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Wireless sensor networks (WSNs) have a significant contribution in different appli-

cations. WSNs perform the data collection, processing, and transmission through sensor 

nodes. Sensor nodes work for a limited time due to battery constraints; clustering of sensor 

nodes reduces the loss in battery power. We propose a new clustering algorithm (ABCRF) 

to enhance the network lifetime by reducing the battery loss of the sensor nodes. The pro-

posed work selects a suitable cluster head (CH) for data collection. The decision for the 

CH performs based on the chance value. Next, the chance value calculation requires fuzzy 

logic-based technique, total coupling index, and residual energy of sensor node. The total 

coupling index is a newly proposed parameter utilizing the communication range infor-

mation of sensor nodes. The communication range of a sensor node has significant im-

portance so, double range optimization carries out. Final range calculation requires dis-

tance to base station, residual energy, and initial range of sensor nodes. The formulation 

of the initial communication range of sensor nodes works on the atomic bond connectivity 

(ABC)-based index. The presented protocol is compared with some of the well-known 

clustering protocols such as LEACH, EEUC, EAUCF, MCFL, and FBUCA. The simula-

tion results reveal; that the ABCRF performs much better in different scenarios over other 

algorithms under consideration regarding the number of nodes alive and remaining energy 

metrics.       

 

Keywords: wireless sensor network, fuzzy logic technique, atomic bond connectivity, dou-

ble range optimization, clustering 

 

 

1. INTRODUCTION 
 

Researchers are showing interest in the area of wireless sensor network (WSN) appli-

cations due to their wide use in real scenarios, like environmental pollution control, disaster 

management, and border surveillance [1-3]. A collection of low battery power tiny devices, 

cooperatively performing a single task defines a wireless sensor network [4]. Each sensor 

is capable of working in a remote area or even in an isolated area. Due to huge costs, it is 

not practical to replace the batteries specifically in remote areas [5, 6]. The primary aim of 

clustering in WSN is to reduce the energy consumption of sensor nodes and improve the 

network’s lifetime [7]. Clustering partitions the network into multiple groups called clus-

ters. Each cluster contains a CH dedicated to collect, aggregate, and transmit data to the 

base station (BS) [8]. The modeling of the scenarios where decision-based on input 
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parameters is required take place using fuzzy logic. WSN uses fuzzy logic to find suitable 

CHs and evaluate the competition range of a sensor node [9, 10]. There is a lot of uncer-

tainty in the WSN environment, and hence obvious and efficient decision making happen 

using fuzzy logic. Combination of certain specific input parameter’s value calculates crisp 

output value based on fuzzy logic. In the WSN environment, required input parameters are 

residual energy, centrality, degree, and BS distance. CHs near the BS lose their energy 

quickly due to heavy traffic generated by using the multi-hoping technique. The network 

is partitioned because of the premature death of CHs; this problem is termed as a hot spot 

problem. The hot spot problem mitigates by using the fuzzy logic technique. Unequal clus-

tering reduces the hot spot problem generated due to multi-hop routing protocol in WSN. 

The design of several protocols uses fuzzy logic techniques for clustering in WSN [11-17]. 

Residual energy-based unequal clustering protocols utilize to find suitable CH without us-

ing the fuzzy logic technique [18-22]. Clustering protocols based on parameters like node 

degree [23], processing capability, and node’s ID [24-27] are also energy-efficient proto-

cols for WSN. Atomic bond connectivity (ABC) index introduced in [28] is a popular 

structure descriptor of molecules utilizing the concept of degree of a vertex. The ABC 

index of a connected graph G is defined as 
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The above degree-based molecular structure is a valuable predictive tool in studying the 

heat of formation in alkanes. Following are also similar connectivity indices for a graph G 

as defined in [29, 30]. 
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Where du and dv are degree (number of incident edges) of vertex u and vertex v. E is set of 

edges of graph G. 

Double range optimization is the newly introduced term. The purpose of double-range 

optimization is to calculate each node’s final range based on two different sets of parame-

ters. At the first level we calculate the range without using the fuzzy logic concept but at a 

second level fuzzy logic concept with different sets of parameters is applied to calculate 

the final range of each node. 

 

1.1 Motivation 

 

Wireless sensor networks, as an active field of research with broad implementation, 

are concerned with enhancing the current solutions in the same way as other fields of tech-

nology and science. There is several research issues in this field that still need focus, such 

as energy constraints, designs that are reliable for communication within the network, and 

quality of services. It is becoming increasingly difficult to solve all these problems due to 

their conflicts with one another. However, we are now searching for a solution that is both 

time-saving and cost-effective that uncovers new methods and concepts in the area under 

consideration. The research areas of WSNs are large, and these networks are becoming 
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more common due to their scope of expansion. Clustering is an instance of these techniques 

and is seen as a scalable and effective method of energy consumption for WSNs. Thus, the 

main motivation for this work is to develop the new parameter and combine the fuzzy logic 

techniques for clustering in WSNs. Further it motivates in the detection of shortcomings 

and also mentioning the benefits of utilizing clustering to prolong the life of the network. 

