
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 30, 765-786 (2014)

765

Energy-Efficient Real-Time Scheduling of Tasks
With Abortable Critical Sections*

JUN WU+ AND KAI-LONG KE

Department of Computer Science and Information Engineering
 National Pingtung Institute of Commerce

Pingtung, 900 Taiwan
E-mail: junwu@npic.edu.tw; leon.kidd@gmail.com

In this paper, an energy-efficient scheduling algorithm, called ceiling-based condi-

tional abortable scheduling (CB-CAS) algorithm, is proposed to schedule periodic hard
real-time tasks in a non-ideal DVS processor. Based on the schedulability analysis, CB-
CAS calculates a proper processor speed for task execution so that the energy consump-
tion can be reduced without violating the timing constraints of tasks. For saving more
energy, we also assume that the critical sections of tasks are abortable, which is a strategy
originally proposed to reduce priority inversions. In this paper, CB-CAS introduces a
conditional abort rule and a dynamic speed adjustment method to work with the rate
monotonic scheduling algorithm and the priority ceiling protocol so that the energy con-
sumption could be reduced further. Whenever two tasks are conflicting for the same re-
source, CB-CAS will examine the cost of blocking the higher-priority task and the cost of
aborting the lower-priority task. CB-CAS will abort the lower-priority task and adjust the
processor speed dynamically only if it is more energy efficient. The schedulability analy-
sis and the properties of CB-CAS are given in this paper. The capabilities of CB-CAS
were also evaluated by a series of experiments, for which we have some encouraging re-
sults.

Keywords: real-time systems, dynamic voltage scaling, energy-efficient scheduling, task
scheduling, task synchronization, abortable critical sections

1. INTRODUCTION

A dynamic voltage scaling (DVS) processor can operate tasks at different speeds
(i.e., frequencies) by adjusting its supply voltage. The energy consumption can be re-
duced when tasks are executed at a lower processor speed. However, the slowdown of
the processor speed will cause an impact on performance due to the late completion of
tasks. On the other hand, the late completion of a real-time task can be allowed as long as
the task meets its timing constraints. Such an observation provides a strong demand in
energy-efficient scheduling of real-time tasks in a DVS processor.

In the past decade, many excellent energy efficient real-time scheduling algorithms
have been proposed. A comprehensive survey can be found in [1]. Most work focuses on
independent tasks, relatively little work has been done in the presence of task synchroni-
zation. However, in many real cases, tasks are dependent due to resource sharing. In this

Received October 21, 2013; revised December 13, 2013; accepted February 4, 2014.
Communicated by Cho-Li Wang.
* The preliminary version of this work has been presented at the 3rd International Symposium on Advances in

Embedded Systems and Applications, 25-27 June, 2012, Liverpool, UK.
* This work was supported in part by the National Science Council of Taiwan, under Grants NSC-101-2221-E-

251-005 and NSC-102-2221-E-251-004.
+ Corresponding author.

admin
打字機文字
DOI:10.1688/JISE.2014.30.3.14

JUN WU AND KAI-LONG KE

766

paper, we assume that resources are accessed by tasks in a mutually exclusive manner.
We define the part of code dealing with accessing a shared resource as critical section.
To synchronize real-time tasks with critical sections, many excellent approaches have
been proposed, such as the well-known priority inheritance protocol (PIP) [2], priority
ceiling protocol (PCP) [2], and stack resource policy (SRP) [3], etc.

Based on various assumptions on system and/or task models, researchers have ex-
plored the DVS scheduling of tasks under synchronization constraints (e.g., [4-14]).
Different from the past work, we assume that the critical sections are abortable which is
a strategy originally developed to reduce priority inversions [15-19]. Priority inversion is
the phenomenon where a higher-priority task is blocked by lower-priority tasks. It occurs
whenever a higher-priority task is attempting to access a shared resource that has been
currently used by another lower-priority task. When critical sections are abortable, it
provides an opportunity for saving more energy. This is because we can examine the
energy consumption for the blocking of the higher-priority task and the aborting of the
lower-priority task. According to the examining results, the lower-priority task can be
aborted if the aborting is more energy efficient than the blocking. Note that we also need
a dynamic speed adjustment method to calculate a proper processor speed for the abort-
ing and the aborted tasks so that the energy consumption can be reduced without violat-
ing the timing constraints of tasks.

In this paper, we propose an energy-efficient scheduling algorithm, called ceiling-
based conditional abortable scheduling (CB-CAS) algorithm, to schedule a set of peri-
odic real-time tasks under synchronization constraints of the shared resources. CB-CAS
is a preemptive priority driven scheduling algorithm with fixed priority assignment and
ceiling-based concurrency control. In particular, CB-CAS introduces a conditional abort
rule to work with rate-monotonic scheduling (RMS) [20] algorithm and PCP. Based on
the schedulability analysis of RM, CB-CAS calculates a lowest possible processor speed
for task execution such that the energy consumption can be reduced without violating the
timing constraints of tasks. Whenever a higher-priority task is requesting a shared re-
source that is currently accessed by an abortable critical section of another lower-priority
task, the conditional abort scheme will abort the lower-priority task if the aborting can
save more energy. CB-CAS will also slow down the processor speed dynamically when-
ever more energy saving can be obtained. The schedulability analysis and the properties
of CB-CAS are given in this paper. It is shown that the timing constraints of tasks can be
met under CB-CAS. Furthermore, CB-CAS is deadlock free and the number of blockings
and abortings are bounded. The capabilities of CB-CAS were also evaluated by a series
of experiments, for which we have some encouraging results. In particular, it demon-
strates the strengths of CB-CAS in reducing energy consumption.

The rest of this paper is organized as follows. Section 2 summarized the related
work of this research. Section 3 provides the system model and the problem definition.
Sections 4 proposes the scheduling algorithm for real-time tasks with abortable critical
sections. Section 5 provides the properties of our proposed CB-CAS. Section 6 provides
experimental results. Finally, Section 7 is the conclusion.

2. RELATED WORK

Making critical section abortable could reduce the number of priority inversions,

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

767

especially for tasks with higher priorities. Huang et al. [15], Tokuda et al. [16], and Shu
et al. [17] proposed real-time concurrency control protocols based on the priority abort
scheme (PAS) [15], in which a critical section can be aborted by any task which has a
higher priority. However, such an approach could cause unnecessary aborts thus degrad-
ing the schedulability of the system. Takada and Sakamura [18] proposed the ceiling
abort protocol (CAP) to make the critical sections abortable under PCP. Unfortunately, a
large number of aborts could occur at the same time under CAP, for which the system per-
formance significantly degrades. Later, Lam and Ng [19] proposed another PCP-based
protocol, called conditional abortable priority ceiling protocol (CA-PCP) to solve the
problem. Based on the existing system utilization, the length of the abortable critical sec-
tion, and the usage of resources, CA-PCP defines a condition to handle the aborting such
that the schedulability can be guaranteed.

