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The goal of this study is to mine meaningful patterns effectively and efficiently via 

change-point detection of the time series data, with the assistance of domain knowledge and 
observed data. With those patterns, our method can do segmentation and compression. We 
developed a novel gray-box approach for mining such data: Domain Assisted Parameter 
semi-free wave mining (DAPs). DAPs is intended for mining time series with rich do-
main-specific knowledge based on a chaos model. Specifically, it automatically detects a 
change-point of time sequences, respecting the minimal description length principle. And the 
time sequence is segmented based on the detected change-point, and each segment is fitted 
with a consistent model. The experimental results using both synthetic and real EEG data in-
dicated that the developed method offers a significant improvement in segmentation and 
compression via pattern detection over other existing methods. DAPs reduced the number of 
bits of the observed data by detecting the changes in the patterns contained therein and 
brought about a higher average compression ratio, 1.6% more than WT (level 5). DAPs pro-
vides the advantages of (a) being capable of automatically detecting meaningful patterns, (b) 
being parameter semi-free, and (c) resulting in a huge reduction in data storage. These find-
ings provide possible applications in the use of various medical devices that produce vast 
amounts of physiological data that should be monitored.   
 
Keywords: segmentation, gray-box model, chaos population model, parameter estimation, 
minimum description length, electroencephalography, compression 
 
 

1. INTRODUCTION 
 

The increasing availability of networked medical sensors has allowed for a tremen-
dous amount of physiological data to be continuously gathered, and certain patterns in these 
data can be used as indicators of patient health. However, the sheer volume of data and the 
noise contained therein make it impractical to manually monitor patients, who may number 
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in the hundreds, each with tens of thousands of continuous signal traces. To this end, data 
mining techniques have been developed in order to analyze and detect significant patterns 
in the time series of physiological data and to produce models that represent such data. 
Change-point detection is a popular technique in the process of mining time series data, the 
general idea is the identification of abrupt changes in sequential data as an online and of-
fline signal processing step. It is useful in the modelling and prediction of time series in 
application areas such as disease diagnosis, biometrics, and robotics.  

Such a mathematical model can be used to mine the behavior of data from the natu-
ral and social sciences, as well as engineering, and it is concerned with simulations of 
reality reflecting the behavior of dynamic systems [1]. The model tries to mimic the be-
havior of real systems, be they physical, earth scientific, biological, meteorological, or 
social systems [2]. A mathematical model of time series data can generally be built from 
two sources of information: domain knowledge, like physical phenomena or structures; 
and, observed data from experiments. This allows for two types of modeling: white-box 
and black-box modeling [3]. White-box models provide exact models by using a-priori 
knowledge and an assumed structure, and reflect this knowledge in mathematical equa-
tions. White-box methods not only require exact domain knowledge but are also highly 
complex in both implementation and execution.  

On the other hand, black-box models can be built by using experimental data and have 
the advantage of being able to produce simulations very quickly. These models are con-
cerned with deriving a parameter, which optimally fits the observed data. Conventional 
time-series mining methods often work as black-boxes, which means that they mine pat-
terns or learn models purely from the observational data. Black-box methods are widely 
used and are readily applicable to a wide range of sequential data. However, black-box 
models are difficult to interpret, which makes it difficult to achieve phenomenological or 
qualitative knowledge of a dynamic system [2]. Therefore, in this paper we explore a new 
perspective by developing a system that mines time series data using gray-boxes.  

Gray-box models have some particular benefits relative to both white-box and 
black-box models [2, 3] because they use both a priori knowledge and observed data. 
That is, they can reduce parameters by using prior knowledge while still providing a 
good approximation of the true system. Additionally, such methods assure a low mean- 
square error because their physical interpretation is possible [4]. As a result, gray-box 
models are useful and important methods that have many applications in industry, in-
cluding industrial robots, water environment management, medical science, and sports. 
In this paper, we propose a novel method, DAPs, which segments and compresses EEG 
time series data with the assistance of domain knowledge and observed data. Our method 
improves mining results due to a strategic trade-off between generality and effectiveness. 
The power of the gray-box approach was examined by studying epileptic behavior in 
time series data of brain activity.  

Epileptic EEG time series data is recorded through multiple sensors in real time, and 
such data provides information on the electrical activity of brain structures during epi-
leptic seizures [5]. Epileptic EEG time series have piecewise structures with varying 
characteristics. These piecewise structures may be approximated using linear functions 
or polynomials [6]. However, linear functions often fail to closely capture patterns in real 
data because time series data frequently consists of numerous varied patterns [7]. In ad-
dition, such functions would require several modeling parameters and be highly sensitive 
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to the specific choice of parameters. In contrast, the proposed DAPs does not require 
further user intervention after the initial parameters are automatically set.  