Some benefits are: − clustering can avoid the redundancy of the communication messages 

along with keeping up with the bandwidth for communication. Clustering decreases the 

communication overhead and also balances the topology of the network. Clustering makes 

it possible to implement an optimized network management strategy. The methodologies 

presented in this paper for selecting the cluster head differ from other protocols. Some 

utilize simple parameter for CH election while in other many parameters are merged to get 

some new parameters for selection. So along with introducing new parameter and ideas for 

the clustering process, a detailed evaluation of clustering and clustering-based routing pro-

tocols is presented with a more accurate analysis of the method. 

 

1.2 Major Contributions 

Competition radius calculation and further use it to model fuzzy logic system makes 

the unequal clustering more successful. Following are notable contributions of this paper: 

• In unequal clustering, the range of a sensor node decides the list of competitors for CH. 

We define the Atomic bond connectivity-based index of sensor nodes and used it to 

calculate the initial range of the node. 

• Earlier research work does not consider double range optimization. We define the fuzzy 

logic technique considering the initial range as one of its input parameters to calculate 

the final range value. 

• A sensor node’s location to other nodes is an indicative parameter for its role in the 

network. We define a new parameter (total coupling index) to better cater to the node’s 

location value. We also establish the fuzzy logic system based on the total coupling 

index as the input parameter. 

• We perform the comparison of the ABCRF protocol with other popular unequal clus-

tering algorithms of WSN. 

2. RELATED WORKS AND CURRENT RESEARCH PROGRESS 

2.1 Related work 

In the current section, we explain some related algorithms on hierarchical clustering 

structure and also illustrate some relevant fuzzy logic-based clustering algorithms. Low 

Energy Adaptive Clustering Hierarchy (LEACH) [31] protocol divides the nodes into dif-

ferent clusters by utilizing the probabilistic threshold value calculation. The threshold is 

evaluated by 
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In Eq. (4), p defines the node’s probable value for CH selection in a particular algorithm 

execution round. G consists of all the nodes which were not CH for the last round. Cluster 

formation carries out in various rounds. Each round consists of a cluster set-up and a 

steady-state phase. Sensor nodes compute a threshold value and compare it with a ran-

domly generated number during the set-up phase. A smaller random value than the thresh-

old value is a qualifying condition for the nodes to work as CHs. Each member node joins 

the nearest CH node for cluster formation. CHs directly transmit aggregated data to BS 

and pure randomization leads to pre-mature energy loss. 

In Hybrid Energy-Efficient Distributed Clustering (HEED) [32] decisions for CHs 

finalizes jointly by the remaining energy of the node and degree of the node. 

CHEF [33] is a fuzzy logic-based clustering approach. Like LEACH, the CHEF forms 

clusters by reconfiguring the network in each round. Each node generates a random num-

ber and compares it with the optimal probability value. A smaller random value than opti-

mal probability permits the node to calculate a fuzzy chance value. Energy and local dis-

tance are input parameters for fuzzy chance value. Each qualified node advertises chance 

value in its neighborhood. The node with the largest chance value is assigned the final CH 

responsibility and informs all other nodes in its neighborhood. 

EAUCF [34] is also one of the distributed fuzzy logic-based clustering protocols. It 

also considers energy and distance to BS as two fuzzy input parameters for competition 

radius selection. The probabilistic model-based approach defines tentative CHs. EAUCF 

protocol generates a random number and compares it with some predefined threshold pa-

rameters. If the random number is smaller than the threshold value, the node works as a 

tentative CH. The residual energy is compared with all other tentative node’s residual en-

ergy in its competition radius. The highest residual energy node works as a CH. The base 

station and nodes are stationary during the execution of the algorithm. Smaller is the range 

of sensor nodes whose residual energy is less. The primary aim of the EAUCF algorithm 

is to decide the range of each sensor node, which is the basis of an unequal clustering 

algorithm.  

DUCF [15] performs clustering by utilizing the fuzzy logic concept. Energy, degree, 

and distance to BS are input parameters of FIS. Chance and cluster size are output values 

of the FIS. The restriction of the maximum number of cluster members may not permit 

some of the nodes to join a CH and hence more energy will be spent in data transmission. 

MCFL [16] is a fuzzy logic-based multi-cluster algorithm. It performs clustering in 

different rounds. Each round uses a separate combination of input-output FIS parameters. 