In the recent decades, dynamic voltage scaling for real-time systems has received
considerable attention. Chen and Kao [1] have presented an extensive survey of energy-
efficient DVS scheduling of real-time tasks. However, relatively little work has been
done in the presence of task synchronization with shared resources (e.g., [4-14]. For
tasks with non-preemptible critical section, Zhang and Chanson [4] first proposed a dy-
namic priority scheduling algorithm, called dual speed (DS) algorithm. Under DS, tasks
are executed initially at a static low speed and the processor speed is switched to a high
speed dynamically as soon as a task is blocked. The low and high speeds of DS are cal-
culated based on the sufficient schedulability condition of the earliest deadline first
(EDF) algorithm [20]. Hence, the timing constraints of tasks can be met while energy
consumption can be reduced. Later, some extensions of DS have been proposed [5, 6]. In
particular, Lee et al. [5] explored the problem with a tighter schedulability analysis, and
proposed a multi-speed extension of DS, call multi-speed (MS) algorithm, to achieve
further energy savings. For tasks with preemptible critical sections, Jejurikar and Gupta
[8] proposed an approach, called uniform slowdown with frequency inheritance (USFI)
algorithm. Under USFI, each task is assigned to be executed at a static speed which is
calculated by taking the worst-case blocking time into account. If a task blocks other
tasks, it will inherit and to be executed at the highest speed of the blocked tasks during
the blocking. In the recent years, researchers also explored the DVS scheduling and
synchronization of real-time tasks in multiprocessor/multi-core environments (e.g., [21-
27]).

3. SYSTEM MODEL AND PROBLEM DEFINITIONS

3.1 System Model

In this paper, we will explore the energy-efficient real-time task scheduling on a
non-ideal DVS processor1 which supports a set of K discrete available speeds2 = {s1,
s2, …, sK}, where s1 < s2 < … < sK. Let smin and smax denote the minimum and the maxi-
mum available speed (i.e., smin = s1 and smax = sK), respectively. Without loss of generality,
we assume that the smax is 1 and all other speeds are normalized with respect to the maxi-
mum speed smax.

1 There are two types of DVS processors have been considered in the literature: ideal and non-ideal. An ideal

DVS processor can be operated at any speed in the range from the minimum to the maximum available speed,
while a non-ideal DVS processor has only discrete speeds. Nowadays, most DVS processors are non-ideal,
and the ideal DVS processors are only for theoretical analysis purpose.

2 Note that K can be considered as a constant and it is known in a prior.

JUN WU AND KAI-LONG KE

768

The power consumption of a DVS processor can be defined as a function PC(si) of
the adopted processor speed si. Various power consumption functions of practical DVS
processors have been modeled in the literatures, such as [4-8, 28, 29]. In particular, Chen
and Kuo [28] reported that the power consumption function PC(si) of Intel XScale is ap-
proximated by 0.08+1.52si

3 Watt. The amount of CPU cycles executed in a time interval
is linear of the processor speed. Let s(t) be the processor speed at time t. The amount of
CPU cycles completed in a time interval (t1, t2] can be represented as 2

1
() .

t

t
s t dt Hence, the

energy consumption EC(t1, t2] in a time interval (t1, t2] can be calculated by
2

1
(()) .

t

t
PC s t dt

Note that, in this paper, we ignore some overheads incurred for scheduling tasks,
such as the time and energy consumption for speed-switching and context-switching
(due to preemptions), because the overheads are relatively low compared to the cost of
executing tasks. For example, Rajan et al. [30] have shown that the speed-switching
overhead is about 1-2% of the entire energy consumption. However, when the overheads
are significant and can not be ignored, researchers have proposed excellent approaches
for reducing or eliminating speed switching and/or preemptions [31-33]. Furthermore, in
the recent years, the intercore communication overhead has been considered in the liter-
ature for multicore environments. Particularly, Wang et al. have proposed excellent ap-
proaches for removing the intercore communication overhead on multiprocessor sys-
tem-on-chips when tasks have precedence constraints [21-24].

3.2 Task Model

In this paper, we are interested in energy-efficient scheduling of a set of n periodic

hard real-time tasks = {1, 2, …, n} in a uniprocessor system. We assume that tasks
are preemptive and every task i has a fixed priority Pi and a worst-case computation
time Ci. Note that the value of Ci is given by assuming the task is executed at the maxi-
mum processor speed smax. A task is a template of its instance and each instance will be
instantiated for every request of the task. The requests of a task i will arrive regularly
for every period Ti. Let i,j denote the jth instance of task i. Every task instance i,j
should be completed no later than its deadlines which is defined as its arrival time plus
the relative deadline Di of the task i. We assume in this paper that tasks are well formed
which satisfies 0 (Ci) Di Ti, i .

We consider tasks are dependent due to exclusive access to shared resources. As-
sume that the system consists of a set of m shared resources = {r1, r2, …, rm}, and each
task might access one or more resources during its execution. To ensure the resources
can be accessed in a mutually exclusive manner, we assume that resources are guarded
by binary semaphores. A task is said to be executed in its critical section when it has
granted the access right to a resource. Note that the executions of critical sections are
preemptible. Let i = <zi,1, zi,2, …, zi,ni> be the list of critical sections of task i, where zi,j
is the jth critical section of task i and it corresponds to the code segment between the jth
locking operation and its corresponding unlocking operation. For any two critical sec-
tions zi,x and zi,y of a task i, zi,x zi,y denotes that the execution of zi,x is entirely con-
tained in zi,y. We also called zi,x and zi,y are nested critical sections if zi,x zi,y or zi,y zi,x.
The locks of nested critical sections have to be unlocked in the reverse order from which
they were granted. In this paper, we assume critical sections are properly nested means
that for any two critical sections zi,x and zi,y, either zi,x zi,y, zi,y zi,x, or their executions

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

769

do not overlap (i.e., zi,x ∩ zi,y =) [2].
Different from the past work, we assume that the critical sections are abortable.

Each critical section zi,j consists of an abortable segment za
i,j followed by an unabortable

segment zu
i,j. A task can be aborted when it is executed in the abortable segment of a crit-

ical section, however, the execution of the aborted task has to be restarted later from the
beginning of the abortable segment. Such a re-execution of an aborted task is considered
as a cost for aborting. In contrast, once a task enters the unabortable segment of a critical
section, it cannot be aborted and it will be executed to the end (the preemption is al-
lowed.). Recall that we assumed that critical sections are properly nested. When two
critical sections are nested, for simplicity, we assume that the inner critical section is
unabortable and is included in the unabortable segment of the outer critical section.

3.3 Problem Definition

Let lcm be the least common multiple of all tasks’ periods (also called hyperperiod).
Since the task set repeats an identical execution trace for every hyperperiod, we only
need to examine the time interval (0, lcm] for analyzing the schedulability of the entire
schedule [20]. The research problem of this paper is defined as follows:

Problem 3.1 Given a set of n periodic hard real time tasks with abortable critical
sections, and a set of m shared resources . The problem is to schedule and to syn-
chronize their accesses of shared resources on a non-ideal DVS processor which sup-
ports a set of K discrete speeds . During a given time interval (0, lcm], the objective of
this problem is to generate a schedule such that all tasks can meet their timing require-
ments (i.e., their deadlines) and the energy consumption

0
(())

lcm
PC s t dt is minimized.

The problem is -hard even if the DVS processor only supports a single speed

and the critical sections are unabortable [34].

4. CEILING-BASED CONDITIONAL ABORTABLE SCHEDULING
(CB-CAS) ALGORITHM

In this section, the ceiling-based conditional abortable scheduling (CB-CAS) algo-
rithm is proposed to schedule periodic real-time tasks with abortable critical sections in a
non-ideal DVS processor. In Section 4.1, we shall present the rules for task scheduling
and synchronization (including the conditional abort rule) of CB-CAS. In Sections 4.2
and 4.3, the derivation of the proper processor speed for task executions and the dynamic
speed adjustment method are presented. Finally, an example is given in Section 4.4 to
illustrate our proposed CB-CAS.