In this paper, we demonstrate the effectiveness of DAPs as an expert-built neuron 
activity model. The empirical results show that DAPs is very suitable at segmenting the 
epileptic seizure time series data while automatically detecting the patterns. DAPs also 
shows the capacity of data compression based on its segmentation. The basic idea of 
DAPs is to detect the change-point of EEG time series data and to split the data into 
segments that can be separately compressed in order to reduce the number of bits needed 
to store or transmit data. It employs a gray-box model based on a chaos population mod-
el to simulate output signals from input signals [8] and a Minimum Description Length 
(MDL) method to lead to the best compression rate [9]. The primary contributions of our 
approach are as follows:  

 
 Good Model design: DAPs is a novel method that automatically separates changing 

patterns contained within epilepsy EEG time series data. In effect, it is a parameter 
semi-free method that can suitably segment data without any additional user interven-
tion after the initial parameters are set.  

 Effectiveness: DAPs can automatically split EEG time series data by using an MDL 
method. DAPs incrementally finds the best change-points to segment the signals, and 
the best segmentation is guaranteed to be encoded using fewer bits.  

 Scalability: The run time for DAPs grows linearly with the total input data. Our model 
can generate a new signal to describe the trends of the input signal. Therefore, DAPs 
may be adequate for various time series applications where efficient segmentation is 
needed.  

 
The rest of this paper is organized as follows. Section 2 presents our proposed 

method to discover patterns by change-point detection. Section 3 shows the experimental 
evaluation, Section 4 discusses the existing methods in comparison with our method, and 
Section 5 provides the conclusion. 

2. PROPOSED METHOD 

In this section we describe the DAPs model that is designed to extract “interesting” 
patterns from epilepsy EEG time series data, which can do segmentation and compres-
sion. To this end, DAPs is proposed as a gray-box model that combines the white-box 
approach, with which mathematical equations are derived to describe a process in order 
to perform data analysis, with the black-box approach with which a parameterized model 
is designed with parameters that are estimated from measurements made on the process 
itself (with MDL). 
 
2.1 Gray-Box Modeling by the Chaos Population Model 
 

The dynamic neuron population model has been widely used to model neuronal 
populations and to describe the dynamics of interactions between neurons. Neuronal 
population models are regarded as effective in describing the dynamic properties of neu-
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ronal population activity (see [8] for details). Neuronal population activity is mainly 
caused by the interactions of groups of neurons. These groups include both excitatory 
and inhibitory neurons with synaptic connections. Excitatory neurons send inputs to oth-
er neurons, which trigger their excitation and bursting. Inhibitory neurons act in the op-
posite way: they tend to suppress the activity of other neurons. A neuronal population 
system is composed of two groups of excitatory (ek) and inhibitory (il) neurons. The dy-
namics of these neurons can be described by means of the dynamical system as follows: 
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where t denotes time, and pk denotes the external inputs into the excitatory neurons. The 
parameters a, b, d and g are the strengths of the connections between the populations. 
The neuronal population models exhibit several types of interactions that involve self- 
and cross-interactions expressed by akl, bkl, dkl, and gkl.  

e and  
i are the firing thresholds 

for the excitatory and inhibitory neurons, respectively, and  is sigmoidal function. 
In this paper, we used the Chaos Population Model (ChaosPM) to simplify dynamic 

neuron populations with one excitatory and one inhibitory neuronal set. ChaosPM de-
rives its name from the chaotic phenomena exhibited by epilepsy EEG data [10]. The 
ChaosPM models several of the interactions between excitatory and inhibitory neurons 
(cross-interactions) and among themselves (self-interactions) as in Fig. 1. ChaosPM uses 
the average activity of each group as Ek(t)=1/Ne

k
 ek(t) and Ii(t)=1/Ni

l
 il(t) from the Eqs.  

(1) and (2). That is, Ek(t) and Ii(t) represent the activity of the excitatory and inhibitory 
neurons. This model exhibits oscillations in activity, but it is not difficult to obtain more 
complex patterns by coupling several of these modules as occurs in the cerebral cortex. 
These are expressed as C1, C2, C3, and C4. In addition, the excitatory neurons have an 
external input, P. C1 and C4 are the self-interaction of excitatory and inhibitory neurons, 
respectively. C2 is the cross-interaction from inhibitory to excitatory, and C3 represents 
the cross-interaction from excitatory to inhibitory. In Fig. 1, solid lines indicate parame-
ter C1 and C2 entry on the excitatory neurons and dotted lines denote parameter C3 and 
C4 entering inhibitory neurons.  

 

 
Fig. 1. ChaosPM model: This is coupled by one excitatory (denoted by E) and one inhibitory (de-

noted by I). The excitatory neuron has the external input. 
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The activity Ek(t) of an excitatory neuron at location k and time t and the activity 
Ik(t) of the inhibitory neuron at the same location and time can be described by using Eqs. 
(3) and (4):  
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where Ek(t) and Ik(t) denote the activity of the excitatory and the inhibitory neuron at 
time t, respectively. The thresholds e and i should be sufficiently large [11]. S de-
notes the sigmoid function S=[1+exp(x)](1). 

