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 Future video coding (FVC) can support 4K high-resolution videos to replace the 

previous coding standard, high efficiency video coding (HEVC). In particular, FVC adopts 

quadtree with binary tree (QTBT) to improve coding efficiency; however, encoding time 

increases heavily. Thus, we propose fast partition algorithms for FVC intra coding. Fast 

partition algorithms include spatial correlation method and deep learning method. The spa-

tial correlation method uses gradient variances of pixels to determine early skip and early 

termination for QT depths 0 and 1, respectively. The deep learning method uses convolu-

tional neural networks (CNNs) to predict the QTBT coding structure at QT depth 2 with 

its corresponding coding trees. Experimental results show that the proposed method can 

reduce encoding time by 12.49% on average but increases Bjontegaard delta bit rate 

(BDBR) by about 0.54%.  

 

Keywords: future video coding, intra coding, quadtree with binary tree, coding unit, con-

volutional neural networks 

 

 

1. INTRODUCTION 
 

With rapid growth of Internet and multimedia technology, high-resolution videos in 

daily life have become indispensable. Recently, there have been many 4K high-resolution 

or even higher-resolution videos on the market. It can be expected that high-resolution 

video will become even more popular in the future, and the video compression standard, 

high efficiency video coding (HEVC), has gradually become inadequate. The Joint Video 

Exploration Team (JVET), which comprises International Telecommunication Union-Tel-

ecommunication Standardization Sector Video Coding Experts Group (ITU-T VCEG) and 

International Organization for Standardization/International Electrotechnical Commission 

Moving Picture Experts Group (ISO/IEC MPEG), has developed a new generation of video 

compression standard called future video coding (FVC) [1]. FVC applies quadtree plus 

binary tree (QTBT) coding structure, revising the quadtree coding structure of HEVC, to 

improve the coding efficiency. QTBT coding structure is more adapted to the texture char-

acteristics of pictures sizes, but its encoding time increases heavily. Therefore, how to re-

duce the coding time of QTBT coding structure has become an important research issue. 

FVC not only supports 4K resolution video, but also supports aerial photography, 

HDR/SDR, 360-degree video and so on [2-4]. The application of FVC in daily life is wider 

Received October 1, 2021; revised January 13 & May 15, 2022; accepted May 22, 2022.  
Communicated by Jen-Hui Chuang. 

 



JIUNN-TSAIR FANG, YU-LIANG TU, PAO-CHI CHANG 

 

340 

 

than HEVC can possibly support. The reference software of FVC, JEM, modified based 

on the HEVC reference software (HM) can improve the coding performance of HM, but 

its coding complexity increases heavily. Table 1 presents the comparative coding perfor-

mance between the reference software JEM7.0 [5] of FVC and the reference software 

HM16.6 [6, 7] of HEVC. The coding time of JEM7.0 is 36 times longer than that of 

HM16.6 due to all intra coding configuration. 

 

Table 1. Comparative performance of JEM7.0 [5], and HM16.6 [7]. 

Test configuration 
BDBR Time 

Y U V Enc. Dec. 

All intra −20% −28% −27% 36 2 

Random access −29% −35% −34% 10 7 

Low delay-B −22% −28% −29% 9 7 

Low delay-P −26% −31% −32% 7 5 

 

 

Fig. 1. QTBT coding structure [11]. 

FVC uses QTBT coding structure for prediction coding. According to QTBT, a cod-

ing tree unit (CTU) is composed of 128128 pixels, which allows recursive splitting into 

four equal-sized sub-CUs, and each sub-CU can be further split into four smaller CUs (QT) 

or two smaller CUs (BT) until the smallest CU size is reached. A rate distortion optimiza-

tion (RDO) procedure can determine the best CU size for coding prediction by choosing 

the minimum RD cost. Different from quadtree structure of HEVC, QTBT not only re-

moves the hierarchical structure of CU, PU, and TU, but also adopts square or rectangular 