4.1 Rules for Task Scheduling and Synchronization

The rules of CB-CAS for task scheduling are the same as those of RMS algorithm
[20]. We now present those rules as follows:

 Rule 1 (Priority Assignment): Each task is assigned a fixed priority according to its

JUN WU AND KAI-LONG KE

770

period. In particular, a task with a shorter period is assigned a higher priority.
 Rule 2 (Task Scheduling): The task which has the highest priority among all ready

tasks can be executed on the processor. If a task does not attempt to access any re-
source, the task can preempt the execution of any task with a lower priority, whether
or not the priorities are assigned or inherited. (Priority inheritance will be defined lat-
er.)

The rules of CB-CAS for task synchronization are defined as follows:

 Rule 3 (Priority Ceiling): When a task i attempts to lock (i.e., access) a resource rj
which is currently unlocked, the priority of i must be higher than it system ceiling
PL*

i; otherwise, the lock request is blocked.
 Rule 4 (Priroity Inheritance): A task i uses its assigned priority, unless it locks some

resources and blocks higher-priority tasks. If i blocks one or more higher-priority
tasks, it inherits the highest priority of the tasks blocked by i. When a task unlocks a
resource, it resumes the priority it had at the point of obtaining the lock on the re-
source. Moreover, the priority inheritance is transitive.

Rules 3 and 4 of CB-CAS are developed based on the well-known priority ceiling

protocol (PCP) [2]. In particular, Rules 3 and 4 are the priority ceiling rule and the prior-
ity inheritance rule of PCP. For the priority ceiling rule (i.e., Rule 3), a priority ceiling is
assigned to each resource, which is the highest priority of tasks that may access the re-
source. It allows a task i to enter a critical section only if i’s priority is higher than its
system ceiling PL*

i which is the highest priority ceiling of resources currently locked by
tasks other than i. The rationale behind the setting of priority ceiling and the ceiling rule
is to ensure that when a task i preempts the current task and executes one of its critical
section zi,x, the priority of i is guaranteed to be higher than the priorities of all the
preempted critical sections during the execution of the critical section zi,x. For the priority
inheritance rule (i.e., Rule 4), whenever a task i blocks higher-priority tasks, i will
temporarily inherit the highest priority of the tasks currently blocked by i. This rule
prevents to prolong the blocking time of the higher-priority tasks because the medium-
priority tasks are not allowed to preempt the task i.

When critical sections are abortable, aborting becomes an option for handling re-
source conflicts. Hence, we propose the conditional abort rule as follows:

 Rule 5 (Conditional Abort): When a task i attempts to lock a resource rj which is

currently locked by another task k, k is aborted and the lock request of i is granted if
the following three conditions are hold: (1) k is being executed in the abortable segment
za

k,l of a critical section zk,l, (2) Pi = PL*
i, and (3) ai < bi; otherwise, the lock request is

blocked. Where ai and bi are the completed computation amount of za
k,l and the incom-

pleted computation amount of zk,l, respectively.

Whenever a task i attempts to lock a resource rj, Rule 5 will be performed if rj is
currently locked; otherwise, Rule 3 will be performed. Note that both Rule 3 and Rule 5
can be done in constant time. We now present the rationale for the design of the condi-
tional abort rule. Suppose that i is the task currently being executed on the processor,
and i is attempting to access a resource rj which is currently locked by another lower-

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

771

priority task k. If k is being executed in an abortable segment za
k,l, there are two options

should be considered:

Option 1: Let i to abort k.
By choosing this option, the current task i won’t be blocked by a lower priority

task, i.e., k. However, the abortable segment za
k,l has to be re-executed. This re-execution

is considered as a cost charged to i by the aborted task k. Let ai be the re-execution cost
which is the completed computation amount of the aborted za

k,l. Note that the priority of
k has to resume its previous priority if it has inherited the priority of a higher-priority
task due to a blocking.

Option 2: Let k to block i.

When this option is chosen, the current task i will be blocked by k. Let bi be the
incomplete computation amount of zk,l, which is considered as a cost for blocking of i.
The value of bi is |zk,l| ai, where |zk,l| is the length (computation amount) of zk,l. Note that
i’s priority will be inherited by k until k unlocks rj.

Rule 5 makes a decision between the above two options according to the two condi-
tions: Pi = PL*

i and ai < bi. In particular, i will abort k if Pi = PL*
i and ai < bi; otherwise,

i will be blocked. The first condition Pi = PL*
i is to ensure that the condition Pi > PL*

i is
hold3 when i aborts k and then its lock request for rj is granted. The second condition ai
< bi is to ensure that the aborting is more energy-efficient than the blocking because the
re-execution time is shorter than the blocking time.

4.2 Task Execution Speed

Based on the well-known schedulability analysis of RMS and PCP, we will derive a
processor speed level, denoted by s*, for task execution. When tasks are scheduled under
RMS and PCP, the following theorem provides a sufficient (i.e., worst case) condition
that characterizes the schedulability of a given task set.

Theorem 4.1 (Sha et al. [2]) A set of n periodic hard real-time tasks (sorted in non-de-
creasing order of their periods) using the priority ceiling protocol can be scheduled by
the rate-monotonic scheduling algorithm if the following conditions are satisfied:

1/

1

,1 , (2 1).
i

ik i

k k i

C B
i i n i

T T

 (1)

Where Bi is the worst-case blocking time of a task i, which can be calculated in a
priori [2]. When aborting becomes an option, the worst-case re-execution time of an
aborted task is also needed for schedulability analysis. Suppose that k is being executed
in an abortable segment za

k,l. We assume that k is aborted by i, the time for re-executing
the aborted critical section does not exceed |za

k,l|, where |za
k,l| represents the length (i.e.,

time) of za
k,l. Since za

k,l is the abortable segment of a critical section zk,l k, the maximum
re-execution time of task k is no more than

,

max
kk lz
{|za

k,l|}. However, the period of task i is
less than the period of task k, such an aborting may occurs at most Tk/Ti times. Thus, the
3 The condition Pi > PL*

i is original used for PCP to prevent transitive blocking and deadlock.

JUN WU AND KAI-LONG KE

772

re-execution cost of k due to the abortings from i is no more than
,

,max{| |}
k l k

a

k lz
z

 Tk/Ti.

Note that i’s instances will arrive at least Tk/Ti times within k’s period.
Let Ai be the maximum re-execution cost charged to an instance of i by a lower

priority task (which might be aborted by i). The value of Ai is defined as follows:

,

,AccessedSet(ResourceSet())

| | /
max {0, | }.

/k i

i k

a

k l k i

i k l k

k iP P

z T T
A z

T T

 (2)

Where AccessedSet(ri) and ResourceSet(i) are the set of tasks which may access to re-
source rj and the set of resources which are accessed by task i, respectively. When tasks
have abortable critical sections, the following theorem shows that tasks can be feasibly
scheduled by CB-CAS if they are executed at processor speed s*.

