15) O 21974 03875 21944 03876 2.1973 03669
Bi 03365 00667 03344 00657 03705 0.0361

O 32872 08274 32852 08476 32908 0.6215

B 05321 00589 05210 00622 05261 0.0553

(30.30)  (30,50,1.5) O 2142 03532 21212 03501  2.1222 03234
Bi 03213 00418 03295 00404 03201 0.0320

o) 31281 07512 31244 07570  3.1135 0.5412

Br 05157 00552 05231 00553 05209 0.0413

(50,50)  (40,60,1.0) O 21354 04341 21472 04312 21777 03707
Bi 03231 00492 03241 00482 03241 0.0412

O 32145 08053 32174 08100 32400 0.6560

B 05232 00752 05214 00743 05222 0.0581

(50,50)  (50,70,1.0) O 21221 03213 21404 03337 21421 0.2841
Bi 03124 00601 03114 00597  0.3095 0.0251

O 32130 0707  3.1882 06976  3.1158 05115

B> 05121 00519 05109 00502 05111 0.0453

(50,50)  (40,60,1.5) O 21884 03772 21774 03772  2.1883 03462
Bi 0331 00655 03320 00614 03700 0.0354

O 32869 08271 32844 08466  3.2888 0.6209

B> 05312 00578 05203 00608 05242 0.0511

(50,50)  (50,70,1.5) O 21051 03011 21312 03124  2.1055 0.2229
Br 03039 00582 03099 00527 03017 0.0223

Op 32110 07040 31771 06612 31113 0.5007

B 05022 00491 050188 00422 05221 0.0402
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Fig. 3. Simulation number of fB; and the corresponding histogram generated by MCMC method.
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Fig. 4. Simulation number of ¢ and the corresponding histogram generated by MCMC method.
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where ¥ = (o, B, o, B2) denoted to populations parameters. Also, two terms
average interval length (AL) and probability coverage (PC) are used to measure the valid-
ity of the each approximate confidence intervals and credible intervals. Hence, two sets
of populations parameters are selected (@, 1, oo, ) ={(2.0, 0.3, 3.0, 0.5), (0.6, 1.0,
0.8, 1.2) }. The prior parameters are selected to be E(W;)~ ;‘]ii, where (V| = oy, ¥, = B,
Y3 = op, W, = B,) .For the prior information, we consider two cases, the first case in
which the joint posterior distribution is proportional with likelihood function, called non-
informative priors, priorsg. The second case is informative prior information, we consider
priory: (@ =4,ap =3,a3 =3,a4=2,b1 =2,by =5, b3 =1, by = 1) for the first set
of parameters, priory: (a1 = 1.5, a2 =3.0,a3 =2, a4 =2.0, b1 =3.0, b, =3.0, b3 =2.0,
by = 2.5) for the second set of parameters. The Bayes estimate considered under squared
error loss function, also the Bayes point and interval estimates computed with 11000 itera-
tion of MCMC with 1000 is considered as burn-in. The simulation process is constructed
with 1000 times and the corresponding AG, MES, AL and PC values of estimates are
computed in results are reported in Tables 3-6.
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Fig. 5. Simulation number of 3, and the corresponding histogram generated by MCMC method.

Table 4. The CPs and ALs for the interval estimates with (a;, f1, a2, £2) = (2.0, 0.3, 3.0, 0.5).

(M,N) (k,m,T) Pa ML BMCMCo.prior BMCMC prior
PCs ALs PCs ALs PCs ALs

(30,30)  (20,30,1.00 O 091 32722 0.90 3.2710 0.92 3.1142
Br 09 14520 090 1.4534 0.92 1.2255

0y 092 56522 092 5.4448 0.92 4.1282

B, 092 23922 096 2.3892 0.96 2.1477

(30,30)  (30,50,1.00 O 093 31472 092 3.1120 0.93 3.0084
Br 092 14109 093 1.4213 0.96 1.2001

Qy 091 56231 091 54217 0.93 4.1002

Br 093 23832 094 2.3621 0.92 2.1274

(30,30)  (20,30,1.5) O 091 32701 091 3.2699 0.93 3.1133
Br 092 14503 093 1.4517 0.92 1.2240

0y 092 56501 092 5.4432 0.94 4.1269

B> 091 23900 092 2.3885 0.91 2.1466

(30,30)  (30,50,1.5) O] 094 3.1444 095 3.1120 0.94 3.0012
Br 092 1408 093 1.4188 0.96 1.1985

O 092 56201 092 54175 0.95 4.0894

B> 094 23807 094 2.3512 0.93 2.1150

(50,50)  (40,60,1.0) O 093 31212 094 3.1004 0.94 2.8512
Br 093 14012 093 1.4004 0.95 1.1650

O 093 56120 093 54122 0.95 4.0610

B 094 23611 092 23411 092 2.1066

(50,50)  (50,70,1.0) O 092 3.1001  0.93 3.0821 0.95 2.8320
Br 093 13964 093 1.3754 0.95 1.1410

Op 094 56002 094 5.4001 0.94 4.0390

By 094 23312 093 2.3098 0.93 2.0874

(50,50)  (40,60,1.5) O 093 31202 094 3.0952 0.94 2.8500
Bi 092 14001 096 1.3952 0.94 1.1638

O 093 56107 093 5.4101 0.95 4.0590

By 095 2351 094 2.3399 0.93 2.1042

(50,50)  (50,70,1.5) O 092 2875 093 3.0741 0.96 2.8115
Bi 092 13900 094 1.3702 0.95 1.1350

Op 094 55963 094 5.329 0.94 4.0352

ﬁz 095 23225 094 2.3045 0.92 2.0819
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Table 5. The AVGs and MSEs of estimates with (ay, f1, a5, f>) at (0.6, 1.0, 0.8, 1.2).

