
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 669-686 (2014)

669

A Network Representation of First-Order Logic That Uses
Token Evolution for Inference

HIDEAKI SUZUKI*, MIKIO YOSHIDA+ AND HIDEFUMI SAWAI*

*National Institute of Information and Communications Technology
 Kobe, 651-2492, Japan

E-mail: {hsuzuki; sawai}@nict.go.jp
+BBR Inc.

Osaka, 530-0002, Japan
E-mail: yos@bbr.jp

A method to represent first-order predicate logic (Horn clause logic) by a data-flow

network is presented. Like a data-flow computer for a von Neumann program, the pro-
posed network explicitly represents the logical structure of a declarative program by un-
labeled edges and operation nodes. In the deduction, the network first propagates sym-
bolic tokens to create an expanded AND/OR network by the backward deduction, and
then executes unification by a newly developed method to solve simultaneous equations
buried in the network. The paper argues the soundness and completeness of the network
in a conventional way, then explains how a kind of ambiguous solution is obtained by the
newly developed method. Numerical experiments are also conducted with some da-
ta-flow networks, and the method’s convergence ability and scaling property to larger
problems are investigated.

Keywords: horn logic, data-flow network, inference, unification, evolution

1. INTRODUCTION

Network has been one of the most well-studied representation tools of knowledge in
Artificial Intelligence. Back in the 1980s, some models that explicitly manipulate human
words or concepts have been proposed and pursued by a number of authors: Peirce’s
existential graphs [19], semantic networks [16, 17], conceptual graphs [6, 23], and so on.
Among these, in the conceptual graph, to represent a nested structure in predicate logic,
Sowa introduced a hyper-concept named ‘proposition’ and succeeded in describing any
knowledge in the form of first-order predicate logic. These highly human-oriented repre-
sentation schemes, however, require computationally heavy operations for deductive infer-
ence, as represented by the semantic networks that need structural matching between graphs.

A more inference-oriented network model, Petri-net, was extensively studied by
Murata et al. [7, 12-14]. Every atom being expressed as a ‘place’ and every term and
argument set being expressed as a ‘token’, this model concisely represents Horn clause
logic by a ‘high-level’ Petri-net (Petri-net with labeled arcs), and conducts forward [14]
or backward [7] deduction by parallel firing of ‘transitions’. The final answer is obtained
simply from tokens arriving at the goal transition [14] or by combining unifiers accumu-
lated in the transitions during the deduction [7]. The backward deduction can be regard-
ed as graphical visualization of the SLD-resolution (Selective Linear Definite clause
resolution), whereas the forward deduction suffers from a serious problem, token num-

Received February 28, 2013; accepted June 15, 2013.
Communicated by Hung-Yu Kao, Tzung-Pei Hong, Takahira Yamaguchi, Yau-Hwang Kuo, and Vincent Shin-
Mu Tseng.

admin
打字機文字
DOI:10.1688/JISE.2014.30.3.8

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

670

ber’s explosion, when the depth of deduction is large.
As a revised method of this previous model, Suzuki et al. very recently proposed a

concept of the network-based inference system named “Knowledge Transitive Network
(KTN)” [27-29]. The KTN is an extension of the authors’ former model named ATN (Al-
gorithmically Transitive Network), a data-flow computational model with learning abili-
ties [25, 26]. While propagating numerical tokens with ‘reliability’ values, the ATN can
revise its inner algorithm/function by using the feedback information from the teaching
signals (supervised learning). Taking the same scheme, the KTN manipulates symbolic
information (such as terms in predicate logic) and infers with ambiguity.

Following [29], the present paper formulates the transformation scheme by which a
data-flow graph (DFG [4, 21], i.e., KTN) is constructed from a logic program. All the
symbols such as constants, variables, and function symbols comprising a term in predi-
cate logic are directly translated into symbol nodes. This enables the KTN to deal with
not only variables but also function symbols explicitly and avoid some common prob-
lems in current approaches, including inefficiency owing to symbol grounding. Markov
logic network in probabilistic logic programming [8, 18] or the answer set programming
for non-monotonic reasoning [1, 11] are based upon the symbol grounding (elimination
of variables) and unable to deal with an infinite constant set. The recent ‘lifted’ ap-
proaches on graphical models [3, 15, 22, 30] have pursued for a method to manipulate
first-order logic within the framework of probabilistic reasoning; and yet, in formulating,
these approaches consider only clauses free of function symbols which the KTN can
naturally represent.

Another merit of the KTN is in the inference’s ambiguity represented by the token
reliability. Here, the reliability is roughly defined as inter-token consistency that reflects
to what extent unification is solved successfully. The KTN infers with so-called back-
ward deduction. By propagating symbolic tokens, the original DFG is expanded into an
acyclic directed graph, to which our newly developed method named “ELiminating In-
consistency by SElection (ELISE)” is applied. ELISE solves unification by numerically
maximizing the token reliability which finally produces an ambiguous answer if any
contradiction is found in an expanded search graph. Note that this KTN’s ambiguity is
naturally introduced without any extra parameters in the original logic or the DFG. By
contrast, to represent uncertainty, many recent approaches on probabilistic reasoning tag
predicate logic with various parameters whose values are optimized with learning:
weight of clauses (facts and rules) [8, 18], probability of clauses [5], weight of atoms
[30], probability of particular atoms [20], and so on.