In some of the rounds, no CHs selection takes place and the CHs of the previous round 

carry out the data aggregation task. Multi-clustering does not improve the performance 

significantly when the BS is at a distant location. Three different clustering algorithms are 

considered to perform cluster head selection. The first clustering algorithm runs in rounds 

1, 4, 7, …, and uses residual energy and the number of neighbors as input parameters. The 

second clustering algorithm executes in rounds 2, 5, 8, …, and uses the cluster heads of 

previous rounds. The third clustering algorithm executes in rounds 3, 6, 9, …, and uses the 

residual energy and the distance to cluster head as input parameters. The sensor node’s 

energy is the primary parameter so the MCFL algorithm uses the residual energy in each 

execution rounds.  

UCF [17] is an unequal cluster-based protocol. UCF distributes the workload evenly 

among the nodes to resolve the hot spot problem. Competition range optimization carries 
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out employing the fuzzy logic technique. Local density and distance to BS are the input 

parameters of the fuzzy inference system. Residual energy is the main parameter for CH 

selection and it does not use a random function. 

Unequal clustering protocol decides the final cluster heads successfully. All these 

protocols perform a single-step calculation for competition radius. 

 

2.2 Current Research Progress 

 

In recent decades, WSNs have emerged as a critical area of research for various ap-

plications. Many popular applications for instance habitat monitoring, smart transport sys-

tems, underwater monitoring necessitate WSNs to be movable rather than stationary [35]. 

WSNs are the main building block to gather, process, and broadcast the information in the 

IoT. WSN is a fundamental part of IoT; it raises billions of devices to share environmental 

data for improving user control [36]. Exiting work mainly performs optimization of energy 

consumption of sensor nodes. Fuzzy-logic methods handle uncertainties of the parameter’s 

values to reduce the difficulties of tuning the relative importance of the parameters for 

selecting CHs. Current progress [37-41] in the area of WSN fuzzy clustering algorithms 

motivates researchers to carry out more research work.  

The current research fields of wireless sensor networks are very broad and WSN net-

works are becoming more extensive due to the expansion of their area of application 

3. PROPOSED ALGORITHM 

This section discusses the proposed ABCRF protocol in detail. ABCRF is a clustering 

algorithm creating unequal clusters; it performs cluster head selection and cluster radius 

calculation using local network information. The proposed algorithm optimizes the cluster 

radius twice. At the first level, each node calculates the cluster radius by utilizing the ABC-

based index value. Algorithm 1 describes the protocol in more detail. Inputs of the algo-

rithm are the number of nodes (n), range (R), initial energy, area, the position of the sink, 

probability (p), node_type, the maximum number of algorithm execution rounds (rmax). 

The set of CHs and set of alive nodes are the outputs of Algorithm 1. Initially, each node 

calculates its distance from the other node in line 2. Algorithm 1 executes for rmax rounds. 

In each round, parameter calculations accomplish in lines 4-8. Lines 9-16 present tentative 

cluster head selection. Each tentative cluster head node sends its ID, final competition 

range, and energy value to the other neighboring tentative CHs at line 17. ABCRF is a 

distributed clustering algorithm and uses messages to perform other necessary communi-

cations. Status of tentative cluster head node with less energy than other tentative CHs in 

communication range converts to a normal node in lines 18-27. The decision for final CHs 

takes place in lines 28-33. Clustering executes at line 34. The proposed protocol uses the 

Fuzzy chance to decide the tentative CHs. Mamdani system [42] defines fuzzy rules with 

a center of area method for defuzzification. After deploying nodes in the area, each node 

calculates its distance from other neighboring nodes based on some predefined range value. 

There are different methods for distance calculation. Initially, each node calculates its 

ABC-based index value by Eq. (5) given below: 
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Where E, D(Si), D(Sj), and C are set of neighbor nodes of Si, degree of Si, degree of Sj, and 

some constant respectively. The value of constant C(= 1000) is chosen in such a way to 

make the value of the initial range meaningful for all simulations. The higher the degree 

of a node the lower is the ABC-based index value of the node. A combined degree and 

high-order degrees are better than those of a node in discriminating nodes [43]. After the 

first round of the protocol, each node’s range value is different and Eq. (6) calculates the 

initial competition range. 

Initial range value of a node is 

max( ) ( )

max( ) min( )
( ) (1 ( )) .iA A S

i i A A
R S e R

−

−
= −      (6) 

Where e = some constant (0.2), R = range, max(A) = maximum value of A, min(A) = min-

imum value of A. The higher the ABC-based index value of a node, the higher is the initial 

range. Moreover, from Eqs. (5) and (6), the initial range is small for the node whose degree 

is large.  