coding blocks according to the characteristic of the video picture. In other words, QTBT 

uses a variety of flexible coding shapes to improve coding performance [8]. Fig. 1 plots 

the QTBT coding structure [11]. For one CTU, the system performs QT partition decision 
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at CU depths 0 and 1. At CU depths 2 to 4, this CU also performs BT partition decision, 

in addition to QT. BT coding structure can be separated by vertical split and horizontal 

split, which is the rectangular shape of CUs. Each BT has its own coding tree split. From 

the QTBT coding structure, the CU is no longer limited to a square shape which HEVC 

adopts. The square shape and rectangular shape for CUs allows more flexibility for pre-

diction coding. 

The parameters of QTBT coding structure are listed in Table 2 [9]. The quadtree node 

varies from 128×128 to 8×8, and the corresponding CU depth is from 0 to 4. If the leaf 

quadtree node does not exceed MaxBTSize, it can be further partitioned by the binary tree 

from BT Depths 0 to 3. If the width of binary tree node is equal to MinBTSize, it implies 

no further vertical partition. Similarly, if the height of binary tree node is equal to MinBT-

Size, it implies no further horizontal partition [9]. 

 

Table 2. Parameters for QTBT [9]. 

QTBT parameters I slice 

CTU Size 128128 

MinQTSize 88 

MaxBTSize 3232 

MaxBTDepth 3 

MinBTSize 4 

 

Fast algorithms for intra coding are summarized as follows. Wang et al. [10] proposed 

to use the depth of neighbor CUs, including left, above, and the collocated CU in the pre-

vious frame, to estimate the depth for QTBT. A fast algorithm was proposed for QTBT 

intra coding based on spatial features wherein the gradient variances, differences of gradi-

ent variances, and edges were used to design the fast CU partition decision [11]. Spatial 

features for binary tree and quadtree were employed for early splitting or termination of 

CUs encoding process. Zouidi et al. [12] presented fast algorithms relying on statistical 

analysis. To accelerate the intra prediction mode selection, they listed prediction modes 

for each binary depth of the QTBT structure. From their analysis, higher correlation be-

tween QP parameter and the distribution of frequently used intra modes were used for each 

binary depth prediction. Chen et al. [13] used the coding mode of neighboring CUs to 

effectively eliminate unnecessary RDO operations. They analyzed the correlation of BT 

depth between the current block and neighboring ones. A threshold was set up to determine 

early CU split or skip. The Sobel operator was used to extract gradient features to decide 

the current encoding CU split [14]. From their analysis, homogeneous areas tended to se-

lect larger CUs while complicated texture tended to be divided into small sub-CUs. They 

also calculated the variance of variance of each sub-CU to decide the CU partition. Lin et 

al. [15] used CNNs to predict 67 intra modes. An input image was set up by 20×20 blocks 

to train CNNs. They finally selected the best five modes as candidates for RDO mode 

decision. Jin et al. [16] broke the CU depth coding structure and proposed CNNs to classify 

the 32×32 and 16×16 CU depths together. Finally, they classified 5 categories from these 

two QT depths and their corresponding BT coding structures. CNNs were applied as clas-

sifier to predict the depth of the CU [17]. They first created a database [18] to store differ-

ent CU depths, and then used the subsampling to create a hierarchical CU partition map, 
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which could handle blocks with different CU depths and sizes. Finally, a hierarchical CNN 

learning was proposed to predict the partition map for early termination. Tissier et al. [19] 

used the ResNets [20] structure of CNNs for classification. The input data is 6565, which 

is the original CU sizes plus the left and above line pixels. After convolution, pooling, and 

fully connecting, the final output could determine whether or not the CU split with proba-

bility. 

In this work, we propose fast partition algorithms to reduce the encoding time of intra 

coding for FVC. Fast partition prediction algorithms include deep learning method and 

spatial correlation method. The deep learning method uses CNNs to predict CU partition 

at QT depth 2 with its corresponding coding trees. The spatial correlation method uses 

gradient variances of pixels to determine early skip and early termination for QT depths 0 

and 1. This paper is organized as follows. Section 2 describes the proposed fast algorithm. 