In the following, the paper makes a full description of the translation scheme from
Horn logic to the DFGs in Section 2. In Section 3, after the semantics of the KTN (Sec-
tion 3.1) and the detailed algorithm of ELISE (Section 3.2) are described, ‘pools’ are in-
troduced to select tokens ‘locally’ in ELISE (Section 3.3). Some convergence experiments
of ELISE are conducted in Section 4, and concluding remarks are given in Section 5.

2. KNOWLEDGE REPRESENTATION

2.1 From High-level Petri-net to KTN

Definition 1: Throughout this paper, we take a notation that constants start with an up-

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

671

percase letter and variables start with a lowercase letter. q is a specific variable for the
query. Looking upon a term f(t1, …, tn) as a list expression f(t1, …, tn), we sometimes
call a term a symbol sequence.

The KTN’s basic design can be derived from the high-level Petri-net by making some
revisions. Let us consider the following logic program.

Example 1 (Man/Human):

Man(Tom). (Tom is a man.)
Human(x) Man(x). (A man is a human.) (1)
 Human(q) (Who is a human?).

Fig. 1. Derivation of a KTN from a high-level Petri-net for Prog. (1); (a) High-level Petri-net for

forward deduction; (b) Data-flow graph for forward deduction; and (c) Data-flow graph for
backward deduction.

Fig. 1 (a) shows the high-level Petri-net for forward deduction in Prog. (1). This

Petri-net is modified by introducing symbol nodes labeled with ‘Tom’ and ‘q’, changing
places into nodes with operation m, removing transitions and arc labels, and adding the B
and E nodes at both ends (Fig. 1 (b)). See Table 1 for the meanings of the node opera-
tions. Finally, the KTN is derived by reversing the directions of all the edges and intro-
ducing an ‘==’ node specifying the binding condition to ‘Tom’ (Fig. 1 (c)). As compared
to the original high-level Petri-net, the KTN’s edges are not labeled but its nodes are
labeled with operations and terms.

2.2 Transformation from Horn Logic to KTN

If we prepare an appropriate set of node operations (Table 1), we can construct a
DFG representing any form of Horn clause. Fig. 2 shows some examples of such trans-
formation, and Figs. 3 to 6 show the general translation rules that define a KTN in an
inductive way. The final DFG for a logic program is constructed by making m nodes
shared between the created subnets.

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

672

Table 1. Node operations.

Name
Oper.
code

Input
num.

Synchronous/
Asynchronous t r Function

Begin B 0 (No input) 1 Begin propagation
End E 1+ Async. End propagation

Symbol s 1+ Async. o r Create a symbol token

Apply a 2 Sync. t0(t1) min(r0, r1)
Apply the 0th input fun-
ction to the 1st input

Merge m 1+ Async. t r Transfer a token freely

Gate g 2 Sync. t0 min(r0, r1)
Transfer the 0th input if
the 1st input exists

Combine ∋ 2+ Sync. (t0, t1, …) min(rk) Combine the arguments
Split 1+ Async. tk = tk rk = r Split the arguments

Equal == 2 Sync.
min(r0, r1)

exp((Dis(x0, x1))
2)

Check if the two inputs
are equal

And & 2+ Sync. min(rk) Logical AND
In the third column, ‘1+’ means that the node can have one or more incoming edges. g, a, , and ∋ are ‘choosy’
nodes whose incoming edges (and tokens on them) are ordered (numbered 0, 1, …). An ‘Asynchronous’ node
fires every time a token arrives at an incoming edge, and a ‘Synchronous’ node fires only if operand tokens
arrive at all of the incoming edges. The 5th and 6th columns (t and r) specify the output token’s term and
reliability produced by the node’s firing during forward propagation, respectively. (See Section 3 for the mean-
ing of the ‘forward’.) Here, t or tk is the symbol of the (kth) incoming token, r or rk is its reliability, t or tk is the
term of the (kth) outgoing token, r or rk is its reliability, and o is the node’s original (current) symbol sequence.
See Eqs. (3) and (4) for the definition of and Dis(…), respectively.

Fig. 2. Examples of the transformation of Horn logic to DFGs. At each row, a logic/clause (on the

left side) and a corresponding subgraph (on the right side) are shown. For easier under-
standing, some ‘Merge’ nodes (ms) and edges are labeled with predicate names (Human,
Man, etc.) and terms (x, y, wife(x), etc.), but these labels are not actually used for the infer-
ence. Because the fifth top clause includes two atoms in the body of the rule, the outgoing
edges of the m node in the center of the DFG are marked with a thick black arc denoting
‘AND’. This and the lowest rows create new symbol nodes s with z and s with x, respec-
tively. These nodes represent variables that are not determined by tokens from outside.
Note that in the lowest two rows, a function symbol wife is represented by a symbol node s
with wife.