ChaosPM uses the above equations to generate a new signal that has t-time points. 
In detail, we initialize the model with Ek(0) and Ik(0) set to 0. We then obtain new activi-
ty for the excitatory and inhibitory neurons, Êk(t) and )(ˆ tI k , respectively. The model then 
creates a new activity signal )(ˆ)(ˆ)(ˆ tItEtX kk  [12].  

The initial C1, C2, C3, and C4 parameters for ChaosPM are set by using the Leven-
berg-Marquardt (LM) algorithm [13] to provide initial input parameters. The LM method 
is a standard technique that can be used to solve non-linear least squares problems. 
Non-linear least squares methods involve an iterative improvement of the parameter val-
ues in order to minimize the sum of the squares of the errors between the function and 
the observed data points. The parameter values estimated by LM from the sinewave data 
can be used as the initial input parameters for our proposed method, and the user need 
not define parameters while running the model for EEG time series data. The preceding 
learning process for the initial parameter values automatically provides the initial input 
parameters as follows. The self-interaction of the excitatory neuron C1 is set to 9.7; the 
cross-interaction from inhibitory to excitatory neuron, C2 is set to 10; the cross-inter- 
action from the excitatory to the inhibitory neuron C3 is set to 5.4; the self-interaction of 
the inhibitory neuron C4 is 3.1; and the external input P is 2.5 (see section 3.2 in detail). 
On the other hand, the e and i thresholds are set to constant values 2 and 3.5, respec-
tively. This process occurs as in [11]. 
 
2.2 Identification by Minimum Description Length 
 

Our goal is to find patterns contained in epilepsy EEG time series data along with 
the existing change-points, if any. To this end, two problems had to be addressed: pattern 
identification and time segmentation. First, given a time series segment X(s) from an epi-
lepsy EEG, good patterns that summarize the fundamental pattern structure of the signals 
must be found. Second, given an epilepsy EEG time series signal X, the signal segments 
must be incrementally constructed by selecting the best change-points ts. Our method is 
based on the Minimum Description Length (MDL) and can be used to address both of 
the above problems. MDL is based on the idea that the best model to describe the data is 
the one that minimizes the sum of the following two items: (1) the amount M of infor-
mation necessary to describe the model, and (2) the amount of information DM that is 
necessary to describe the input source using the given model. 

DL(X)=DL(M)+DL(D|M)    (5) 
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where DL(M) is the description length of model M in bits, and DL(DM) is the length of 
the description of the data when it is encoded with model M in bits. We use a two-part 
MDL cost for the segmentation and (lossless) compression of the epilepsy EEG time 
series data. The first part consists of the ChaosPM description costs including those of 
encoding the parameters that connect each neuron. The second part is the data descrip-
tion cost that consists of the encoding error between the data generated by ChaosPM and 
the observed data. Our model predicts signals with time t according to a set of given pa-
rameters via LM learning, p(p=1, …, 5). That is, our model (M) requires log(p=p+1) 
bits, where log is the universal code (Elias delta) length for integers [9]. However, Elias 
delta coding cannot code zero or negative integers, so all integers (zeros, positive and 
negative) are mapped to positive integers as seen in Eq. (6) [14]. The function PosiInter 
normalizes the real-valued signal X into b-bits within a discrete value range. We use 64 
values for b so that six bits are sufficient to cover all possible signal values.  
 

min( )ˆ( ) ( ) 2 1) 1
max( ) min( )

bx x
PosiInter X round

x x


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
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Given the length of the signals, t-time, of the epilepsy EEG, we require 

1

t
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We use the minimum DL to detect patterns in the signal. 
 
2.3 Mining in Time Series 
 

Mining is to discover hidden information or knowledge from the raw data or trans-
formed data, and pattern detection is the most common mining task. In this paper, we detect 
patterns by identifying the rapidly changing point on continuous time series data that based 
on MDL. In addition, if the detected patterns have a similarity, then they can be grouped. 
Otherwise our method separates the different patterns. Given the time series X=x1, x2, …, xt , 
we present an algorithm that constructs signal segments incrementally when a new signal 
arrives. Intuitively, we want to group “similar” signals from consecutive time series into 
one signal segment and then encode them all together. For example, signal X 

1 and X 
2 are 

similar, and therefore we group them into one signal segment X(s1) while X(s3) is quite 
different from the previous signal, and hence we start a new segment X(s2). Here, the main 
principle is still the encoding cost. In particular, our algorithm combines the incoming sig-
nal with the current signal segment if there are storage benefits, otherwise we start a new 
segment with that signal. In this paper, we apply an incremental approach to the significant 
pattern detection of the epilepsy EEG time series data based on minimum bit cost. Our 
method estimates the bit cost of the sub-sequence and selects the best time point for pattern 
identification among those that have the minimum bit cost. To minimize the total number of 
bits, the time-points for the pattern identification will be decided by using two operations 
for merging and segmentation. We compute the Savebit function that measures how many 
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bits can be saved by merging and segmenting. Savebit is the total number of bits that are 
saved after applying an operator to create a new slip partition from an existing sub-sequen- 
ce or by merging with an existing sub-sequence as in Eq. (8).  