Experimental results are described in Section 3. Finally, Section 4 presents conclusions. 

2. FAST ALGORITHMS FOR QTBT INTRA CODING 

The proposed fast algorithms are designed to reduce the coding time of FVC intra 

coding while preserving the high quality of coding performance. Fast algorithms in this 

research include deep learning and spatial correlation method. The following two sub-sec-

tions describe the proposed method in detail. 

2.1 Deep Learning for QT Depth 2 Split Prediction 

CNNs are deep learning networks which have been proved to perform well in image 

classification [21, 22]. In Fig. 2, we plot training and testing procedures of CNNs. CNNs 

build network model and parameters through a training process. Four different resolutions 

from CPIH dataset [23] are the input sequences for training. They are 49283264, 2880 

1920, 15361024, and 768512. The ratio of training data and validating data is about 8:2. 

These sequences are encoded by JEM to determine the best CU split of each frame. Then, 

each frame is partitioned into 3232 CUs, and these 3232 CUs, whose final CUs split has 

been determined, can be used as labeling by supervised learning to train network model 

and parameters. The training procedure is plotted in the left part of Fig. 2. 

 

 
Fig. 2. Training and testing procedures of CNNs. 
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Some CUs may not be suitable to become labels because these CUs may be hard to 

be distinguished. For a given 3232 CU, if its RD cost difference between the optimal and 

sub-optimal partitions is too small, this image is not distinguished, and is not suitable to 

become a label for training a CNNs model. The RD cost difference between the optimal 

and sub-optimal partitions is defined by E q. (1) [16], 

best sub

best sub

RDCost RDCost

RDCost RDCost
RDCost

−

+
 =  (1) 

where notation || is an absolute value, and RDCostbest and RDCostsub are the best and the 

second best RD values, respectively. From our experiment result, RD cost difference is set 

at 0.02.  

In this work, we use CNNs to classify CUs at QT depth 2. According to QTBT coding 

structure, plotted in Fig. 1, QT depth2 is a 3232 CU and can be split into four sub-QTs or 

BTs coding trees. In [16], the authors used class depth to categorize final partitioning at 

QT depth2. The class depth is defined according to the maximum QTBT partition depth 

within a 3232 CU, formulated by Eqs. (2), and (3), 

Class_depth = argmax(QTBTDepthCUi) (2) 

QTBTDepthCUi = 2  QTDepthCUi + BTDepthCUi (3) 

where QTBTDepthCUi represents the final QTBT partitioning depth [16].  

Fig. 1 shows all sub-CU coding trees of QTBT coding structure. According to Eq. (3), 

the sub-CU coding trees from CU depth 2 can be classified into 7 class depths, from 4 to 

10. Following extensive simulations, we finally decided to merge these 7 classes into two 

categories so that CNNs can have better classification performance. Label 0 is for class 

depths 4-6, and label 1 is for class depths 7-10. Table 3 lists the classification of CUs in 

Labels 0 and 1. In general, Label 0 can be treated as CUs with smooth content and label 1 

can be treated as CU with complicated content. Table 4 lists the number of training images 

in each label. 

In the testing process, as shown in the right part of Fig. 2, JEM encodes each frame 

as original procedure. While encoding each 3232 CU, JEM exports CU image data into 

CNNs. CNNs uses the already built network model to classify the image data into two 

categories, and passes the classification results back to JEM. After two labels of classifi-

cation, JEM continues the remaining encoding process within each category to find the 

best CU for prediction coding. 

 

Table 3. The classification of CUs in Labels 0 and 1. 