At the second level, the fuzzy rules in Table 1 produce each node’s final competition 

range. Table 1 has a collection of 27 rules. Node’s distance to BS, initial energy, and initial 

range value is the input parameters for the fuzzy system and the output of the fuzzy system 

gives the final range value. EAUCF calculates cluster head using distance to the base sta-

tion and residual energy, but the proposed algorithm uses one more parameter. Rules of 

Table 1 calculate the final range of each node. The cluster radius is high for the distant 

nodes. The less is the amount of residual energy of a node, the smaller the competition 

radius will be. The final range increases for an increase in the initial radius. The initial 

range calculation uses the degree of the node and the degree of all neighbor nodes, so is 

more informative. ABC index helps to differentiate between two same degree nodes and 

also reduces the range for high degree nodes. The final range value in Table 1 has two 

different values for the two same degree nodes and small range for high degree nodes. Eq. 

(7) calculates the final range value of each node. 

Rf(Si) = fuzzy[dbs(Si), E(Si), Ri(Si)]   (7) 

Eq. (7) is a mathematical representation of Table 1. Figs. 1-3 show a representation 

of membership function for the three input variables, residual energy (Ei(Si)), initial range 

(Ri(Si)), and a distance of a node Si from BS (dbs(Si)) respectively. Fig. 5 describes the 

membership function for the final range. Energy has low, medium, and high as a linguistic 

variable. Distance from BS has close, medium, and far as the linguistic variable. The initial 

range has low, medium, and high as a linguistic variable. The output variable is the final 

range value and has linguistic variables as very small, small, rather small, medium small, 

medium, medium large, rather large, large, and very large. Boundary variables use the 

trapezoidal membership function and intermediate variables use the triangular membership 

function for all simulations. The value of linguistic variables (e.g. low, medium, high) is 

different for input/output parameters. The membership function of a parameter represents 

the value of corresponding linguistic variables. Consider the case of residual energy (Fig. 1);  
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Table 1. Fuzzy if-then mapping rules for final range calculation. 

Distance to BS Residual energy Initial range Final range 

Far high high very large 

Far high medium large 

Far high low rather large 

Far medium high very large 

Far medium medium large 

Far medium low rather large 

Far low high very large 

Far low medium large  

Far low low rather large 

Medium high high medium large 

Medium high medium medium 

Medium high low medium small 

Medium medium high medium large 

Medium medium medium medium 

Medium medium low medium small 

Medium low high medium large 

Medium low medium medium 

Medium low low medium small 

Close high high rather small 

Close high medium small 

Close high low very small 

Close medium high rather small 

Close medium medium small 

Close medium low very small 

Close low high rather small 

Close low medium small 

Close low low very small 

 

   
Fig. 1. Membership function for residual energy.  Fig. 2. Membership function for initial range.  

 

it has three linguistic variables low, medium, and high. The range of values is 0-0.75, 0.12-

1.2, and 0.75-1.5 for low, medium, and high respectively. Similarly, the membership func-

tion of other variables represents the value of their linguistic variables. The range of values 

of linguistic variables of a parameter is finalized by performing 10 simulation rounds and 

observing the performance of the algorithm. Existing work finalizes the linguistic varia-

ble’s value by executing the algorithm for many rounds and considers the best case value. 
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Fig. 3. Membership function for distance to BS. Fig. 4. Membership function for total coupling index. 

 

 
Fig. 5. Membership function for final range. 

 

Eq. (8) calculates total coupling index of each node and is as follows: 

T(Si) = D(Si) + CC(Si) + EC(Si).   (8) 

Where D(Si), is the degree of node Si. Eq. (9) defines the common coupling CC(Si) of dif-

ferent nodes. 

CC(Si) = Number of nodes whose range Si belongs to   (9) 

Eq. (10) describes the external coupling value of a node Si.  

1

Number of nodes in the range of who are
( ) .

also in the range of 

n j

i j

i

S
EC S

S=
=    (10) 

External coupling is a parameter to measure a neighbor node’s participation in the other 

nodes in the area. Table 2 describes the corresponding fuzzy rules for chance value calcu-

lation. In the first round of Algorithm 1, the input range helps calculate each node’s degree. 