 
Savebit=DL(Segment)DL(Merge)    (8) 
 

Each operator can be defined as follows:  
 
Segmenting: (DL(A)+DL(B))DL(C), AB,    (9) 
Merging: (DL(A)+DL(B))DL(C), AB    (10) 
 

where C is a new sub-sequence created from an existing sub-sequence A and the new 
sub-sequence B. That is, the number of bits of the existing sub-sequence A, new 
sub-sequence B, and new sub-sequence C, treated as one sub-sequence from A to B, are 
computed. We segment these if the sum of each bit of the sub-sequences A and B is big-
ger than the bits of the new sub-sequence C, hence we start a new segment. On the other 
hand, they are merged into a signal segment when the new subsequence C takes a larger 
DL than the sum of the bits for each sub-sequence A and B. DAPs algorithm that is pro-
posed in this paper is expressed in Table 1. 

 
Table 1. DAPs algorithm. 

Input: EEG signal, X, and the initial parameters: PS=( C1, C2, C3, C4, P)  
Output: Number of segments and total bit costs 
 

for i=1:t do /* t is the length of a signal 
Create a new signal, )(ˆ)(ˆ)(ˆ tItEtX   by Eqs. (3) and (4);  
while minimizing the error cost do 

 ettor=argmin( X̂ |PS=(C1, C2, C3, C4, P)/* error= ˆX X  
/* Update parameter set 

 PSPSoptional /* Optimal parameter set estimated by LM  
end while 
 
/* minimize description length cost 

Compute DL(X ) by Eq. (7) 
/* find change-point as extremely high or low picks on the signal 

Compute Savebit by Eq. (8) 
if Savebit  0 then 

do Merge 
else 

do Segment 
end if 

end for 
Return Bit costs, Number of Segmentations, and PSoptional  
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3. EXPERIMENTS 

3.1 Experimental Data 

We evaluated DAPs by using both synthetic and real data. The synthetic data was 
arbitrarily generated by using ChaosPM with several different initial parameters and 
without using a learning process for the evaluation. The real data consisted of time series 
data captured from the measurement of 21 patients with medically intractable epilepsy. 
The real data were provided by http://epilepsy-database.eu (through individual request). 
This data set was recorded at the Epilepsy Center of the University Hospital of Freiburg, 
Germany using an invasive recording method. The time series data were obtained from 
an EEG monitoring system with 6 channels at a sampling rate of 256 Hz. The time series 
data included 2 to 5 epileptic seizure events over a period of 24 hours (see [15] in detail). 

3.2 Parameter Semi-Free Model 

Parameter estimation in dynamic models is a central challenge for computational 
modeling, and it is a difficult and important step in the development of models [16, 17]. 
In this paper, we used the LM method to solve the parameter estimation problem. This 
method can automatically detect parameters by an iterative update process of parameters 
which minimize the error rate between the observed signal and predicted signal. As a 
result, it is not necessary for users to set parameters whenever the model runs. Merely, 
the proposed model needs an initial value for parameters before running the process in 
order to derive the best performance (i.e., it is parameter semi-free). The initial input 
parameter has a vital influence on the rapidity of convergence. Therefore, we learned to 
find the best values for initial parameters using LM on the ChaosPM model. It is possible 
to find initial parameter values by minimizing the mean square error (MSE) between the 
input data and the predicted data by the model. To decide suitable initial input parameter 
on ChaosPM, we compared LM and MLE (Maximum Likelihood Estimation). MLE is 
used the most in parameter estimation methods [18].  

Fig. 2 shows the results predicted by ChaosPM when LM and MLE are used to esti-
mate the initial parameters of the model. Figs. 2 (a) and (c) shows the changing accuracy 

 

 
(a)  (b) 

Fig. 2. Comparison between the input signal and the generated signal when using LM and MLE;
(a) a learning process by LM; (b) LM result; (c) a learning process by MLE; and (d) MLE 
result estimated through a learning process of 105, respectively. 
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(c) (d) 

Fig. 2. (Cont’d) Comparison between the input signal and the generated signal when using LM and 
MLE; (a) a learning process by LM; (b) LM result; (c) a learning process by MLE; and (d) 
MLE result estimated through a learning process of 105, respectively. 

 
depending on the learning process of 510 using LM and MLE. In (b) and (d) of Fig. 2, 
the solid line indicates an input sine signal, and the plus-dot line represents the signal 
predicted by ChaosPM. Fig. 2 (b) shows the results predicted by LM, and Fig. 2(d) 
shows the result of the MLE. Figs. 2 (b) and (d) are acquired through an iterative process 
that matches the input signal as closely as possible. Fig. 2 (b) shows a plot of the pre-
dicted signal by using the LM with the highest accuracy between the original signal and 
the predicted signal despite finding only a local minimum, and Fig. 2 (d) shows the sig-
nal predicted by the MLE that guarantees the lowest error rates.  