 

Label

BT0

BT1

BT2

QT3 BT0

QT2 BT3

BT1

BT2

BT3

BT0

BT1

BT2

QT4

Label 1

CU depths

QT3

Labe 0
QT2
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Table 4. The number of training CUs (3232) in each label. 
 Class_depth 

QP 4~6 (Label 0)) 7~10 (Label 1) 

22 68,339 74,765 

27 140,103 80,788 

32 173,051 71,357 

37 196,308 55,204 

Total 577,801 (63.7%) 328,779 (36.2%) 

 

In Fig. 3, we plot the architecture of proposed CNNs, in which the dense convolutional 

networks (DenseNets) [24] are adopted. The DenseNets include convolution layers, batch 

normalization, pooling, and fully connected layers. Input data are 3232 CUs; there are 

three convolution layers, with 33 kernels, and the stride equals to 1. Batch normalization 

can make neural networks faster and more stable through normalization of each layer in-

puts [25]. After 3 dense layers, maximum pooling is used to remove noise points. Finally, 

three layers of full connection are for classification, and the result of final classification is 

sent to the output layer. 

In CNNs, the parametric rectified linear unit (PReLU) is used for the activation func-

tion, which can preserve a negative value after convolution operation. Since there are only 

two categories, the binary cross entropy (BCE) method is used for classification. To avoid 

overfitting problem, regularization operation is added in the CNNs model. After several 

experimental tests, we used both L1 and L2 regularization functions [26]. L1 is robust to 

error. However, its derivative is not continuous. L2 is less robust to error, but is easier to 

get the best solution. L1 and L2 have different advantages and disadvantages. Applying L1 

and L2 can solve the over-fitting problem and make the network model more flexible. Pa-

rameters for setting up CNNs models are listed in Table 5. For L1, 1 sets at 0.03. For L2, 

2 sets at 0.07, 0.05, 0.03, or 0.01 for QP equals to 22, 27, 32, or 37, respectively. 

 

 
Fig. 3. The CNNs architecture. 
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Table 5. Parameters for CNNs. 

Learning rate 0.001 

Kernel size (3, 3) 

Max pooling (2, 2) 

Epoch 100 

Batch size 256 

Number input (32, 32) 

Classification 2 

Parameter of PReLU 0.3 

 

2.2 Spatial Correlation for Split Prediction at QT Depths 0 and 1  

 

Spatial correlation has been used to effectively predict texture smoothness of CU 

blocks [11-13]. To further reduce the coding time of QTBT intra coding, we use spatial 

correlation for split decision at QT depths 0 and 1, separately. However, fast algorithms in 

these two CU depths should avoid error decisions because error decisions could greatly 

affect the video quality. 

For QT depths 0 and 1, Sobel filters are applied. Horizontal and vertical gradients, Gxi 

and Gyi, of a pixel are defined by Eqs. (4) and (5), separately, 

Gxi = Pi+1,j-1 + 2  Pi+1,j + Pi+1,j+1 − Pi-1,j-1 − 2  Pi-1,j − Pi-1,j+1, (4) 

Gyi = Pi-1,j-1 + 2  Pi,j-1 + Pi+1,j-1 − Pi-1,j+1 − 2  Pi,j+1 − Pi+1,j+1. (5) 

where (i, j) is the coordinate of pixel Pi,j. The gradient of pixel Pi,j is defined by GRAD(Pi,j) 

= |Gxi| + |Gyi|. Gradient on a CU is defined by the summation of all gradients of pixels 

within this CU. The gradient of a CU in QT depth 0 can be calculated by Eq. (6), 

127 127

,0 0
( )GRAD i ji j

CU GRAD P
= =

=   . (6) 

For QT depth 0, the gradient of a CU can be used to predict whether or not this CU 

needs to split into sub-CUs. If its gradient is larger than a threshold, this CU will be split 

into its four sub-CUs directly without processing RDO. Otherwise, it will be determined 

by RDO procedure. With extensive experiments, the threshold is set at 200 [11]. 