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

673

Fig. 4. Translation rule for a fact. DFGs for (a) ‘P(t1, …, tn).’ and (b) ‘P(t)’. Here and in subsequent
figures, dashed arrows are for ‘logical’ tokens that convey only reliability. Chain arrows
from the ‘m’ node to the T nodes are actually connected to all the Symbol nodes in the sub-
nets t1, …, tn to make them fire. All the arguments of a predicate is split by a ‘’ node and
connected to variable binding node ‘==’s. The other input edges of the ‘==’s are taken from
subnets for t1, …, tn. The output edges of the ‘==’ nodes go to a ‘&’ node whose output is
finally connected to an ‘E’ node.

Fig. 2. (Cont’d) Examples of the transformation of Horn logic to DFGs. At each row, a logic/clause

(on the left side) and a corresponding subgraph (on the right side) are shown. For easier
understanding, some ‘Merge’ nodes (ms) and edges are labeled with predicate names (Hu-
man, Man, etc.) and terms (x, y, wife(x), etc.), but these labels are not actually used for the
inference. Because the fifth top clause includes two atoms in the body of the rule, the out-
going edges of the m node in the center of the DFG are marked with a thick black arc de-
noting ‘AND’. This and the lowest rows create new symbol nodes s with z and s with x, re-
spectively. These nodes represent variables that are not determined by tokens from outside.
Note that in the lowest two rows, a function symbol wife is represented by a symbol node s
with wife.

Fig. 3. Translation rule for a term. DFGs for (a) (t1, …, tn) and (b) f(g(x, b)). Here and in the sub-

sequent figures, a dotted node is a ‘tentative’ node T that is to be replaced with an actual sub-
graph before finishing the translation. (b) is made by first creating a subnet for f(t) using a T for
the parameter t, creating a subnet for g(x, b), then replacing the T with the subnet for g(x, b).

(a) (b)

(a) (b)

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

674

Example 2 (Family relationship):
[Fact] Wife(Mary, Paul). (2a)
[Fact] Child(Tom, Paul). (2b)
[Rule] Child(x, y) Wife(y, z), Child(x, z). (2c)
[Goal] Child(q, Mary). (2d)

Fig. 5. Translation rule for a goal. DFGs for (a) ‘ G1(t1, ..., tn), …, Gm(…).’ and (b) ‘ G1(t).’.

The thick black arc on the outgoing edges of the node ‘B’ denotes logical ‘AND’ between
the edges. For each atom in the body, a ‘∋’ node is prepared which receives inputs from
tentative nodes for t1, …, tn and combines them. Though in Fig. 5, ‘g’s are inserted after
the ‘∋’s, the ‘∋’s’ outputs may go directly to the ‘m’ nodes for the predicates G1, …., Gm
because the ‘g’s’ 1st inputs come from ‘B’ which always fires at the beginning of the oper-
ations.

Fig. 6. Translation rule for a rule, namely, DFG for ‘P(t1, …, tn) Q1(u1, …, ul), …, Qm(…).’.

The network for a rule is obtained by combining the networks for the component fact and
goal. The ‘g’ nodes succeeding the ‘∋’ nodes and Symbol nodes in the subnets for u1, …,
ul receive inputs from the ‘&’ of the fact.

(a)

(b)

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

675

Fig. 7 shows Example 2 and its translation result. After translating the clauses into
subnets, they were combined by sharing ‘m’ nodes (for Wife and Child) among the sub-
nets. Since the atom Child appears at both the head and body of the clauses, the final
DFG has a loop.

As shown in Fig. 7, a KTN has the original Horn logic’s constants and variables as
nodes. The binding conditions between them are explicitly specified by the KTN’s to-
pology. Some other translation results for test programs are shown in Table 2 and Fig. 8.
Table 2 suggests that the KTN’s size (i.e., the numbers of constituent nodes and edges)
increases approximately linearly with the clause number in a logic program.

Fig. 7. Transformation from logic program (Example 2) to KTN. The subnets superscripted with

(a), (b), (c), and (d) stand for Clauses (2a), (2b), (2c), and (2d), respectively.

Table 2. Translation results from Logic programs to KTNs.
Program name Clause number Node number Edge number

append 3 43 70
perm 5 69 113

intcalc1 5 71 115
reverse 5 73 119
hanoi 5 102 181

fib 8 107 177
greek 19 127 195

intcalc2 13 204 341
The translation program was implemented in Java. It combines all the logical elements (terms, atoms, and
clauses) with a parser part to create graphical elements (nodes and edges). ‘append’ is a logic program for ap-
pending lists, ‘perm’ is a program for calculating permutation, ‘intcalc1’ is for addition and multiplication of
integers (Example 3 in this paper), ‘reverse’ reverses the order of a list, ‘hanoi’ is a program solving the Tower
of Hanoi, ‘fib’ calculates Fibonacci numbers, ‘greek’ defines the relationship between characters in the Greek
myths, and ‘intcalc2’ is a program for such integer calculation as addition, multiplication, Fibonacci numbers,
Ackermann Function, and factorial. The second column stands for the number of Horn clauses in the original
logic programs, and the third and fourth columns stand for the numbers of nodes and edges in the detailed
KTNs, respectively. Concrete expressions of the logic programs can be found in [2, 9, 24].