 
Table 2. Optimal parameters for the initial parameter values. 

Method C1 C2 C3 C4 P Accuracy Loglik/SSE 
LM 9.72 9.99 5.42 3.10 2.53 0.860 4.346 

MLE 3.11 6.87 9.09 1.61 3.18 0.002 602.4 

 
The results confirmed that the LM method provides lower error rates than MLE when 

the two methods are compared. That is, through the learning process, the LM method found 
the optimal parameter values with which the predicted signal is most similar to the input 
signal. Table 2 shows that the optimal parameter values providing high accuracy in the LM 
and MLE learning process. As a result of Table 2, LM and MLE show high accuracy when 
C1, C2, C3, C4 and P parameter values equals those of Table 2. In Table 2, SSE means a sum 
of squared error between the input signal and the predicted signal by LM, and Loglik shows 
the maximized log-likelihood value for MLE. These experiments indicate that LM guaran-
tees the best parameter values for the predicted signal. Therefore, the initial parameter val-
ues for the DAPs model are automatically set to the best values for the parameters obtained 
by the LM. This enables DAPs to run without user intervention: it uses the best values that 
were empirically obtained as the initial parameter values as follows: C1=9.7, C2=10, C3=5.4, 
C4=3.1, and P=2.5. Our proposed method therefore provides a parameter semi-free model 
that can automatically set the initial parameter values for the DAPs model by using learned 
parameter values set by the LM. 

 



SUN-HEE KIM, LEI LI, CHRISTOS FALOUTSOS, HYUNG-JEONG YANG AND SEONG-WHAN LEE 526

3.3 Pattern Segmentation Using the Change-Point Detection 
 

In this paper, we performed pattern segmentation via change-point identification based 
on the MDL with the time series data. Fig. 3 shows the original sine wave signal and the 
automatically segmented results produced by DAPs. We generated a sine wave signal as 
seen in Fig. 3 (a), and we used it as input data for the proposed method. The patterns for the 
signal in order to minimize encoding costs, are incrementally discovered as shown in Table 
3, and the length of time needed to compute the minimum bit cost are sequentially in-
creased. Fig. 3 (b) shows how DAPs selects the best number of segments in order to guar-
antee a minimum bit cost for the signal as a result of the segmenting or merging of the se-
quences. Therefore, this sine wave signal has no segmentation since it consists of one single 
pattern. DAPs detected a length of 50 time points as the best change-point from the sine 
wave signal through the incremental process, and the method performed a merge process 
for 3 segments from the entire sine wave signal, as shown in Table 3. 

 

 
 
 
 
 
 
 
 

Fig. 3. The DAPs model automatically chooses the best pattern segmentations with the smallest bit 
cost; (a) Single sine wave signal; (b) bit cost according to the number of segments in a sin-
gle sine wave signal; (c) mixed sine signal with different frequencies and amplitudes; and 
(d) bit cost according to the number of segments. 

 
Table 3. Results for the pattern segmenting or merging of sine signals in the DAPs model. 

Input Signal 
Length of identi-

fied pattern 
Num. of merge 

operation 
Num. of segment 

operation 
Total length of the 
signal (time point) 

Single Sine Wave 
(Fig. 3 (a)) 

50 3  200 

Mixed Sine Wave 
(Fig. 3 (c)) 

60 8 1 600 

 
To verify the pattern segmentation ability of DAPs, we applied a mixed sine wave 

signal to the model. The mixed signal is composed of two separate sine wave signals with 
different frequencies and amplitudes, as shown in Fig. 3 (c). Fig. 3 (d) shows the pattern 
segmentation results obtained through our model. As seen in Fig. 3 (d), DAPs correctly 
separated the two signals at the point where the frequency and the amplitude changed. In 
the case of this mixed sine wave signal, the best length to perform pattern identification was 
detected to have a duration of 60 time points, and was achieved with one segmenting opera-
tion and eight merging operations carried out over 10 steps, as shown in Table 3.  

In this subsection, we show the pattern segmentation performance measured using a 
variety of experimental data. We applied DAPs to a synthetic signal created by using Cha-

(a) (b) (c) (d) 
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osPM with several parameter values without the LM learning process. Fig. 4 (a) shows the 
original synthetic signal combined with the three types of signal. Fig.4 (b) is the result of 
the segmentation. As shown in Fig. 4 (a), the input signal was created with time points 1 to 
300 of the signal using parameter values C1=3, C2=7, C3=10, C4=4, and P=3: Time points 
301 to 600 were generated using parameter values, C1=10, C2=15, C3=15, C4=4, and P=3: 
The rest signal (time points 601 to 900) was generated by using parameter values C1=1, 
C2=1, C3=5, C4=5, and P=10. For this synthetic signal, we detected the precise change- 
points for the pattern segmentation reducing with the number of bits by using MDL. Fig. 4 
(b) shows the results of the pattern segmentation incrementally identified by MDL, and Fig. 
4 (c) indicates the bit cost according to the number of segments from which DAPs chooses 
the best number of segments, s(s=3), by segmenting the signal into three pieces. The three 
types of synthetic signal (see Fig. 4 (a)) require 972 bits in DAPs in order to describe the 
signal. That is, DAPs provided the smallest number of bits by automatically performing 
segmenting or merging operations (see Fig. 4 (c)). 