Second round onwards, line 4 of Algorithm 1 uses the final range’s crisp value to calculate 

the degree of each node. A higher value of chance increases the probability of a node being 

CH. We use degree, common coupling, and external coupling to calculate the total coup-

ling index by Eq. (8). Chance value calculation takes place using the total coupling index 

as defined in Table 2. 
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Table 3 shows different cases of chance value calculation. Each row of Table 3 

demonstrates chance value calculation by utilizing the total coupling index (T(Si)) and re-

sidual energy (E). Second, the third and fourth column represents degree, context coupling, 

and external coupling of sensor nodes. The higher the energy is, the higher the chance for 

CH. Smaller is the value of T(Si), lesser is the chance for CH. Examples 6 and 7 have the 

same degree and same energy value, but different, T(Si), so a higher T(Si) node gets a higher 

chance value. So the common coupling, the external coupling, and each node’s degree are 

important in deciding the chance value for the node. MCFL algorithm considers degree 

and energy at one stage, distance to the CH, and energy at another stage but the ABCRF 

algorithm considers two additional parameters (common coupling and external coupling) 

for chance value calculation. 

 

Algorithm 1: Algorithm of ABCRF clustering protocol 

Input: n, range, energy, area, sink, p, node_type, rmax 

Output: X = {CHs, alive nodes} 

1: Sensor node deployment in a rectangular area; 
2: Calculate distance (Si Sj) by using Eq. (8); 

3: for r = 1 to rmax 

4: Calculate degree (Si) i.e. number of nodes in range of Si; 

5: Calculate ABC index by using Eq. (9); 

6: Calculate initial range Ri(Si) by using Eq. (10); 

7: Calculate final range Rf(Si) by using Eq. (11); 
8: Calculate total coupling index T(Si) by using Eq. (12); 

9:  for i = 1 to n 

10:    if (Si.energy <= 0) 

11:            alive = alive-1; 

12:    end if 

13:    for i = 1 to n 
14:    Select p nodes with largest chance and assign Si.type = TCH; 

15:    end for 

16:  end for  

17:  Send CH_MESSAGE (ID, Rf, Sensor_Energy) to the neighbor nodes 

18:    for i = 1 to n 

19:    for j = 1 to n 
20:            if ((Si, Sj).type= TCH && d(Si, Sj) <= Rf(Si)) 

21:               if (Si.energy < Sj.energy) 

22:                  Si.type = normal; 

23: Advertise QUIT_FROM_ELECTION_MESSAGE(ID) 

24:               end if   

25:            end if 
26:    end for 

27:    end for 

28:    for i = 1 to n 

29:               if(Si.energy>0 && Si.type=TCH) 

30: Advertise CH_MESSAGE(ID) 

31:                  Si.type=CH; 
32:               end if  

33:    end for 

34: Cluster members will join the nearest CH by sending the JOIN_TO_CH_MESSAGE(ID)   

35: end for 

36: Return X 
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Further, a node’s chance to become CH based on the total coupling index is defined 

in Eq. (11). Eq. (11) is a mathematical representation of Table 2. The fuzzy inference sys-

tem calculates the chance value using the rules defined in Table 2. 

Chance of a node for CH is calculated by 

C(Si) = fuzzy[T(Si), E(Si)].   (11) 

The two input variables; total coupling index (T(Si)) and residual energy (E(Si)) are shown 

in Figs. 4 and 1 respectively. The fuzzy output variable, chance (C(Si)) is described in Fig. 6.  

 
Fig. 6. Membership function for chance. 

 

Table 2. Fuzzy if-then rules for chance value calculation. 
Total coupling index Residual energy Chance 

Far high very large 
Medium high large 

Close high rather large 
Far medium medium large 

Medium medium medium 
Close medium medium small 
Far low rather small 

Medium low small 
Close low very small 

 

Table 3. Example of chance value calculation. 
Example No. Degree CC(Si) EC(Si) T(Si) E Chance 

1 4 4 376 384 0.487 17.297 
2 4 3 377 384 0.477 17.145 
3 4 4 376 384 0.485 17.246 
4 7 7 647 661 1 42.258 
5 8 8 738 754 1 42.917 
6 10 10 903 923 1 43.705 
7 10 10 821 841 1 43.355 

 

The following points explain the reason for selecting rules of Tables 1 and 2: 

 

− Rules of Table 1 decrease the final competition range of a node that is very near to the 

BS. It will minimize the hot spot issue and will increase the performance. 
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− The competition radius of a node should be small if the energy of the node is less. The 

rules of Table 1 reduce the competition range for a node with lower residual energy. 

− Past research reveals that the competition radius should decrease when the degree of a 

node increases. Rules of Table 1 decrease the competition radius when the node degree 

increases and hence improves the lifetime. 

− The energy of tentative CHs should be high because final CHs are selected from the 

tentative CHs. Rules of Table 2 select the tentative CHs with high residual energy and 

hence final CHs have more residual energy. 

− Common coupling and External coupling maintain the uniform node distribution among 

clusters and also prevents closeness between CHs because there are fewer common 

neighbors between nodes in sparse networks. 

 

The chance value calculated by Eq. (11) is normalized as NC(Si) for further use.  