Theorem 4.2 A set of n dependent periodic tasks with abortable critical sections (sort-
ed in non-decreasing order of their periods) can be feasibly scheduled by CB-CAS with
the execution speed s*, where

* *,

,1
max{ }i

i i n
s s

 (3)

and

1*,

1/

max{ , }

min{ | }
(2 1)j

i
k i i

ki k i
j jis

C B A

T T
s s s

i

. (4)

Proof: This theorem can be proved in two parts. First, consider Eq. (1) as shown in The-
orem 4.1. Because the definition of the worst-case computation time (i.e., Ci, for 1 i
n) is assumed that tasks are running at the maximum processor speed, it is easy to shown
that tasks can be scheduled by RMS and PCP at a specific processor speed sj if the fol-
lowing conditions are satisfied:

1

1/
,1 ,

(2 1)

i
k i

k k i
ji

C B

T T
i i n s

i

. (5)

Second, also in Eq. (1), the worst-case blocking time (i.e., Bi) is take into account

for schedulability analysis. When critical sections are abortable, however, the aborting
becomes a new option for handling resource conflicts. When task i is attempting to lock
a resource rj which is currently locked by a lower priority task , there are two possible
cases: (1) task i will be blocked by task , and the blocking time is no more than Bi; (2)
task will be aborted by task i, and the re-execution time is no more than Ai. Since the
cost (time) for blocking and aborting are mutually exclusive, i.e., they cannot occur at
the same time. Eq. (1) will also be satisfied when the term Bi is replaced by max{Bi, Ai}
when tasks have abortable critical sections and they are scheduled by CB-CAS. Based on
the two parts we have discussed, this theorem is correct.

The processor speed s* is calculated off-line (before the runtime) by using Eqs. (3)

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

773

and (4), as shown in Algorithm 4.1. The time complexity of the calculation is O(n2m),
where n and m are the number of tasks and resources in the system, respectively. Note
that both the calculation of Ai and Bi can be done in O(nm) time. Also note that the given
task set is unschedulable even at the maximum processor speed if Algorithm 4.1 returns
failure.

Algorithm 4.1 Execution Speed Calculation

Given tasks are in non-decreasing order of their periods.
1:
2:
3:

4:

5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

s* smin;
for (i = 1; i n; i++) do
 s*,i smax + 1;

1

1/

max{ , }

1)(2

i
k

i i
k k

ii

C
B A

T
s

;

for (j = K; j 1; j) do
 if ((s sj) (sj < s*,i)) then

s*,i sj;
end if

end for
if (s*,i smax) then

return failure; // the task set is unschedulable
end if
if (s*,i > s*) then
 s* s*,i;
end if

end for
return s*;

4.3 Dynamic Speed Adjustment

According to Theorem 4.2, all tasks are executed at the speed s* initially, which is
to ensure that the timing constraints of tasks can be satisfied. However, the calculation of
speed s* is based on the schedulability analysis with the worst-case blocking cost or
aborting cost (i.e., max{Bi, Ai}). It provides a chance to save more energy when the actu-
al cost of blocking or aborting is less than the worst cases. Algorithm 4.2 is our proposed
dynamic speed adjustment method which is to execute tasks at a lower processor speed
whenever it is possible.

Let Mi be the maximum value of Bi and Ai for every task i , which can be cal-
culated off-line. When a task i aborts a lower priority task k, lines 1-5 show that how
the execution speed is adjusted. Suppose that task k is being executed in an abortable
segment za

k,l. Let Ci be the incomplete computation amount of task i and ai be the com-
pleted computation amount of the abortable segment za

k,l. In particular, ai is the re-execu-
tion cost for the aborting. Lines 4 and 5 show that the execution speeds of both i’s re-
maining computation and k’s re-execution are slow down from s* to s. It is obvious that
the remaining computation time of task i is no more than (Ci + max{Bi, Ai})/s* if it is

JUN WU AND KAI-LONG KE

774

still being executed at speed s*. Note that Theorem 5.1 (as shown in the next section)
shows that the maximum number of abortings or blockings is no more than 1 for every
task instance. If i aborts k, the remaining computation of task i is no more than Ci +

ai. Hence, we can find a lower processor speed s =
*

min{ | }
()

j

i i
j js

i i

s C
s s

C M

a

as shown in

line 3, where Mi = max{Bi, Ai}.

Algorithm 4.2 Dynamic Speed Adjustment Method

When a task i aborts a lower-priority task k which is currently being executed in
an abortable segment za

k,l.
1:
2:

3:

4:
5:

Ci the incomplete computation of i;
ai the completed computation amount of za

k,l;
*

()
in }|m {

j

i i
j js

i i

s C
s s

C M

a
s

Set the execution speed of task i as s;
Set the re-execution speed of the aborted segment of task k as s;

When a task i is blocked by a lower-priority task k which is currently being exe-
cuted in a critical section zk,l.

6:
7:
8:
9:

10:

11:

12:
13:

if (k is being executed in an abortable segment za
k,l) then

bi the incomplete computation amount of zk,l;
else // in this case, k is being executed in an unabortable segment zu

k,l
bi the incomplete computation amount of zu

k,l;
end if

*

()
min{ | }

j

i i
j js

i i

s C
s s

C M

b
s

;

Set the execution speed of task i as s;
Set the execution speed of task k as s until k exits zu

k,l;

When a task i finishes the execution of its last critical section
14:
15:

16:

17:
18:

if (there is no blocking and aborting was occurred during its execution) then
Ci the incomplete computation of i;

*

}|min{
j

i
j js

i i

s C
s s

C
s

M

;

Set the execution speed of task i as s;
end if

Lines 6-13 show the speed adjustment when a task i is blocked by a lower priority

task k. Lines 6-10 calculate bi which can be considered as the actual blocking time of i.
When task k is being executed in an abortable segment za

k,l, the actual blocking time is
the incomplete computation amount of zk,l (the incomplete computation amount of za

k,l
plus |zu

k,l|). On the other hand, the actual blocking time is the incomplete computation
amount of an unabortable segment zu

k,l when task k is being executed in za
k,l. Because a

task instance can be blocked or aborts another task for at most once (as shown in Theo-

rem 5.1), line 11 calculates a lower speed
*

()
min{ | }

j

i i
j js

i i

s C
s s

C M

b
s

for the execution of

i’s remaining computation. Note that the execution speed of k is also assigned as s un-
til it exits zu

k,l.

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

775

Table 1. Parameters of example tasks.
Task Ti = Di Ci Bi Ai

1 10 4 3 1
2 50 4 0 0

time unit: microsecond

Lines 14-18 consider another possible for saving more energy. If there is no block-
ing or aborting was occurred after a task i exits its last critical section. We adjust the
execution speed of i’s remaining computation to a lower speed s which is the lowest
processor speed such that s*Ci/(Ci + Mi) sj, sj .

Algorithm 4.2 shows the three cases for adjusting the processor speed dynamically
In all the three cases, the time complexity of the calculation of the adjusted low speed s
is O(K), where K is the number of the available speeds of the DVS processor and it can
be considered as a constant. In other words, the adjusted processor speed can be calcu-
lated in constant time.

4.4 Example

We shall illustrate CB-CAS with the following example:

Example 4.1 Consider two tasks 1 and 2, as shown in Fig. 1 and Table 1, which are
scheduled by CB-CAS on a non-ideal DVS processor. We assume that the processor
supports 10 discrete speeds = {s1, s2, …, s10}, where s1 < s1 < …. < s10. In particular,
we assume that s1 = 0.1, s2 = 0.2, s9 = 0.9, and s10 = 1.

The priority of 1 is higher than the priority of 2, i.e., P1 > P2, because T1 < T2.
Suppose that both 1 and 2 may access a resource rx. In particular, tasks 1 and 2 may
access rx in their critical section 1,1 and 2,1, respectively, where |z1,1| = |za

1,1| + |zu
1,1| = 1 +

1 = 2 and |z2,1| = |za
2,1| + |zu

2,1| = 1 + 2 = 3. According to the ceiling rules, the priority ceil-
ing of rx is equal to the priority of 1, i.e., PLx = P1. According to Algorithm 4.1, 1 and
2 will be scheduled at processor speed s* = s7 = 0.7. Fig. 2 shows the schedule results.
Note that we only consider the schedule from time 0ms to 50ms. Because 50ms is the
hyperperiod of 1 and 2, they will repeat an identical execution trace for every hy-
per-period [20].