 
(a)                          (b)                         (c) 

Fig. 4. Pattern segmentation of the synthetic signal consisting of three signal types: (a) the original 
synthetic signal; (b) the pattern segmented by the DAPs model; and (c) the bit cost accord-
ing to the number of segments. 

 

Fig. 5 shows the pattern segmentation results for the real signal obtained from pa-
tient P4. This patient P4 is 26 age and a female, and seizures of three type as simple par-
tial (SP), complex partial (CP), and generalized tonic-clonic seizure (GTC) appeared 
over five times during recording EEG signal. EEG signal of P4 was recorded using grid, 
strip, and depth electrodes [15]. Fig. 5 (a) depicts the original signal of the patient, and 
includes normal and seizure signals, as defined by expert opinion. We applied DAPs to 
the real signal, and it detected the time points for a sudden change, as shown in Fig. 5 (b). 
DAPs then segmented the signal according to the change-points that were detected 
(changeable pattern). As seen in Fig. 5 (c), DAPs guarantees the minimum bit cost by 
using ten segments. That is, when EEG signal is split by ten segments, DAPs takes the 
lowest bit costs near to 20000, and the segmenting and merging processes can identify a 
reliable pattern to segment a real signal. 
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Fig. 5. DAPs automatically chooses s=10 segments for segmenting the real signal; (a) Real EEG 

signal from patient P4; (b) the result of the pattern segmentation with the proposed model; 
and (c) the bit cost according to the number of segments. 

 
Fig. 6 shows the results of the automatic segmentation by DAPs of epilepsy EEG 

data. In Fig. 6, the blue line indicates the original signal, and the multi-colored line indi-
cates the signal reconstructed for the segment separated by DAPs. The vertical dotted 
line indicates the segment that was automatically separated by DAPs. Fig. 6 (a) is the 
signal from the first channel of the 5th patient, and Fig. 6 (b) shows the signal of patient 
P9S1. Patients P5 and P9 are 16 and 44 age, and they are a female and male, respectively. 
P5 has seizures of three types as SP, CP, and GTC, but P9 only has CP and GTC. During 
EEG signal recorded, electrodes used grid and strip, and seizures occurred over three and 
five times, respectively [15]. As shown in Fig. 6, DAPs can also reconstruct the signal 
that indicates the piecewise structure of the observed signal. As a result, DAPs can detect 
change-points in order to minimize the number of bits. As a result, our model is able to 
automatically segment EEG time series data, and can therefore compress data to reduce 
the space necessary for transmission and storage. 

 

 
 (a)   (b) 

Fig. 6. DAPs pattern segmentation results from real epilepsy EEG data: (a) the signal recorded 
from the first channel of the patient P5; and (b) the signal recorded from the first channel of 
the patient P9. 

 
3.4 Effective Compression 
 

Digitized EEG is commonly used for monitoring patients and in patient databases. The 
volume of these data is necessarily large since a long period of time is required to gather 
sufficient information from each patient. As a result, large amounts of data have to be either 

(a) (b) (c)
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stored or transmitted making compression necessary to reduce potentially onerous the bit 
rates [19]. Our proposed method is advantageous that it reduces the number of bits of the 
observed data by detecting the changes in the patterns contained therein.  

 

Fig. 7. Bit cost of the total signal via segmentation. We compared the bit cost of the total signals 
for several patients, including P5, P9, and P20. 

 
Fig. 7 shows the experimental results for the bit cost of several patient signals. We 

evaluated the performance of the proposed gray-box model by using real EEG data, and 
showed promising results in terms of the number of reliably identifiable segments while 
the proposed method compares favorably to a slide window approach [20]. In Fig. 7, the 
x-axis corresponds to the bit cost of our method, and the y-axis is the bit cost of existing 
methods (slide window and no segmentation). In this plot, the black dotted line is con-
sidered the standard performance against which the model is evaluated. If the symbols 
appear along the upper side of the black dotted line, the model provides good perfor-
mance. On the other hand, if the symbols appear below the line, the proposed method did 
not perform well. The results indicate that the bit cost of the total of the signals for the 
data from each patient remain on the upper side of the dotted line. Therefore, DAPs is 
able to produce a minimum bit cost over the entirety of the signal through segmentation 
based on the change-point detection. This is considerably lower than the bit cost 
achieved by the sliding window method and other methods that do not segment the data. 