 

The desired number of nodes with the largest chance value is declared as a tentative 

cluster head. Further, a tentative cluster head whose energy is higher than all other tentative 

cluster head nodes in its competition range is declared as the final cluster head. The status 

of those nodes who could not qualify for final CH changes to a normal node. The cluster 

formation process permits member nodes to join the nearest CH node. Each cluster head 

node aggregates data and sends it to the BS via the multi-hoping technique. 

4. OVERVIEW OF NEURO-FUZZY OPTIMIZATION MODEL 

AND CRYPTOGRAPHY TECHNIQUE 

This section explains the neuro-fuzzy optimization model and security mechanism 

(cryptography technique). We carry out the performance evaluation of the proposed algo-

rithm by incorporating the artificial intelligence approach and secure data aggregation 

method. 

4.1 Neuro-Fuzzy Optimization Model 

We propose the neuro-fuzzy optimization model mechanism for implementation with 

the proposed protocol. We evaluate the Adaptive Neuro-Fuzzy Inference System (ANFIS) 

estimator to monitor the status of different sensor nodes in a cluster. Fuzzy rules help to 

fix the status of each sensor node. There are three input parameters in the fuzzy logic to 

calculate the node status. The input parameters are FC (Fault Count-number of rounds a 

node is faulty), successful packets (ratio of successful packets to total packets), and resid-

ual energy. We mention the different rules in Table 4. Lastly, the ANFIS estimator calcu-

lates the crisp value using the centroid method of defuzzification. The value of node status 

may be healthy or unhealthy. We use the status of a node to create a matrix (Cluster Health 

Matrix (CHM)) for each cluster and further define Cluster Unhealthy Index (CUI) as below: 

   

  
100.

Count of unhealthy nodes

Total node count
CUI =     (12) 

The cluster having the CUI value higher than the pre-defined threshold value works as un-

healthy cluster and will not participate for data aggregation.  
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Table 4. Fuzzy if-then rules for node status calculation. 

FC Successful packets Residual energy Status 

high very poor high unhealthy 

medium poor high unhealthy 

low good high healthy 

low average medium healthy 

medium very poor medium unhealthy 

medium poor medium unhealthy 

high very poor low unhealthy 

medium very poor low unhealthy 

high poor low unhealthy 

 

4.2 Cryptographic Technique 

  

We use Gorti’s Enhanced Homomorphic Cryptosystem (EHC) technique [50] to en-

crypt and decrypt the data. The method guarantees end-to-end data confidentiality and does 

not share the key with the intermediate node. It uses public and private keys of the base 

station for computations like direct addition or multiplication for encrypting data. We 

mainly use multiplicative homomorphic and additive homomorphic techniques. 

Let us consider the different notations as below: 

EN for encryption, DE for decryption, + for addition operation,  for multiplication 

operation, A1 for the private key, A2 for the public key, and R for data set.  

The condition for additively homomorphic is  

p + q = DEA1(ENA2(p) + ENA2(q))    p, qR, (13) 

 

The condition for multiplicatively homomorphic is  

p  q = DEA1(ENA2(p)  ENA2(q))    p, qR, (14) 

The CHs share the secret key with the BS. Each cluster uses the above technique to secure 

the network.  

5. COMPARATIVE ANALYSIS OF RESULT AND SIMULATION WORK 

Here we simulate our work (ABCRF protocol) and compare performance with LEACH, 

EEUC, EAUCF, MCFL, and FBUCA protocols by using the matlab tool. We deploy a 

sufficient number of nodes in the area of interest. There are three parts to our experiments. 

The first part is for a small area network, the second part is for a large area network, and 

the third part is for the dynamic network, mobile sink, and secure artificial intelligence. 

The simulation and analysis of results take place into 3 different categories as follows: 

 

− Small area networks: We carry out experiments in 4 different scenarios to evaluate the 

ABCRF protocol. The deployment area is the same for each scenario. We consider the 

different combinations of (base station location, sensor node count, and initial energy) 

for each scenario. The detail about simulation parameters is shown in Table 5. 
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Table 5. Simulation parameter details of different scenario. 