At time 0, both 1 and 2 are arrival, task 1 starts its execution because its high pri-
ority. At time 1.428ms, 1 enters its critical section and exits at time 4.284ms. Note that
the computation time of a task i is Ci/sj when it is executed at a speed sj because the
original value of Ci is given by assuming it will be executed at the maximum processor
speed. Hence, 1ms becomes 1.428ms when s* = 0.7. According to Algorithm 4.2, i.e., the
dynamic speed adjustment method, 1’s execution speed should be lowered to s =

*

1

1 1 1

min{ | 0} .2
{ , }j

j js

s C
s s

C max B A

 (where 1’s incomplete computation C1 = 1) because

Fig. 1. Example task instances.

JUN WU AND KAI-LONG KE

776

Fig. 2. A CB-CAS schedule.

there is no blocking or aborting was occurred when 1 exits its last critical section. Thus,
1 is executed to the end at speed 0.2. At time 9.284ms, 1 finishes its execution and 2
starts its execution and it locks rx successfully at time 9.998ms.

At time 10ms, a new instance of 1 arrives and preempts the execution of 2 due to
its high priority. At time 11.428ms, 1 attempts to lock rx which has been locked by 2.
According to the conditional abort rule (i.e., Rule 5), 1 aborts 2, since 2 is being exe-
cuted in an abortable segment and a1 < b1 (i.e., the re-execution cost for aborting is less
than the blocking cost), where a1 = 0.002 0.7 = 0.014 and b1 = 3 a1 = 2.986. Accord-
ing to Algorithm 4.2, the execution speed of 1’s incomplete computation and the re-exe-

cution speed of 2 is
*

1 1

1 1 1

(
mi

)
n{ | } 0.4

max{ , }j
j js

a
s ss

s C

C B A

, where C1 = 3. At time 18.928

ms, 1 finishes its execution and 2 resumes from the beginning of its aborted critical
section, i.e., za

2,1. Note that this re-execution also use the processor speed 0.4. At time
18.963, the re-execution has been completed and 2 resumes to be executed at speed s* =
0.7.

At time 20ms, a new instance of 1 arrives and preempts 2. Later, at time 21.428,
according to Rule 5 and Algorithm 4.2, 2 is aborted by 1 again and the execution speed

of 1 and 2’s re-execution is
*

1 1

1 1 1

(
mi

)
n{ | } 0.5,

max{ , }j
j js

s C
s s

C B

a

A
s

where a1 = 0.74, b1 =

2.26 and C1 = 3. At time 27.428ms, 1 finishes its execution and 2 resumes from the
beginning of its aborted critical section. At time 29.279ms, 2 completes its abortable
segment and enters its unabortable segment zu

2,1.
At time 30ms, a new instance of 1 arrives and preempts 2, later, 1 attempts to lock

rx which has been locked and accessed in an unabortable segment of 2. According to
Rule 5, 1 is blocked by 2. Also, according to Algorithm 4.2, the execution speed of the

blocking and the 1’s incomplete computation is
*

1 1

1 1 1

()
min{ | } 0.6,

max{ , }j
j js

s C
s s

C

b

B A
s

where b1 = 1.4953 and C1 = 3. At time 33.92ms, 2 exits its critical section which blocked
1, 1 resumes its execution and be executed at speed 0.6. At time 38.921, 1 finishes and
2 resumes its execution and finishes at time 39.635ms. At time 40ms, 1’s instance ar-
rives and be executed on the processor, similar to its execution at time 0-9.284ms, 1
finishes at time 49.284.

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

777

5. PROPERTIES

Lemma 5.1 A task i can be blocked by a lower priority task j only if (1) a resource rx
is locked and being accessed by j; and (2) i is attempting to lock rx.

Proof: According to the priority ceiling rule (i.e., Rule 3) of CB-CAS, the lemma is cor-
rect.

Lemma 5.2 A task j can be aborted by a higher priority task i only if (1) a resource rx
is locked and being accessed in an abortable segment of j; and (2) i is attempting to
lock rx.

Proof: According to the conditional abort rule (i.e., Rule 5) of CB-CAS, the lemma is
correct.

Lemma 5.3 When the lock request of a task i on a resource rx is granted, the priority
of i is greater than its system ceiling, i.e., Pi > PL*

i.

Proof: According to the priority ceiling rule (i.e., Rule 3) and the conditional abort rule
(i.e., Rule 5), there are two cases that the lock request can be granted if: (1) PLi > PL*

i,
when rx is unlocked; or (2) Pi = PL*

i and ai < bi, when rx is locked. In the first case, the
lemma directly follows. Let j be the task currently locked rx which is being executed in
an abortable segment, in the second case, i will abort task j and then the lock request of
i on rx will be granted.

Since i is one of the tasks which might access to rx, the priority ceiling of rx is no
less than the priority of i (i.e., PLx Pi). And, the system ceiling of i is no less than the
priority ceiling of rx (i.e., PL*

i PLx) because rx is currently locked by a task j other than
i. When the conditions Pi = PL*

i and ai < bi are satisfied, it is implied that PL*
i = PLx = Pi.

In other words, rx is the resource which has the highest priority ceiling of resources cur-
rently locked by a task other than i. When j is aborted by i, the value of i’s system
ceiling will be reduced because rx becomes unlocked. Hence, Pi > PL*

i is satisfied. Based
on the above two cases, the lemma directly follows.

Theorem 5.1 A task instance can be blocked or abort a lower priority task for at most
once.

Proof: Consider three tasks i, a and b where the priority of i is higher than the priori-
ties of a and b, i.e., Pi > Pa and Pi > Pb. Suppose that an instance of a task i has been
blocked by a or has aborted a because they are conflicting on a resource rx when the
instance of i is initiated. Later, the instance of i can also be blocked by b or abort b
only if they are conflicting on another resource ry. By Lemmas 5.1 and 5.2, the only pos-
sibility is that rx and ry have been locked by a and b, respectively, when the instance of
i is initiated.

Since the priority of i is higher than that of a and b (i.e., Pi > Pa and Pi > Pb) and
i is one of the task which might access to rx and ry, the priority ceiling of rx and ry are no
less than the priority of i, i.e., PLx > Pi and PLy > Pi. Assume that rx has been locked

JUN WU AND KAI-LONG KE

778

before ry is locked. The system ceiling of b is no less than the priority ceiling of rx (i.e.,
PL*

b PLx) when rx is locked by a. By the ceiling rules, the lock request for ry cannot be
granted if rx has been locked by a. Because the priority of b is less than its system ceil-
ing, i.e., Pb > PL*

b. On the other hand, similar results can be obtained by assuming that ry
has been locked before rx is locked. This contradicts the assumption that rx and ry have
been locked by a and b when the instance of i is initiated. Thus, it is impossible for i
to be blocked or abort lower priority tasks for more than once. The theorem follows im-
mediately.

Theorem 5.2 The CB-CAS prevents deadlocks.