Difference of gradient variance can be used for QT depth 1 split determination. QT 

depth 1 has four sub-CUs. The gradient variance of each sub-CU is calculated, individually, 

and expressed by Eq. (9), 

1 1
1

, , 4,0 0
( ), 0,1,2,3

N N

GRAD k x y kN N x y
Variance GRAD k

− −

 = =
= − =   (7) 

where N equals to 32, and the gradient mean is defined by Eq. (10), 

1 1
1

4 ,0 0
.

N N

q rN N q r
GRAD

− −

 = =
=    (8) 

The difference of gradient variance can be calculated by Eq. (11), 
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1
, ,6

| |GRAD

Variance GRAD k GRAD rk r
Diff Variance Variance


= −  (9) 

 

where notation || is an absolute value. There are 6 differences between two sub-CUs. If 

the difference of gradient variance is large, it means the variance difference between four 

sub-CUs is large. This CU has a high chance to split into four sub-CUs (early split). In 

contrast, if the difference of gradient variance is small, it means the variance difference 

between four sub-CUs is small. This CU has a high chance to stay in CU depth 1 for pre-

diction coding (early termination). If the difference of gradient variance is not large or 

small, then its CU split is determined by RDO procedure. 

To determine thresholds for setting difference of gradient variance of 3232 CUs at 

QP depth 1, three test sequences, ClassB_Kimono, ClassC_RaceHorsesC, ClassE_Kristen 

AndSara were used, and four QPs (22, 27, 32, and 37) were tested, separately. More than 

2,400 CUs were non-split, and more than 3,700 CUs were split. Fig. 4 shows distributions 

of difference of gradient variances for split and non-split CUs at QP depth 1 under QP 27. 

To have better representation, we separate the result into two figures. Fig. 4 (a) shows the 

distributions of the first 250 bins whose difference of gradient variances are small. If the 

difference of gradient variance is less than 40, most CUs are determined to be non-split, 

plotted by blue lines. The distributions of all differences of gradient variances are plotted 

in Fig. 4 (b). If the difference of gradient variances are greater than 30, 000, most CUs are 

determined to be split into deeper CU depths. The last orange line in Fig. 4 (b) means that 

376 CUs whose difference of gradient variances are greater than 40,000 are split into 

deeper depths. After experiments, the thresholds for early skip and early termination are 

set at about 3%, which are 25 and 330,000, respectively. 

 

  
(a) Less than 250 (bin interval 10).                     (b) All (bin interval 1000).  

Fig. 4. Distributions of difference of gradient variances for split and non-split CUs at QP depth 1 at 

QP 27. 

 

Proposed fast algorithms are summarized as follows. A CTU with 128128 pixels is 

first calculated by the summation of gradient. If the summation of gradient is greater than 

the threshold, then this CTU is directly split into four 6464 of QT depth 1. Otherwise, 

RDO process determines if it is split or not. For a CU in QT depth 1, the difference of 

gradient variance is calculated. If the difference of gradient variance is greater the thresh-

old of early split, then this CU is split into four sub-CUs of QT depth 2 directly. The dif-
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ference of gradient variance is then compared with the threshold of early termination. If 

greater than the threshold, then this CU is not split. Otherwise, whether this CU if split or 

not is determined by RDO procedure. For a CU in QT depths 2 and 3, CNNs are used to 

classify CUs to be Labels 0 or Label 1. The RDO continues the decision to search the best 

CU within each Label. Fig. 5 plots the flow chart of proposed fast algorithms. 

 

Proposed Flowchart 

 
Fig. 5. Flow chart of proposed fast algorithms. 

3. EXPERIMENTAL RESULTS 

Experiments are designed to show the performance of the proposed system. The con-

fusion matrices of CNNs under different four QPs are shown in Fig. 6. The diagonal of 

each matrix shows the correction rates for label classification. For example, in the first 

matrix of QP 27, there is 84% chance of correctness if CNNs determine a CU to be Label 

0. In contrast, there is 16% of chance CNNs may make a mistake for Label 0 under QP 27. 

The average of CNN prediction accuracy rates for CNNs under four different QP is about 

75%. 