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

676

Fig. 8. Translation result for the ‘greek’ program in Table 2. (a) The general view of the entire

KTN, and (b) an enlarged view of the top central part of (a). The first/second/third entry of
each node label represents the node number/operation code/node name, respectively. For
example, (126, s, Harmonia) stands for a constant node with term ‘Harmonia’, and (124, -],
t) means a ‘Combine’ (∋) node (‘t’ has no meaning in this case). The edge labels ‘L’ and
‘R’ stand for the first and second incoming edges of a ‘choosy’ node (g, ∋, or ==), respec-
tively. The graphs are drawn using software named ‘aiSee’.

3. DEDUCTIVE INFERENCE

The KTN’s semantics is argued in two different levels. The first level deals with
truth or falsehood of the network without considering the possibility of finding a solution
of unification. The soundness and completeness of the KTN are demonstrated in a con-
ventional way. The second level deals with the unification. ELISE is introduced, and in-
ference ambiguity is represented by the token reliability.

(a)

(b)

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

677

3.1 Soundness and Completeness

Definition 2: An Exp-DFG is an acyclic directed DFG created by the expansion of the
original DFG (KTN). Its ‘==’ nodes are called leaves, and its node with no incoming
edges, i.e., B node is called root. An Exp-DFG is referred to as TRUE/FALSE if its root
is TRUE/FALSE, respectively.

Since the KTN includes a feedback loop in general, we first propagate tokens in the
original DFG and expand it, in order to argue the soundness and completeness. A token
that propagates for this purpose has the form of (t) or (t1, …, tn), where t, t1, and so on
represent terms. The propagation starts with the firing of the ‘Begin’ node. When a node
fires, the node calculates a new term with a formula in the 5th column of Table 1 and
emits it to its outgoing edges.

While the propagation continues, the firing-propagation history is logged in a mem-
ory, and after a sufficient number of firing occurs in the DFG, a prototype of an Exp-
DFG is created from the history. When a Symbol node with ‘o’ fires and is expanded
several times on account of the feedback loop, different symbols, written for example as
o0, o1, …, are attached to the expanded nodes.

Then the final Exp-DFG is created from the prototype by the following operations.
First, AND relations between edges in the original DFG (shown in Figs. 5 (a) and 6) are
copied to the corresponding edges in the Exp-DFG. Second, a new AND relation is in-
serted between every set of outgoing edges carrying the same term from a node. All the
other edges in the Exp-DFG are regarded as OR edges.

Since the Exp-DFG has AND/OR structure, if we specify logical values, TRUE or
FALSE, of all the leaves in an Exp-DFG, the logical value of its root can be also deter-
mined. By specifying the leaves’ truth or falsehood, we are specifying an interpretation,
under which all the variables’ values are determined through unification (when unifia-
ble).

Proposition 1: (Soundness and Completeness): Let G be a subgraph of the Exp-DFG
such that G’s root is the root of the Exp-DFG and G does not include an OR junction,
and U be unification. Then,

There exists a G that is TRUE under U.
 The Exp-DFG is TRUE under U.

Proof: (soundness): Because G does not include an OR junction, TRUTH of the root
of G means that all the nodes in G are TRUE. Since any addition of an AND or OR edge
to a TRUE node cannot make the node be FALSE, G’s truthiness is conserved to the
entire Exp-DFG.

 (completeness): If the Exp-DFG, that is an AND/OR graph, is TRUE, every OR node
in the Exp-DFG has at least one TRUE outgoing edge. By cutting all the other edges in
all the OR nodes, we can transform the Exp-DFG into a G while conserving the truth-
iness of the root.

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

678

The proposition states that for deductive inference of a KTN, we only have to iden-
tify a minimum TRUE subgraph G while growing the Exp-DFG. If we cannot find such
a subgraph G in the current Exp-DFG, we have to propagate tokens in the original DFG
further and grow the Exp-DFG. Note that for a general Horn logic program there can be
two or more solutions. To obtain them, we have to repeat the above operation until we
find an appropriate number of Gs. The final answers of the deduction are given by the
terms for q under the Us.

3.2 ELISE

Though in the previous subsection, we argued semantics of the KTN only in terms
of truth or falsehood of the Exp-DFG, here we extend the truth value to a continuous real
value within [0, 1] and represent some ambiguity. From this point of view, we deal with
a token in the form of (t, r) or (t1, …, tn; r) in this subsection. Here, t, t1, … represent
terms, and r represents ‘reliability’.

Definition 3: A branch of the Exp-DFG is a subgraph with just one incoming edge, and
its root is the terminal node of the incoming edge. A branch is called TRUE/FALSE if
its root is TRUE/FALSE, respectively. Reliability is a real value within [0, 1] that rep-
resents the inter-term consistency between tokens. This also specifies the logical TRUTH
of a node at which a token is staying, and finally determines the logical TRUTH of a
branch or the Exp-DFG. We call the node/branch/Exp-DFG’s logical TRUTH reliability
as well.