(M,N) (k,m,T) Pa ML BMCMCprior, BMCMChrior,
AVGs ~ MSEs  AVGs ~ MSEs  AVGs MSEs

(30,30)  (20,30,05) O 08541 02473 08334 02128  0.8017 0.1352
Bi 13540 05421 13112 05289 1.2471 0.4165

O 10042 05437 09892 05178 09088 03215

Bo 14242 05847 14124 05669 13124 0.4665

(30,30)  (30,50,05) O 08312 0.1245 08289  0.1154  0.8201 0.0998
Bi 12345 02143 12118 02054  1.2000 0.1009

O 09872 01542 09749 01507 08521 0.0984

Bo 13985 02415 13777 02311 13421 0.1328

(30,30)  (20,30,13) O 08332 02408 08278 02099 08118 0.1307
Bi 13475 05364 13077 05203 12321 0.4081

O 09872 05345 09799 05103 08562 0.3041

Bo 14211 05745 14090 05559 13021 0.4598

(30,30)  (30,50,13) O 08285 0.1188 08145 0.1100 08197 0.0908
B 12302 02078 12095 02004  1.1745 0.0999

O 09801 01399 09701  0.1498  0.8489 0.0900

B 13785 02332 13705 02217 13111 0.1231

(50,50)  (40,60,0.5 O 08154 01099 08103 01024 08104 0.0889
Bi 12231 01987 12124 01990 11321 0.0910

O 09321 01012 09001  0.1008 08401 0.0897

ﬁz 1.3124 0.2012 1.3231 0.2008 1.2410 0.1124

(50,50)  (50,70,0.5) O 07542 00954 07401  0.0934 07123 0.0742
Bi 12119 01231 12001 01124 1.1002 0.0864

O 08632 00997 08547 0099 08307 0.0795

ﬁz 1.274 0.1872 1.3112 0.1822 1.2245 0.1002

(50,50)  (40,60,1.3) O 08001 0.1014 07992 00999  0.7404 0.0812
Bi 12124 01754 12004 01840 11119 0.0890

O 09124 00989 09012 00997 08320 0.0874

ﬁg 1.3078 0.1872 1.3090 0.1784 1.2210 0.1088

(50,50)  (50,70,1.3) O 07274 00872 07211 00824  0.6821 0.0700
B 11745 01019 11721 01002 11121 0.0810

O 08452 00875 08385 00861 08185 0.0707

B 1211 01521 12012 01487 1.2009 0.0997

7. CONCLUDING REMARKS

The problem of determine the relative merits of products in the competing duration
with different lines of production has occupy important position in the last view years. In
this section, we discussed this problem under ML and Bayesian estimations, for the un-
known model parameters of two Weibull lifetime distributions under joint Type-I GHCS.
Numerical results was conducted to assess and compare the performance our proposed
methods. Then from this results we can see the following.
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Table 6. The CPs and ALs for the interval estimates with (ay, f1, @3, f>) at (0.6, 1.0, 0.8, 1.2).

(M,N) (k,m,T) Pa ML BMCMCprior, BMCMChyior,
PCs ALs PCs ALs PCs ALs

(30,30)  (20,30,0.5) O 090 25214 091 24124 096 22147
Bi 092 4657 092 45784 092 4.1245

O 091 32157 092 32008 092 3.0189

Bo 092 5234 090 52108 091 5.0024

(30,30)  (30,50,0.5) O 092 2254 093 22104 094 2.0587
Bi 093 44122 092 43200 092 3.9850

O 091 30017 094 30174 094 2.8752

Bo 093 50241 090 50001 093 47854

(30,30)  (20,30,1.3) ¢ 093 25019 091 24002 093 22011
Bi 093 46325 093 45524 095 4.1009

O 096 32008 096  3.1897  0.94 2.9981

Bo 094 52128 093 51842 0.94 4.8974

(30,30)  (30,50,13) O 093 22219 094 21874 095 2.0241
Bi 093 43804 092 42985 092 3.9547

O 096 28990 092 28892 095 2.8425

B> 093 48752 090 48521 095 47426

(50,50)  (40,60,0.5 O 094 22110 093 21624 096 2.0102
Bi 092 43624 093 42745 093 3.9324

O 093 28741 095 28632 095 2.8245

Bo 091 48533 093 48324 093 47221

(50,50)  (50,70,0.5) O 095 20478 094 20004 095 1.8922
Pi 091 4124 096 40175 093 37451

O 096 26124 093 26542 094 24210

Bo 094 46523 093 46415 094 43217

(50,50)  (40,60,1.3) O 094 22032 093 21421 097 2.0001
Pi 095 43421 093 42524 093 39123

O 093 2854 095 28478 095 2.8001

Bo 091 48336 094 48300 096 4.7099

(50,50)  (50,70,1.3) O 094 20233 095 19904 093 1.8524
Pi 094 41009 096 41007 093 37218

Opr 096 26003 095 26326 095 24013

Bo 095 46234 093 46207 094 43101

1. Tables 3-6 show that, using the joint Type-I GHCS for lifetime Weibull products
are more acceptable.

2. For two methods of estimation, Bayes method perform better than ML method.
3. The results of MLE are closed to one Bayes estimates under non-informative prior.

4. At the effective sample size (k, m) are increases, results of the MSEs and interval
length are reduce.

5. The results perform better for the large value of test time 7.
6. Results of simulation study is more better for two cases of the parameters values.
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