Parameters Value  scenario 1 Value  scenario 2 Value scenario 3 Value scenario 4 

Field area of WSN 200200 m2 200200 m2 200200 m2 200200 m2 

BS location (100, 100) (100, 100) (100, 100) (200, 200) 

Sensor node count 100 200 100 100 

Initial energy 1 J 1 J 0.5-1.5J 0.5-1.5J 

Initial radius of cluster 70 m 70 m 70 m 70 m 

Eelec 50 nJ/bit 50 nJ/bit 50 nJ/bit 50 nJ/bit 

Efs 100 pJ/bit/m2 100 pJ/bit/m2 100 pJ/bit/m2 100 pJ/bit/m2 

Emp 0.0013 pJ/bit/m4 0.0013 pJ/bit/m4 0.0013 pJ/bit/m4 0.0013 pJ/bit/m4 

Eda 5 nJ/bit/message 5 nJ/bit/message 5 nJ/bit/message 5 nJ/bit/message 

 

− Large area networks: We consider static network and fixed sink scenarios for large area 

networks. We assume that nodes and sink are not movable. The proposed protocol shows 

its superiority in all scenarios for small area networks, but a fair comparison with other 

protocol’s performance is also analyzed for large area networks. The area for the large 

network is 500500 and 300 nodes are deployed with BS at (500, 500). The initial energy 

of each node is 5 J as each node spends a large amount of energy in each round.  

− Dynamic network, mobile sink, and secure artificial intelligence: We consider dynamic 

network, sink mobility, and secure artificial intelligence separately and perform a com-

parison with ABCRF protocol.   

[A] Small area networks − We run each experiment 20 times and calculate the average 

for each scenario; it illustrates the proper analysis of the results. Simulation outcome shows 

that the ABCRF performs better than LEACH, EEUC, EAUCF, MCFL, and FBUCA in 

all scenarios. The first node death (FND), half node death (HND), residual energy of net-

work after 500 rounds (RE_500), and residual energy of network after 1000 rounds (RE_ 

1000) are parameters to compare the performance of protocols. We do not consider the last 

node death since network energy is mostly exhausted after 50% of the node death and the 

network becomes almost functionally inefficient. To better analyze the algorithm, we con-

sider 4 different network scenarios. The first and second scenarios are homogeneous with 

100 and 200 nodes respectively. The third and fourth scenarios are heterogeneous with BS 

at (100, 100) and (200, 200) respectively. The proposed algorithm shows better perfor-

mance for all the scenarios. Each algorithm execution round decides the members after the 

finalization of CHs. Each member node transmits 4000 data bits to its CHs. For all scenar-

ios, the cluster’s initial radius is analogous to R (range) used in Eq. (6). The energy model 

of [36] defines Eelec, Efs, Emp and its value is the same in all scenarios. Eda denotes data 

aggregation energy. Table 5 contains all the parameters of a different scenario. 

Scenario 1: The total number of nodes deployed is 100 in this scenario. BS is located in 

the center of the area. Due to the homogeneous network, each node is having the same 

initial energy of 1 joule. Before the protocol starts execution, the total network energy is 

100 joule. As shown in Table 6, ABCRF performs better than LEACH, EEUC, EAUCF, 

MCFL, and FBUCA for FND, HND, RE_500, and RE_1000. For FND, EEUC and 

EAUCF perform better by 14.7% and 29.9% respectively than LEACH protocol. EAUCF 

is 13.2% more efficient than the EEUC protocol for FND. LEACH performs the worst 
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among all protocols for FND. ABCRF performs 47% better than LEACH, 28.2% better 

than EEUC, 13.1% better than EAUCF, 9.6% better than MCFL, and 12.4% better than the 

FBUCA algorithm for FND. For HND, ABCRF performs 50.2% better than LEACH, 

22.5% better than EEUC, 15.1% better than EAUCF, 12.1% better than MCFL, and 13.4% 

better than FBUCA. The performance of the ABCRF algorithm is higher because it con-

siders double range optimization and chance value calculation based on the total coupling 

index, while LEACH, EEUC, EAUCF, MCFL, and FBUCA do not consider it. The prob-

abilistic method itself is not sufficient for suitable CH selection. Fuzzy logic gives flexi-

bility for proper value selection in a case of uncertainty. EAUCF tries to combine range 

with sensor node energy to decide CH node but the range calculation based on the distance 

parameter does not guarantee better performance.  

 

Table 6. Performance of scenario 1. 

Algorithm FND HND RE_500 RE_1000 

LEACH 381 635 28.4 4.9 

EEUC 437 779 36.96 5.9 

EAUCF 495 829 41.3 6.17 

MCFL 511 851 43.6 7.01 

FBUCA 498 841 42.9 6.35 

ABCRF 560 954 47.8 7.17 
 

Table 7. Performance of scenario 2. 