The token reliability r is basically the product of ‘consistency factors’ formulated as

exp((Dis(u, v))2), (3)

where is a predefined constant (selection coefficient) and

0 if
Dis(,)

1 if

u v
u v

u v

 (4)

is an inter-term distance function. (Although the square of Dis(u, v) in Eq. (3) is mean-
ingless under Eq. (4), it would become meaningful when we introduce such a more com-
plex distance function as Levenshtein distance [10] in the future.)

As described in the previous section, the Exp-DFG can grow infinitely with an in-
crease in the depth of the backward deduction, but if we are able to cut the Exp-DFG’s
redundant branches during the expansion, it will narrow down the search space and ac-
celerate the deduction. The token reliability r is used not only to select tokens for unifi-
cation but also to identify such branches. r is calculated by our newly developed unifica-
tion algorithm named ELISE (ELiminating Inconsistency by SElection).

ELISE is basically an agent-based evolutionary method to solve simultaneous equa-
tions (binding conditions) buried in the network. The detailed algorithm of ELISE is as
follows:

(1) [Initial Setting] Substitute the Exp-DFG’s variable nodes with initial constant

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

679

symbols chosen randomly.
(2) [Forward Propagation] Based on the variable nodes’ original (current) terms, create

tokens with term-reliability pairs (t, r)s and propagate them towards the ‘End’ node.
At each node, the output token (t, r) is calculated using the formulas in Table 1.

(3) [Backward Propagation] Create a ‘correction’ token with a term-reliability pair at
the ‘End’ node and propagate it backward until tokens arrive at the variable nodes.
During this process, the reliability value is basically conserved at each node from an
outgoing token to incoming tokens, except that the conflict occurs between them (see
below for the conflict processing). The term is also conserved, but in such a node as
‘==’ and ‘a’, new correction terms are produced so that the input/output tokens might
become consistent with each other around the node. (An == node creates correction
terms t1 and t0 on the 0th and 1st incoming edges, respectively, and an a node that
receives the correction term t̂ produces the correction terms t̂0 and t̂1 that satisf t̂0(t1)
= t̂ and t0(t̂1) = t̂, respectively. Hereafter, x̂ represents the correction of x.) During
the backward propagation, if conflict occurs between the correction terms at a node,
token selection takes place. Based on r, tokens are selected or eliminated according
to their logical relationship. Tokens are randomly selected among ‘AND’-tokens (i.e.,
tokens on edges connected with AND operations), and tokens are selected in propor-
tion to r among ‘OR’-tokens (i.e., tokens on edges connected with OR operations).
The random selection among AND-tokens ensures that the outgoing AND edges have
equal chance to provide correction terms. (Steps 2 and 3 are exemplified in Fig. 9.)

Fig. 9. Artificial DFG for the binding conditions q = x0, Mary = y0, x0 = Tom, and z0 = Paul. The

conditions were extracted from the depth-two Exp-DFG of Fig. 7. (Here, ‘depth’ is the
number of times that tokens circulate around the loop.) Tokens propagated in Steps 2 and 3
are depicted in black and red, respectively. At each ‘==’ node, the correction term for an
operand is calculated by keeping the other operands intact. For example, the top ‘==’ node
which received Mary and Paul in the forward propagation produces the correction terms,
Paul and Mary. Since the variable node x0 is an AND node, the node chooses the correction
term randomly out of the two arriving tokens, before going to Step 4.

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

680

(4) [Selection (Evolution)] From a correction token arriving at a variable node, the
consistency factor is calculated between the original and correction terms by Eq. (3),
and the reliability is multiplied by the factor. Using this reliability, tokens are select-
ed globally or locally (see below), and the variable nodes’ original terms are updated.
If the reliability of the final tokens is sufficiently high, namely, the variables have
self-consistent terms, stop the procedure and answer the query node’s term. Other-
wise, go to Step 2.

In a typical Exp-DFG, two consistency factors are evaluated during one return pro-
pagation one at a constraint node ‘==’ at the end of the forward propagation (see r’s
formula in Table 1 and another at a variable node at the end of the backward propagation
 and they are accumulated (multiplied) at reliability r. ELISE which selects tokens with
higher reliability gradually gets rid of the conflict between token terms and finally makes
the variables have a self-consistent solution. In the paper, we prepare two different selec-
tion schemes (global and local) and evaluate their performance.

When we take the global selection scheme, we calculate the ‘correction probability’

ˆ ˆ/()i i ii
p r r

 (5)

from the final token reliability {r̂i} (where i is the variable number) after one return pro-
pagation, and make the original term of the ith variable node be replaced with the correc-
tion term t̂i in the probability of pi. Eq. (5)’s normalization sum is taken for all the varia-
bles in the network. In this way, in the global selection scheme, a single variable correc-
tion happens at a time in the entire network on the average. This helps avoid the conflict
between correction terms and makes ELISE approach slowly but steadily to a solution.