In order to verify the efficiency of the compression, the reduced bit cost obtained by 
the proposed method was used to measure performance in terms of compression ratio 
(CR) and the percentage of the root mean square difference (PRD). The CR can be de-
fined as the ratio of the number of bits used to describe the original signal to the number 
of bits required to represent the compressed signal. PRD is used to evaluate the distortion 
in the reconstructed signal, and produces the error ratio between the reconstructed and 
original signals. CR and PRD are together used to evaluate the performance and are cal-
culated as follows: 

 
CR = (Bit of the compressed signal / Bit rate of the original signal )100(%), (9) 
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   , (10) 

 
where xi and ix̂  indicate the original signal and the reconstructed signal, respectively. 
The compression of bio-medical signals is generally performed by using a Discrete Co-
sine Transform (DCT), Discrete Sine Transform (DST), Fast Fourier Transform (FFT), 
or Wavelet Transform (WT) [21-24]. In this paper, we have compared the compression 
ratio performance of our method to that of existing methods, as seen in Table 4. The 
conventional methods, including DCT, DST, FFT and WT were carried out as MATLAB 
functions, and the reconstructed signals were obtained by using inverse functions of each 
method. In the case of the WT, the decomposition was performed at levels 2 and 5 using 
wavelets db2 and db5. 

 
Table 4. Comparison of the compression ratio between the proposed method and exist-

ing methods. 

Num. 
Patient 

DCT FFT DST 
WT 

Proposed 
Level 2 Level 5 

CR PRD CR PRD CR PRD CR PRD CR PRD CR PRD 
P1 18.75 0.968 10.46 0.971 18.39 0.960 23.00 0.989 27.48 0.996 37.53 0.953 
P2 35.19 0.996 25.02 0.998 35.21 0.998 11.50 0.988 14.60 0.988 39.49 0.986 
P3 27.77 0.952 20.89 0.982 27.72 0.957 28.93 1.000 33.08 0.953 47.89 0.960 
P4 22.45 0.976 11.84 0.982 22.07 0.965 8.88 0.970 15.30 0.988 48.77 0.967 
P5 38.16 0.967 28.36 0.962 38.80 0.981 41.90 0.951 48.06 0.954 39.75 0.997 
P6 42.04 0.973 33.11 0.971 42.31 0.989 33.96 0.952 42.18 0.951 37.96 0.953 
P7 51.34 0.991 44.73 0.991 50.30 0.962 45.84 0.966 56.46 0.956 32.79 0.979 
P8 37.58 0.985 28.91 0.984 37.49 0.988 22.96 0.989 32.94 0.953 40.48 0.963 
P9 30.16 0.970 21.56 0.979 30.16 0.965 44.52 0.954 51.42 0.956 27.96 0.988 
P10 43.23 0.989 34.22 0.989 43.30 0.985 15.92 0.989 19.22 0.994 39.72 0.999 
P11 40.86 0.970 32.89 0.990 41.24 0.980 33.08 0.960 39.66 0.951 48.97 0.993 
P12 32.25 0.976 23.38 0.987 31.91 0.953 31.76 0.964 38.40 0.952 41.72 0.991 
P13 27.73 0.979 16.45 0.959 27.68 0.956 5.12 0.993 7.74 0.981 43.97 0.952 
P14 64.02 0.995 56.55 0.996 63.43 0.982 53.12 0.963 62.06 0.954 28.92 0.953 
P15 55.00 0.991 48.39 0.989 52.99 1.000 43.26 0.951 50.44 0.952 29.91 0.981 
P16 60.48 0.980 54.20 0.991 60.83 0.998 45.64 0.963 57.30 0.953 49.63 0.986 
P17 17.77 0.990 8.40 0.994 17.60 0.971 59.92 0.956 65.70 0.956 50.55 0.970 
P18 27.79 0.985 17.39 0.973 27.59 0.963 5.64 0.972 9.42 0.995 42.04 0.973 
P19 15.78 0.986 6.45 0.981 15.50 0.978 42.04 0.956 56.04 0.951 28.28 0.958 
P20 17.58 0.994 8.02 0.962 17.54 0.975 29.86 0.998 32.94 0.952 16.78 0.964 
P21 32.16 0.985 23.33 0.993 32.08 0.983 26.08 0.998 29.16 0.993 49.99 0.953 