Proof: Since CB-CAS inherits the ceiling rules from PCP, a resource rx can be locked by
a task i if and only if rx is unlocked, and Pi > PL*

i. Consider two tasks i and j where the
priority of i is higher than the priority of j, i.e., Pi > Pj. Suppose that both of i and j
might access to two resources rx and ry. The priority ceiling of rx and ry are no less than
the priority of i. If i has locked a resource rx or ry, the system ceiling of j is no less
than the priority of i, i.e., Pj < PL*

j, hence, task j cannot lock another resource. Similar-
ly, if j has locked a resource rx or ry, the system ceiling of i is no less than the priority
of i and i cannot lock another resource. When a resource is locked (no matter which
task locked the resources first), it raises the system ceiling and the condition Pi > PL*

i
prevents the so-called hold-and-wait situation. Lemma 5.3 shows that the condition Pi >
PL*

i is still satisfied even if i has aborted a lower priority task. Therefore, tasks sched-
uled by CB-CAS are deadlock free.

6. PERFORMANCE EVALUATION

The experiments described in this section will evaluate the capabilities of CB-CAS
in scheduling of periodic hard real-time tasks on a non-ideal DVS processor. We have
implemented a simulation to schedule different task workloads. To evaluate the perfor-
mance of our proposed CB-CAS, we compared the energy consumption with the follow-
ing approaches:

 Uniform Slowdown with Frequency Inheritance (USFI) [8]: USFI computes a uni-

form slowdown factor (i.e., processor speed) for each task’s execution. When a task i
blocks other tasks it inherits the maximum slowdown factor of the blocked tasks. We
implemented this approach by using RMS and PCP as its scheduling policy and con-
currency control protocol. Note that USFI was not designed for tasks with abortable
critical sections. We will not abort any task even if the task is being executed in an
abortable segment.

 Conditional Abortable Priority Ceiling Protocol (CA-PCP) [19]: Based on the sched-
uleability analysis of RMS and PCP, a condition is defined to control the aborts of a
task so that the schedulability of the system will not be affected. When tasks are sched-
uled under CA-PCP, the condition will be adjusted dynamically by taking the system
utilization and the length of critical sections (including abortable and unabortable seg-
ments) into consideration. Note that CA-PCP was not designed for scheduling of tasks

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

779

on a DVS processor. We set the execution speed of tasks as the maximum processor
speed.

 Independent Task Set Transformation (ITST): We transform the given task set into
an independent task set and use RMS to schedule the transformed task set. In particu-
lar, for each task i, its worst-case computation time Ci is increased by its worst-case
blocking time Bi to result in a transformed task set 1 2{ , , , }n where each task is

defined by { , , ()}i i i i i iT D C C B . The execution speed of tasks is calculated by

1/
1

/
min{ | }

(2 1)j

n
i i

j j ns S
i

C T
s s

n

 .

 Maximum Speed (MS): This is a baseline approach. Tasks are scheduled by RMS and
PCP, and executed at the maximum processor speed. This baseline approach will not
abort any task even if they are being executed in abortable segments.

In the rest of this section, we shall present the performance metrics, data set, and

experimental results.

6.1 Performance Metrics and Data Set

In our simulation, the processor speeds and their power consumptions are chosen
from Intel XScale [28, 29], as shown in Table 3. The primary performance metric of in-
terest is the energy consumption of tasks, referred to as EnergyConsum, which is the sum
of the energy consumption of all task instances executed during the simulation time. En-
ergyConsum can be calculated by

0
(())

simTime
PC s t dt , where PC(), s(t), and simTime are the

power consumption function, the processor speed at time t, and the simulation time. Note
that the value of power consumption of a speed si, i.e., PC(si), can be found in Table 3.

The parameter settings of the workloads are given in Table 4. For generating feasi-
ble task sets, we set the utilization factor of tasks from 0.1 to 0.6 with an increment of
0.1, where the utilization factor is calculated by (/)

i

i iC T

. Each generated task set con-

Table 3. Available speeds and power consumptions for Intel XScale [28, 29].
Speed (MHz) 150 400 600 800 1000

Normalized speed 0.15 0.4 0.6 0.8 1
Power concumption (mW) 80 170 400 900 1600

Table 4. Parameters of workload.
Parameter Value

Utilization factor (0.1, 0.6) step by 0.1
The number of tasks in the system 20-100
Period (100, 2000)ms
Worst-case computation time (10, 300)ms
The number of resources in the system (5, 10)
The number of resources accessed by a task (0, 5)
Critical section ratio, csr 0.1, 0.3, 0.5
Abortable segment ratio, asr (0, 1) step by 0.2
Simulation time 1,000,000ms

JUN WU AND KAI-LONG KE

780

sists of 20 to 100 tasks by normal distribution. The period of a task was selected from
100ms to 2000ms by normal distribution. We assume that tasks’ deadlines are equal to
their periods, i.e., Di = Ti, i . The worst-case computation time of a task was se-
lected from 10ms to 300ms by normal distribution. The number of resources is 5 to 10 in
the system, and each task will access 0 to 5 resources. Hence, there will be a sufficient
number of resource conflicts so that the performance of evaluated approaches could be
better understood. The positions and the lengths of the critical sections within each task’s
execution are selected randomly. However, the length of any critical section zi,j is set
randomly from 0 to csr*Ci, where csr is the critical section ratio and is selected from
0.1, 0.3, and 0.5. The length of the abortable segment of any critical section zi,j is no
larger than asr*|zi,j|, where asr is the abortable segment ratio and its value is set from 0
to 1 with an increment of 0.2. After the task set was generated, the worst-case computa-
tion times were scaled such that the utilization of tasks would not exceed the desired
value, and a critical section zi,j was removed if the sum of the lengths of i’s critical sec-
tions is larger than i’s computation time. The simulation time is 1,000,000ms and over
100 task sets per utilization factor, critical section ratio, and abortable segment ratio were
tested in the simulation and their results were averaged.

6.2 Simulation Results

For ease of comparison, the energy consumption of evaluated approaches were
normalized with respect to the baseline approach, i.e., MS (tasks are always executed at
the maximum processor speed.). In the first part of our simulation, we evaluated the ef-
fect of the lengths of critical sections on energy consumption. We fixed the abortable
segment ratio asr to 0.6 and varied utilization factor between 0.1 to 0.6. Figs. 3 (a)-(c)
show the experimental results of different approaches, when the critical section ratio csr
are 0.1, 0.3, and 0.5, respectively.

As shown in Fig. 3, the energy consumption of all evaluated approaches grew with
utilization factor. It also shown that our proposed CB-CAS outperforms all others in all
cases. In particular, CB-CAS achieved a 71.5% reduction of the energy consumption
compared to MS when the utilization of tasks is 0.1 and csr = 0.1, as shown in Fig. 3 (a).
This is because MS always execute tasks at the maximum processor speed, i.e.,
1000MHz with power consumption of 1600mW, while CB-CAS could execute tasks at a
lower processor speed. Since the value of the execution speed s* of CB-CAS is domi-
nated by the utilization of tasks and the maximum value of the worst-case blocking time
and the re-execution cost of each task i, i.e., max{Bi, Ai}, as we can observe in Eq. (3)
and Eq. (4), and the worst-case blocking time and the re-execution cost of a task are
highly related to the lengths of critical sections. CB-CAS could execute tasks at a lower
processor speed, when the utilization is low and the lengths of critical sections are short.
In fact, in our simulation, almost every task instance of all the generated task sets is exe-
cuted at the minimum processor speed, i.e., 150MHz with power consumption of 80mW,
when utilization is 0.1 and csr = 0.1. Hence, a significant energy saving (compared to
MS) is obtained for tasks scheduled by CB-CAS.