Definition 4: We call an Exp-DFG’s branch whose reliability is low a false branch, and
a branch whose reliability is not yet determined an uncertain branches.

In Section 3.1, we argued that the truth or falsehood of the Exp-DFG or subgraph G
is determined by the logical values of its leaves. Likewise, the reliability of the Exp-DFG
or a branch is calculated from the reliability values of its leaves, which is accomplished
by the token propagation in ELISE. ELISE calculates rs of leaves at the end of Step 2,
carries them backward during Step 3, and finally evaluates the reliability of its root. Dur-
ing this process, we are able to identify false or uncertain branches: a false branch always
produces low-reliability tokens backward, and an uncertain branch does not produce to-
kens backward. By cutting false branches and growing the Exp-DFG at the tip of uncer-
tain branches, we can minimize the search of Exp-DFGs and accelerate deduction. A
similar idea is also found in [5], where the search space is pruned based on probabilities.

3.3 Token Pool

When we take the local selection scheme, we no longer use Eq. (5) to select correc-
tion tokens among variables. We prepare ‘token pools’ at the variable nodes instead, put
all the correction tokens from Step 3 into the pools, and make evolution happen in the
pools. This makes the operations of ELISE completely local, and at the same time, ac-
celerates its convergence.

Concrete operations of a token pool is as follows:

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

681

(1) [Preparation] Prepare an empty token pool at a variable node whose size is limited
to N.

(2) [Push & Reproduction] If a correction token (t̂i, r̂i), arrives at the variable node
by Step 3 of the previous subsection, it is pushed onto the pool together with sr̂i
copies of it. Here, s is a constant named ‘selection coefficient’.

(3) [Selection] Tokens are chosen in inverse proportion to r and are eliminated until
the pool size becomes less than N.

(4) [Mutation] At a constant rate u, tokens are randomly chosen and their terms are
replaced with arbitrary constants.

(5) [Pop] A token is randomly chosen (popped) and eliminated out of the pool, and its
term is substituted for the node’s next original term. Go to Step 2.

4. CONVERGENCE EXPERIMENTS OF ELISE

4.1 Problems

To examine the convergence properties of ELISE, numerical experiments are con-

ducted using the following logic program:

Example 3 (Arithmetic operations):
Add(0, x, x). (6a)
Mul(0, y, 0). (6b)
Add(S(u), v, S(w)) Add(u, v, w). (6c)
Mul(S(e), f, h) Mul(e, f, g), Add(g, f, h). (6d)

S() is a successor function.

In addition to these facts and rules, we prepare a goal clause in the form of

 Mul(S(S(…S(0)…)), S(0), q), (6e)

extract the binding conditions in the depth-D Exp-DFG of the whole program, and con-
struct an artificial DFG with the same structure as that of Fig. 9 from the binding condi-
tions. Hereafter, with M (defined as the number of Ss included in the first argument of Eq.
(6e)), we designate a logic program represented by Eqs. 6 (a)-(e) with M Ss as ‘Problem-
M’. If D M, the extracted binding conditions are nonunifiable, but if D > M, the condi-
tions are unifiable. From preliminary studies, we obtained the optimal parameters as fol-
lows: = 0.1, N = 3, s = 5, = 1, and u = 0.

4.2 Convergence Ability

Fig. 10 shows two example artificial DFGs (nonunifiable and unifiable) for Prob-
lem-2, and Fig. 11 shows the results for them. We see from Figs. 11 (a1) and (a2) that
with the nonunifiable constraint set, the number of unsatisfied constraints stays at one at
larger iteration numbers, meaning that a self-consistent solution cannot be found no mat-
ter whether we may use global or local selection scheme. In this case, the token’s final
reliability is less than one (typically, r̂ = 0.8~0.9).

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

682

Fig. 10. Artificial DFGs created from the binding condition sets in the (a) depth-2 and (b) depth-3

Exp-DFGs (a) represents 8 nonunifiable binding conditions on 7 variables, and (b) repre-
sents 17 unifiable binding conditions on 15 variables. The symbol nodes (lightblue) are
classified into function symbols, variables, or constants. An Apply node ‘a’ (lightgreen)
always takes the 0th input from a function node.

Fig. 11. ELISE’s results for Figs. 10 (a1) and (b1) are the results by the global token selection

scheme for Figs. 10 (a) and (b), respectively, and (a2) and (b2) are the results by the local
selection scheme for Figs. 10 (a) and (b), respectively. The thin gray lines are the results
for fifty runs using different initial symbols and different random number sequences, and
a thick red line is their average.

(a) (b)

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

683

With the unifiable constraint set (Figs. 11 (b1) and (b2)), on the other hand, the
number of unsatisfied constraints converges to zero for all the fifty runs, which means
that ELISE succeeds in finding a solution regardless of the initial constant symbols sub-
stituted. The solution gives the right answer q = S20 = S(S(0)) with the highest reliability
r = 1.0 in this case.

In both nonunifiable and unifiable cases, the average of fifty runs monotonously
decreases over time, from which it is concluded that ELISE has a tendency to minimize
conflict between token variables and make their terms converge.