Average 35.15 0.981 26.41 0.982 34.96 0.976 31.09 0.972 37.60 0.966 39.19 0.972 

 
Table 4 shows the CR and the PRD for the existing methods and for the proposed 

method. Generally, the fidelity of the reconstructed signal indicates a distributional range 
for PRD as follows: 0~2%  ‘very good’; 2~9%  ‘good’; and 9~19%  ‘not good’ [25]. 
In our experiment, we estimated CR by decreasing the PRD values between 0.95 and 1 
to compare the compression ratio between the existing methods and DAPs. That is, we 
compress the signals to obtain a PRD percentage between 0.95 and 1 (0.95 < PRD < 1). 
Therefore, we can interpret the results of the experiments in the following way: if the CR 
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is high and PRD is low, then a given method may be considered preferable for com-
pressing bio-medical signals. The results in Table 4 indicate that the performance of the 
existing compression methods achieved compression ratios that were roughly average - 
35%, 26%, 34%, 31%, and 37% for DCT, FFT, DST, and WT (level 2 and level 5), re-
spectively, with PRD maintained between 0.95 and 1. These results indicate that our 
method had a significantly higher average CR, 1.6% more than WT (level 5), compared 
to these methods. Therefore, our method could have clinical potential for data compres-
sion since it achieves better performance than currently available alternatives. 

 
3.5 Scalability for Pattern Segmentation 

 
In this section we experimentally demonstrate the time complexity of DAPs. Fig. 8 

shows the running time according to the increase in the total size of several EEG time 
series. The total size indicates the total time points for a signal, and the complexity of our 
approach for the segmentation is given as O(nrs), where n is the length of the sub-se- 
quence, and r is the number of iterations in the ChaosPM model. Finally, s gives us the 
number of segments. The results shown in Fig. 8 indicate that the run time grows linearly 
with respect to the total number of data points. 

 

  
    (a)     (b)     (c) 

Fig. 8. DAPs: run time of DAPs versus the size of signals in epilepsy EEG data. 

4. DISCUSSION 

In recent years, there has been a growing interest in using data mining techniques to 
extract useful patterns from time series data. Time series segmentation is an important issue 
not only for signal processing but also for data mining. That is, it can be considered as a 
preprocessing step for variety of data mining tasks or trend analysis techniques. Most time 
series data that have the characteristic of consisting of continuous numerical values had 
been dealt with using the fixed-length method for time series segmentation. However, 
fixed-length segmentation of the time series data may miss significant patterns since mean-
ingful patterns of time series data appear with different lengths. In this paper, we propose a 
novel method to mine meaningful patterns by detecting the change-point in epilepsy EEG 
time series data. It can segment time series data by splitting the detected point based on the 
MDL. Also, in contradistinction to the fixed-segmentation method, the proposed method 
incrementally separates patterns of different lengths in time series data. 

For time series segmentation, Brooks et al. [26] introduced a novel segmentation 
algorithm that can partition quasi-monotonic segments in accordance with scale theory. 
Piecewise linear representation (PLR) is preferred since it is easier to understand and 
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implement than other segmentation methods. PLR identifies the change-point that occurs 
in a time series [27]. However, these methods are not suitable for time series that exhibit 
sharp fluctuations. Other segmenting approaches for time series data have been proposed, 
including symbolic mappings, adaptive multivariate splines, hybrid adaptive methods, 
wavelets, Fourier transforms, and Discrete cosine transform [28-32]. However, none of 
these can manage time series of different types, nor can they function as parameter-free 
or semi-free methods. Our method is a parameter semi-free method without user inter-
vention after setting initial parameter values. 

Time series data mostly increase linearly with time as patterns are discovered, then 
there will be a storage problem. Therefore, an effective mechanism for compressing the 
huge amount of time series data is needed. Pratt and Fink [33] present a compression tech-
nique that selects some of the minima and maxima in a series and drops the other points. 
Recently, Xu et al. [34] adopted a sliding window method to compress time series data. 
This model is based on an MDL/MML method that is in turn based on a fixed window size, 
and the model captures the information distribution within the data. In this paper, we pro-
posed a novel method for performing incremental pattern detection of epilepsy EEG data 
with change-points that are identified in a completely automated manner. This method can 
do compressions of time series data that can help to solve the storage problem.  

The performance of the proposed method is verified by comparing the number of 
bits with the sliding window method that was adopted in [34-37]. We also compared the 
compression rate against that of existing methods. As seen in section 3, the proposed 
method provided remarkable results for segmentation by identifying patterns separated 
by the lowest number of bits that could properly represent the observed data. 

5. CONCLUSIONS 

We focused on mining patterns via change-point detection of epilepsy EEG time se-
ries data in order to predict the epilepsy seizure that is our final goal. To this end, we 
proposed DAPs, a parameter semi-free method to mine epilepsy EEG time series data. 
Our method has the following desirable properties. (1) It is rigorous and automatic and 
can be implemented without additional user intervention (parameter semi-free). (2) It 
incrementally discovers patterns in time series data by using MDL. (3) It helps reduce 
the number of bits necessary to completely represent the real data. In addition, the DAPs 
algorithm grows linearly with respect to the total data size, and therefore, is an adequate 
and advantageous tool for use in various applications with time series data in order to 
efficiently process vast amounts of data. In the future work, we will try to prove that the 
proposed method is able to apply in various fields such as financial data, epidemics data, 
other bio-signals, and etc. 
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