In Fig. 3, the performance ranking is CA-PCP, MS, ITST, USFI, and CB-CAS
(from the worst to the best). Both of MS and CA-PCP use the maximum processor speed

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

781

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

MS
ITST
USFI

CA-PCP
CB-CAS

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

MS
ITST
USFI

CA-PCP
CB-CAS

 (a) csr = 0.1 (b) csr = 0.3

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

MS
ITST
USFI

CA-PCP
CB-CAS

(c) csr = 0.3
Fig. 3. Normalized energy consumption with varying utilization factor when abortable segment

factor is 0.6.

for task executions. However, CA-PCP performs worse because its additional re-execu-
tion time for the aborted critical sections. Hence, the aborting of tasks without scaling the
processor speed properly will result in a higher energy consumption. As the lengths of
critical sections increased with the critical section ratio csr, the resource conflicts were
also occurred more frequently, i.e., the more number of blockings and aborting will alos
be increased. As the results, CA-PCP performs even worse for tasks with higher csr, as
shown in Fig. 3 (c).

Compare to CA-PCP and MS, other three approaches (i.e., ITST, USFI, and CB-
CAS) use lower processor speeds for task executions such that the energy consumption
is reduced. In particular, the execution speeds of tasks are calculated based on the utili-
zation of tasks (i.e., the utilization factor) under ITST, USFI, and CB-CAS. As the utili-
zation increased with the utilization factor, the calculated execution speeds are also get-
ting higher. Since the simulation results were normalized to MS (which uses the maxi-
mum processor speed for task executions), the energy consumption of ITST, USFI, and
CB-CAS grew with utilization, as shown in Fig. 3.When critical section ratio csr is in-
creased, the number of resource conflicts is also increased. Hence, the performance of
ITST, USFI, and CB-CAS are getting worse, as shown Figs. 3 (a)-(c).

The ITST performs better than CA-PCP and MS because it uses a lower processor
speed to execute tasks. However, its performance is worse than USFI and CB-CAS. It is
because ITST transforms tasks by adding the worst-case blocking time to tasks’ compu-
tation time, i.e., Ci = Ci + Bi. In other words, ITST assumes the blocking will be occurred
for every instance of tasks. Although ITST does not perform well, it provides an upper
bound of the energy consumption for scheduling and synchronization tasks with shared

JUN WU AND KAI-LONG KE

782

resources. In other words, any well-designed approach would not perform worse than
ITST in energy consumption.

The performance of USFI outperforms all approaches except our proposed CB-CAS.
It is because the design of USFI does not take abortable critical sections into considera-
tion. Under our proposed CB-CAS, tasks are executed at a lower processor speed and
tasks might be blocked or abort lower-priority tasks (depend on which one consumes less
energy), when tasks are conflicting on the same resources. The results of CA-PCP have
shown that the aborting will result in more energy consumption because the abortable
segment of an aborted critical section has to be re-executed. However, compare to CA-
PCP, our proposed CB-CAS aborts a task only if it is more energy-efficient. Also note
that CB-CAS performs the dynamic speed adjustment method to derive a proper proces-
sor speed for saving more energy. As a result, CB-CAS outperforms all others in all cas-
es.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

MS
CB-CAS(asr=0)

CB-CAS(asr=0.2)
CB-CAS(asr=0.4)
CB-CAS(asr=0.6)
CB-CAS(asr=0.8)

CB-CAS(asr=1)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

MS
CB-CAS(asr=0)

CB-CAS(asr=0.2)
CB-CAS(asr=0.4)
CB-CAS(asr=0.6)
CB-CAS(asr=0.8)

CB-CAS(asr=1)

(a) csr = 0.1 (b) csr = 0.3

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.1 0.2 0.3 0.4 0.5 0.6

N
or

m
al

iz
ed

 E
ng

er
gy

 C
on

su
m

pt
io

n

Utilization

MS
CB-CAS(asr=0)

CB-CAS(asr=0.2)
CB-CAS(asr=0.4)
CB-CAS(asr=0.6)
CB-CAS(asr=0.8)

CB-CAS(asr=1)

(c) csr = 0.5
Fig. 4. Normalized energy consumption with varying utilization factor for CB-CAS with different

settings of abortable segment factors.

In the second part of our simulation, the effect of the lengths of aborable segments
on energy consumption is evaluated for our proposed CB-CAS. Fig. 4 shows the exper-
imental results with different settings of the abortable segment ratio. As the lengths of
critical sections are increased with csr, the energy consumption is getting higher (as
shown in Figs. 4 (a)-(c)) because the number of blockings and abortings is also increased.
Note that the blocking time and the re-execution time for aborted tasks are also increased
with csr. When asr = 0, CB-CAS degrades to have a blocking option only when a re-
source conflict occurs. Hence, the results for CB-CAS with asr = 0 is worst. When asr is
increased, the aborting becomes another option for handling resource conflicts. Because

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

783

CB-CAS aborts lower-priority tasks only if it is more energy efficient, and a proper pro-
cessor speed is calculated by the dynamic speed adjustment method, the energy con-
sumption is reduced with the increasing of the length of abortable segments.

7. CONCLUSION

In this paper, we are interested in energy-efficient scheduling of hard real-time tasks
with abortable critical sections on a non-ideal DVS platform. We assume that real-time
tasks are preemptive, periodic and fixed priority. Different from the past work, we as-
sume that a critical section consists of an abortable segment and an unabortable segment.
In particular, a task can be aborted when it is being executed in an abortable segment.
Such a scheduling problem is -hard and its objectives is to minimize the energy con-
sumption of tasks while the timing constraints are met.

Based on the well-known rate-monotonic scheduling (RMS) algorithm and the
priority ceiling protocol (PCP), we proposed a novel approach, called ceiling-based con-
ditional abortable scheduling (CB-CAS), for scheduling tasks with abortable critical
sections. When two tasks are conflicting on the same resource, CB-CAS introduces a
conditional abort rule to abort the lower-priority task if it is being executed in an aborta-
ble segment and it is more energy efficient. Based on the schedulability analysis, a low-
est possible processor speed is calculated for task executions. We also propose a dynam-
ic speed adjustment method to slow down the processor speed as low as possible such
that the energy consumption could be reduced further. Our theoretic analysis shows that
CB-CAS is deadlock free and the maximum number of abortings or blockings is no more
than one. The capabilities of CB-CAS were evaluated by a series of experiments, for
which we have some encouraging results. When tasks are scheduled by CB-CAS, the
schedulability can be predicted while the energy consumption can be reduced.

ACKNOWLEDGEMENT

The authors would like to acknowledge the two anonymous referees for their valua-
ble comments in improving the quality of the paper.

REFERENCES

1. J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time systems on dy-
namic voltage scheduling (DVS) platforms,” in Proceedings of IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, 2007,
pp. 28-38.

2. L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols: an ap-
proach to real-time synchronization,” IEEE Transactions on Computers, Vol. 39,
1990, pp. 1175-1185.

3. T. P. Baker, “Stack-based scheduling for realtime processes,” Journal of Real-Time
Systems, Vol. 3, 1991, pp. 67-99.

4. F. Zhang and S. T. Chanson, “Processor voltage scheduling for real-time tasks with

JUN WU AND KAI-LONG KE

784

non-preemptible sections,” in Proceedings of the 23rd IEEE Real-Time Systems
Symposium, 2002, pp. 235-245.

5. J. Lee, K. Koh, and C.-G. Lee, “Multi-speed DVS algorithms for periodic tasks with
non-preemptible sections,” in Proceedings of the 13th IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications, 2007, pp.
459-468.

6. A. M. Elewi, M. H. A. Awadalla, and M. I. Eladawy, “Energy efficient real-time
scheduling of dependent tasks sharing resources,” in Proceedings of International
Conference on Computer Engineering and Systems, 2008, pp. 273-242.