 

    
QP27              QP22              QP37             QP32 

Fig. 6. Confusion matrices for CNNs under four different QPs. 

Experiment environment is listed in Table 6. The reference software of FVC is JEM 

version 7.0, and the test sequences refer to common test conditions (CTC) of FVC. All 

intra configuration is adopted for FVC, and four QPs are used. They are 22, 27, 32, and 37. 

Label 0 

Label 1 
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Table 6. Experiment environment. 

Hardware 

CPU Intel(R) Core(TM) i7-6800 @3.40 GHz  

RAM 32.0 G bytes 

GPU NVIDIA GeForce GTX 2070 

Software 

Reference software JEM 7.0 

Video Coding tool Visual Studio 2015, Tensorflow [27], Keras [28] 

Test sequences 

ClassB_Kimono  ClassD_BQSquare 

ClassB_Cactus ClassD_BlowingBubbles 

ClassC_RaceHorsesC ClassE_Johnny  

ClassC_PartyScene  ClassE_KristenAndSara 

Configuration file Intra_main_10 

QP  22, 27, 32, 37 

 

In Fig. 7, we show the final CU splits of ClassD_BlowingBubbles for the proposed 

method and JEM 7.0 method under QP 37. There are some differences of CU splits bet-

ween these two methods. In particular, we use yellow color to mark two CU splits for 

comparisons, where they are located in the middle and the bottom right of the frame. The 

proposed method uses fewer CUs splits for these regions, which may be result from CNNs 

classification ability. 

The bitrate and PSNR for JEM 7.0 and the proposed method to encode Class D Blow-

ingBubbles under QP 37 are 202.1 kbps and 32.28 dB, and 200 kbps and 32.12 dB, respec-

tively. The encoding time for JEM 7.0 and the proposed method is 892 seconds and 845 

seconds, respectively. The proposed method sacrifices some video quality but can save 

encoding time. 

 

      
(a) JEM 7.0                   (b) Proposed method. 

Fig. 7. Final CU splits of Class D BlowingBubbles between JEM 7.0 and the proposed method. 

 

Performance comparisons with state-of-the-art work are listed in Table 7. The Bjøn-

tegaard delta bit rate (BDBR) is calculated based on [29]. Time saving is calculation by 

Eq. (10), 

1
4 1

7.0

7.0

  

 
(%) 100

iQP

i

QP QPi i
JEM proposed

QPi
JEM

Encoding time Encoding time

Encoding time
T

=

−
 =   (10) 
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where Encoding timeJEM7.0 represents the encoding time for JEM 7.0 and Encoding time 

Proposed represents the encoding time by the proposed method. Four different QPs are tested, 

including 22, 27, 32, and 37. 

In Table 7, the proposed method can reduce encoding time by 12.49% on average but 

increases BDBR by about 0.54%. In [11], the encoding time is reduced by 12.19% on 

average but the BDBR increases by about 0.34%. Both proposed methods can maintain the 

video quality and efficiently reduce the encoding time. In [11], fast algorithms are applied 

in each QT or BT partition. By contrast, the proposed method classifies the QT and BT 

partitions only into two labels. For future work, more labels or more classifications can be 

applied to reduce more encoding time. 

 

Table 7. Comparative performance of proposed method and other method. 

 

4. CONCLUSION  

In this work, we propose fast algorithms to determine the QTBT coding structure from 

FVC intra coding. Two methods are proposed. The first method is to apply CNNs for clas-

sification of QT depth 2 with its corresponding coding trees. The second method is using 

spatial correlation to determine the QT depths 0 and 1. By setting the thresholds for early 

skip and early termination, some RDO procedures can thus be skipped. This proposed 

method can yield coding time savings with low BDBR increases as compared to JEM-7.0. 

By combining both spatial correlation and deep learning, the proposed method can achieve 

an effective method to save coding time in FVC video coding. 
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