4.3 Scaling Properties

We prepare artificial DFGs for unifiable binding conditions for Problems-0 to 7
and apply ELISE to them. According to the results shown in Table 3 and Fig. 12, we can
say that the convergence speed of ELISE with the local selection scheme is much faster
than that with the global selection scheme. From the regression lines in Fig. 12, we see

Table 3. Average convergence time.

M D(depth)
Num. of
variables

Num. of
constraints

Convergence time
global local

0 1 2 2 3.16 2.26
1 2 7 8 139.44 28.10
2 3 15 17 576.22 60.00
3 4 26 29 1760.88 116.66
4 5 40 44 5564.18 186.52
5 6 57 62 9626.60 237.66
6 7 77 83 20418.92 354.04
7 8 100 107 35928.52 496.42

M is the number of Ss included in the first argument of Eq. 6 (e), and D is the depth of an Exp-DFG for a pro-
gram represented by Eqs. 6 (a)-(e). The third and fourth columns are the variable and constraint number in-
cluded in the binding conditions in the Exp-DFGs, respectively, and the fifth and sixth columns represent the
average iteration number of fifty runs until the convergence of ELISE using the global and local selection
schemes, respectively.

Fig. 12. The plot of Table 3. The convergence time by the global and local selection (fifth and sixth

columns) is plotted as a function of the number of variables (third column) in red circles
and black dotts, respectively. The red and black dashed lines are the regression lines which
represent 2.3 [Number of variables]2.08 and 3.3 [Number of variables]1.08, respectively.

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

684

that the convergence time by the local token selection scheme increases almost linearly
with the number of variables. This suggests that ELISE using token pools is applicable to
larger inference problems without the risk of convergence time explosion.

5. CONCLUSION

A general transformation scheme from a Horn logic program to a data-flow graph
(KTN) was presented. Using an appropriate set of node operations, the KTN describes
constants, variables, and function symbols explicitly, and the binding conditions for the
variables are specified by topological structure of the network. After arguing a sematic
aspect of the KTN, a graph-based method to solve unification, ELISE, was presented,
and its semantic meanings and convergence properties were described with some nu-
merical results.

Future research agendas of the KTN are as follows:

 Full implementation of the KTN’s deduction scheme and experimental verification of
ELISE on the KTN.

 Incorporating a learning scheme that revises the KTN’s ground terms or topological
structure.

 Devising a method to transform the modified structure of the KTN back into predicate
logic. This would be useful for humans to interpret the KTN’s knowledge accumulated
through the learning.

ACKNOWLEDGEMENTS

We appreciate valuable comments by Hiromu Hayashi, Auditor of NICT, that led us
to invent the KTN.

REFERENCES

1. C. Baral, M. Gelfond, and N. Rushton, “Probabilistic reasoning with answer sets,”
Theory and Practice of Logic Programming, Vol. 9, 2009, pp. 57-144.

2. I. Bratko, Prolog Programming for Artificial Intelligence, 3rd ed., Addison-Wesley,
MA, 2001.

3. R. D. S. Braz, E. Amir, and D. Roth, “Lifted first-order probabilistic inference,” in
Proceedings of the 19th International Joint Conference on Artificial Intelligence,
2005, pp. 1319-1325.

4. J. B. Dennis, “Data flow supercomputer,” Computer, Vol. 13, 1980, pp. 48-56.
5. L. de Raedt, A. Kimmig, and H. Toivonen, “ProbLog: a probabilistic prolog and its

application in link discovery,” in Proceedings of the 20th International Joint Con-
ference on Artificial Intelligence, 2007, pp. 2462-2467.

6. M. Jackman and C. Pavelin, “Conceptual graphs,” in G. A. Ringland and D. A. Duce
eds., Knowledge Representation An Introduction, Research Studies Press, Ltd.,
Chapter 7, 1988, pp. 161-174.

7. J. Jeffrey, J. Lobo, and T. Murata, “A high-level Petri net for goal-directed seman-
tics of Horn clause logic,” IEEE Transactions on Knowledge and Data Engineering,

A NETWORK REPRESENTATION OF FIRST-ORDER LOGIC

685

Vol. 8, 1996, pp. 241-259.
8. S. Kok and P. Domingos, “Learning the structure of Markov logic networks,” in

Proceedings of the 22nd International Conference on Machine Learning, 2005, pp.
441-448.

9. R. Kowalski, Logic for Problem Solving, Elsevier Science Ltd., Amsterdam, The
Netherlands, 1979.

10. V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” Soviet Physics Doklady, Vol. 10, 1966, p. 707.

11. V. Lifschitz, “Answer set programming and plan generation,” Artificial Intelligence,
Vol. 138, 2002, pp. 39-54.

12. T. Murata, “Petri nets: properties, analysis and applications,” in Proceedings of the
IEEE, Vol. 77, 1989, pp. 541-580.

13. M. L. Oarg, S. I. Abson, and P. Gupta, “Petri-nets for logic-based deductions,” Tech-
nical Report, Electrical Engineering Department, Indian Institute of Technology, 1987.