7. R. Jejurikar and R. Gupta, “Energy aware task scheduling with task synchronization
for embedded real time systems,” in Proceedings of International Conference on
Compilers, Architecture and Synthesis for Embedded Systems, 2002, pp. 164-169.

8. R. Jejurikar and R. Gupta, “Energy aware task scheduling with task synchronization
for embedded real time systems,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol. 25, 2006, pp. 1024-1037.

9. Y.-W. Pan, “Energy-efficient task synchronization for real-time systems on dynamic
voltage scaling (DVS) platforms,” Master Dissertation, Department of Computer
Science and Information Engineering, National Pingtung Institute of Commerce,
Pingtung, Taiwan, 2009.

10. K.-L. Kao, “DVS scheduling of real-time tasks with abortable critical sections,”
Master Dissertation, Department of Computer Science and Information Engineering,
National Pingtung Institute of Commerce, Pingtung, Taiwan, 2011.

11. J. Wu, “A prediction-based approach for energy-efficient DVS scheduling of de-
pendent real-time tasks,” in Proceedings of the Working in Progress Section of the
IEEE Real-Time and Embedded Technology and Applications Symposium, 2011, pp.
33-36.

12. Y.-S. Chen, L.-P. Chang, and T.-W. Kuo, “Multiprocessor frequency locking for
real-time task synchronization,” in Proceedings of ACM Symposium on Applied
Computing, 2008, pp. 289-293.

13. J. Wu, “BTS-SRP: an energy-efficient concurrency control protocol for embedded
real-time systems,” in Proceedings of International Conference on Advances in
Computer Science and Engineering, 2013, pp. 200-203.

14. J. Wu and K.-L. Kao, “Energy-efficient scheduling of real-time tasks with abortable
critical sections,” in Proceedings of International Symposium on Advances in Em-
bedded Systems and Applications, 2012, pp. 1788-1793.

15. J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley, “On using priority
inheritance in real-time databases,” in Proceedings of IEEE Real-Time Systems Sym-
posium, 1991, pp. 210-221.

16. H. Tokuda and T. Nakajima, “Evaluation of real-time synchronization in real-time
Mach,” in Proceedings of the USENIX Mach Symposium, 1991, pp. 213-221.

17. L.-C. Shu and M. Young, “A mixed locking/abort protocol for hard real-time sys-
tems,” in Proceedings of IEEE Workshop on Real-Time Operating Systems and Soft-
ware, 1994, pp. 102-106.

18. H. Takada and K. Sakamura, “Real-time synchronization protocols with abortable
critical sections,” in Proceedings of International Workshop on Real-time Compu-
ting Systems and Application, 1994, pp. 4852.

SCHEDULING OF TASKS WITH ABORTABLE CRITICAL SECTIONS

785

19. K.-Y. Lam and J. K.-Y. Ng, “A conditional abortable priority ceiling protocol for
scheduling mixed real-time tasks,” Journal of Systems Architecture, Vol. 46, pp.
573-585.

20. C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a
hard real-time environment,” Journal of the Association for Computing Machinery,
Vol. 20, 1973, pp. 46-61.

21. Y. Wang, D. Liu, Z. Qin, and Z. Shao, “Optimally removing inter-core communica-
tion overhead for streaming applications on MPSoCs,” IEEE Transactions on Com-
puters, Vol. 62, 2013, pp. 336-350.

22. Y. Wang, H. Liu, D. Liu, Z. Qin, Z. Shao, and E. H.-M. Sha, “Overhead-aware en-
ergy optimization for real-time streaming applications on multiprocessor system-
on-chip,” ACM Transactions on Design Automation of Electronic Systems, Vol. 16,
2011, pp. 14:1-14:32.

23. Y. Wang, D. Liu, Z. Qin, and Z. Shao, “Memory-aware optimal scheduling with
communication overhead minimization for streaming applications on chip multipro-
cessors,” in Proceedings of IEEE Real-Time Systems Symposium, 2010, pp. 350-
359.

24. Y. Wang, D. Liu, M. Wang, Z. Qin, and Z. Shao, “Optimal task scheduling by re-
moving inter-core communication overhead for streaming applications on MPSoC,”
in Proceedings of IEEE Real-Time and Embedded Technology and Applications
Symposium, 2010, pp. 195-204.

25. X. J. R. Jeyaseelan, “DVS scheduling in multi core real time system,” International
Journal of Advanced Research in Computer Engineering and Technology, Vol. 2,
2013, pp. 524-529.

26. S. Pagani and J.-J. Chen, “Single frequency approximation scheme for energy effi-
ciency on a multi-core voltage island,” Technical Report (KIT-MTA-2013-0001),
Department of Informatics, Karlsruhe Institute of Technology, Germany, 2013.

27. N. Anne and V. Muthukumar, “Energy aware scheduling of aperiodic real-time tasks
on multiprocessor systems,” Journal of Computing Science and Engineering, Vol. 7,
2013, pp. 30-43.

28. G. Chen, K. Huang, J. Huang, C. Buckl, and A. Knoll, “Effective online power
management with adaptive interplay of DVS and DPM for embedded real-time sys-
tem,” in Proceedings of the Euromicro Conference on Digital System Design, 2013,
pp. 881-889.

29. D. Rajan, R. Zuck, and C. Poellabauer, “A dual speed approach to workload-aware
voltage scaling,” Technical Report (TR-2006-05), Department of Computer Science
and Engineering, University of Notre Dame, Notre Dame, IN, USA, 2006.

30. B. Mochocki, X. S. Hu, and G. Quan, “Transition-overhead-aware voltage schedul-
ing for fixed-priority real-time systems,” ACM Transactions on Design Automation
of Electronic Systems, Vol. 12, 2007, Article No. 11.

31. F. Muhammad, B. M. Khurram, F. Muller, C. Belleudy, and M. Auguin, “Precogni-
tive DVFS: minimizing switching points to further reduce the energy consumption,”
in Proceedings of Work-In-Progress Session of the Real-Time and Embedded Tech-
nology and Applications Symposium, 2008, pp. 9-12.

32. A. L. Mohan and A. S. Pillai, “Dynamic voltage scaling with reduced frequency
switching and preemptions,” International Journal of Electrical and Electronics En-

JUN WU AND KAI-LONG KE

786

gineering, Vol. 1, 2011, pp. 10-14.
33. A. K. Mok, “Fundamental design problems for the hard real-time environment,”

Ph.D. Dissertation, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.

Jun Wu (吳卓俊) is an Assistant Professor in the Depart-
ment of Computer Science and Information Engineering at Na-
tional Pingtung Institute of Commerce, Pingtung, Taiwan. His
research interests include real-time embedded systems and data-
base systems. He received Best Paper Award from the IEEE In-
ternational Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA) in 2005. He received his BS
degree in Computer Science and Information Engineering from
I-Shou University, Kaohsiung, Taiwan, in 1996. He received his
MBA degree in Information Management from National Yunlin

University of Science and Technology, Yunlin, Taiwan, in 1998. He received his Ph.D.
degree in Computer Science and Information Engineering from National Chung Cheng
University, Chiayi, Taiwan, in 2004. He is a member of the IEEE.

Kai-Long Ke (柯凱朧) also known as Kai-Long Kao, re-
ceived his BS and MS degrees in Computer Science and Infor-
mation Engineering from National Pingtung Institute of Com-
merce, Pingtung, Taiwan, in 2010 and 2011, respectively. His
research interests include real-time systems and energy-efficient
scheduling.