14. G. Peterka and T. Murata, “Proof procedure and answer extraction in Petri net model
of logic programs,” IEEE Transactions on Software Engineering, Vol. 15, 1989, pp.
209-217.

15. D. Poole, “First-order probabilistic inference,” in Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence, 2003, pp. 985-991.

16. M. Quillian, “Semantic memory,” in M. Minsky (ed.), Semantic Information Pro-
cessing, MIT Press, MA, 1968, pp. 216-270.

17. D. M. Randal, “Semantic networks,” in G. A. Ringland and D. A. Duce, eds.,
Knowledge Representation An Introduction, Research Studies Press, Ltd., 1988,
Chapter 3, pp. 45-80.

18. M. Richardson and P. Domingos, “Markov logic networks,” Machine Learning, Vol.
62, 2006, pp. 107-136.

19. D. D. Roberts, The Existential Graphs of Charles S. Peirce (Approaches to Semiot-
ics), Mouton de Gruyter, 1973.

20. T. Sato and Y. Kameya, “Parameter learning of logic programs for symbolic statis-
tical modeling,” Journal of Artificial Intelligence Research, Vol. 15, 2001, pp. 391-
454.

21. J. A. Sharp, ed., Data Flow Computing: Theory and Practice, Ablex Publishing Corp.,
Norwood, NJ, 1992.

22. P. Singla and P. Domingos, “Lifted first-order belief propagation,” in Proceedings of
the 23rd AAAI Conference on Artificial Intelligence, 2008, pp. 1094-1099.

23. J. F. Sowa, Conceptual Structures: Information Processing in Mind and Machine,
Addison-Wesley, MA, 1984.

24. L. Sterling and E. Shapiro, The Art of Prolog, Advanced Programming Techniques,
MIT Press, Cambridge, 1986.

25. H. Suzuki, H. Ohsaki, and H. Sawai, “A network-based computational model with
learning,” in Proceedings of the 9th International Conference on Unconventional
Computation, LNCS 6079, 2010, p. 193.

26. H. Suzuki, H. Ohsaki, and H. Sawai, “Algorithmically transitive network: a self-
organizing data-flow network with learning,” in Proceedings of International Con-
ference on Bio-Inspired Models of Network, Information, and Computing Systems
2010, LNICST, Vol. 87, 2012, pp. 59-73.

HIDEAKI SUZUKI, MIKIO YOSHIDA AND HIDEFUMI SAWAI

686

27. H. Suzuki, M. Yoshida, and H. Sawai, “Knowledge transitive network: a data-flow
network for backward deduction,” in Proceedings of the 8th International Confer-
ence on Complex Systems, 2011, pp. 357-358.

28. H. Suzuki, M. Yoshida, and H. Sawai, “A proposal of data-flow network for deduc-
tive inference,” in The Special Interest Group Notes of the Japanese Society for Ar-
tificial Intelligence: Fundamental Problems of Artificial Intelligence, SIG-FPAI-
B102, 2011, pp. 1-7.

29. H. Suzuki, M. Yoshida, and H. Sawai, “A data-flow network that represents first-
order logic for inference,” in Proceedings of Conference on Technologies and Ap-
plications of Artificial Intelligence, 2012, pp. 211-218.

30. G. Van den Broeck, N. Taghipour, W. Meert, J. Davis, and L. de Raedt, “Lifted
probabilistic inference by first-order knowledge compilation,” in Proceedings of the
22nd International Joint Conference on Artificial Intelligence, 2011, pp. 2178-2185.

Hideaki Suzuki (鈴木秀明) received his Ph.D. degree in
Biological Science from Kyushu University, Japan in 1998, and
in Informatics from Kyoto University, Japan in 2004. He is cur-
rently a Senior Researcher in Center for Information and Neural
Networks (CiNet), National Institute of Information and Com-
munications Technology (NICT), Japan. His main research inter-
ests are in brain-inspired computational/learning/reasoning sys-
tems with network architecture. He is a member of Society of
Instrument and Control Engineers (SICE), Japan.

Mikio Yoshida (吉田幹) received his Master degree from
Faculty of Engineering, Kyoto University, Japan in 1983. After
working for IBM Japan and NS Solutions Corp., he established
BBR Inc. and PIAX Inc. in 2002 and 2008, respectively. Now he
is a Director and Chief Technology Officer of both companies.
His main research interests are in logic programming and distrib-
uted computing. He is a member of the Information Processing
Society of Japan (IPSJ) and Japanese Society for Artificial Intel-
ligence (JSAI).

Hidefumi Sawai (澤井秀文) is currently a Managing Di-
rector at International Affairs Department, National Institute of
Information and Communications Technology, Japan. He was an
invited researcher of Carnegie Mellon University, USA in 1989
and 1990, and a Professor of Graduate School of Kobe University
(joint appointment) from 1999 to 2010. His research interests in-
clude intelligent information processing inspired by brain function
and biological evolution: neural networks, evolutionary computa-
tion and complex networks.