Algorithm FND HND RE_500 RE_1000 

LEACH 451 881 91.2 22.35 

EEUC 466 895 92.3 23.15 

EAUCF 475 901 94.35 25.36 

MCFL 471 911 97.1 26.3 

FBUCA 461 916 98.3 25.1 

ABCRF 525 998 106.79 32.23 
 

Scenario 2: The total number of nodes for deployment is 200 in scenario 2 with 1 joule of 

the initial energy of each node. Total network energy is 200 joule. The BS station location 

is in the center of the area as in scenario 1. The other parameters are listed in Table 5. As 

shown in Table 7, ABCRF performs better than LEACH, EEUC, EAUCF, MCFL, and 

FBUCA for FND, HND, RE_500, and RE_1000. The performance of ABCRF is 16.4% 

better than LEACH, 12.7% better than EEUC, 10.5% better than EAUCF, 11.4% better 

than MCFL, and 13.9% better than FBUCA for FND. The performance of ABCRF is 

13.3% better than LEACH, 11.5% better than EEUC, 10.8% better than EAUCF, 9.6% 

better than MCFL, and 9% better than FBUCA for HND. The EAUCF algorithm performs 

0.67% better than EEUC for HND. The last two columns of Table 7 show the residual 

energy of the network after 500 rounds and 1000 rounds of algorithm execution. After 500 

rounds the residual energy of ABCRF is 17.1% better than LEACH, 15.7% better than 

EEUC, 13.2% better than EAUCF, 10% better than MCFL, and 8.6% better than FBUCA. 

The residual energy of the network after 1000 rounds for ABCRF improves 44.2% over 

LEACH, 39.2% over EEUC, 27.1% over EAUCF, 22.5% over MCFL, and 28.4% over 

FBUCA. It clearly shows that ABCRF also performs better for dense network environments.  

 

Scenario 3: In this scenario, nodes are having different initial energy. The nodes are ran-

domly initialized with initial energy between 0.5 and 1.5. The BS location is in the center 

of the area. The total number of nodes for this scenario is 100. Table 5 illustrates the pa-

rameters of scenario 3. Due to heterogeneity, we execute the algorithm 20 times and then 

take the average for further calculation. Table 8 shows the final results. ABCRF performs 

better than other algorithms for all the parameters considered. FND parameter is 39.9% 

better than LEACH, 32.9% better than EEUC, 8.9% better than EAUCF, 13.1% better than 

MCFL, and 25.9% better than FBUCA, while HND parameters perform 18.2% better than 
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LEACH, 11% better than EEUC, 8.6% better than EAUCF, 4.6% better than MCFL, and 

4.1% better than FBUCA. The third and fourth column of Table 8 clearly shows that 

ABCRF has more residual energy than other protocols considered after 500 rounds and 

1000 rounds. After 1000 rounds ABCRF still has approximately double energy than 

LEACH protocol. The residual energy of the network for ABCRF is 29.4% more than 

LEACH, 22.1% more than EEUC, 14.3% more than EAUCF, 16.7% better than MCFL, 

20.2% better than FBUCA for 500 rounds. The residual energy of the network for ABCRF 

is much better than other algorithms for 1000 rounds. After 1000 rounds, ABCRF improves 

the residual energy of the network by 69.2% over LEACH, 52.6% over EEUC, 25.2% over 

EAUCF, 23.65% over MCFL, and 23.3% over FBUCA. 

 

Scenario 4: In this scenario, 100 heterogeneous nodes work in the 200200 area. This 

scenario is different than other scenarios for the BS location. BS is located at (200, 200), 

which is distant from most of the nodes in the area.  

 

The EEUC algorithm performs better than the EAUCF algorithm for HND, RE_500, 

and RE_1000. ABCRF performs better than all other algorithms under comparison. 

ABCRF improves 13.9% over MCFL, 16.9% over FBUCA, 19% over EAUCF, 23.5% 

over EEUC, and 91% over LEACH for FND. HND parameter of ABCRF is 35.9% more 

than LEACH, 5.22% more than EEUC, 22.1% more than EAUCF, 78.1% more than 

MCFL, and 81.2% more than FBUCA. The residual energy after the 1000th round of 

ABCRF algorithm is significantly better than all other algorithms. We achieve maximum 

improvement in the network’s residual energy of ABCRF supported network than LEACH 

after 1000 rounds. The last column clearly shows that ABCRF has 3.78-joule residual en-

ergy after the 1000th round, which is much better than LEACH, EEUC, EAUCF, MCFL, 

and FBUCA algorithm. Fig. 7 shows the energy spent per round by the protocols for dif-

ferent scenarios. ABCRF protocol requires minimum energy among protocols considered 

in each scenario.  

 
Fig. 7. Average energy spent per round for 1000 rounds in different scenario. 

 
Fig. 8. Remaining energy vs. rounds in scenario 1. 
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Table 8. Performance of scenario 3.  

Algorithm FND HND RE_500 RE_1000 

LEACH 271 766 40.31 7.91 

EEUC 285 815 42.72 8.77 

EAUCF 348 833 45.65 10.69 

MCFL 335 865 44.7 10.82 

FBUCA 301 869 43.4 10.85 

ABCRF 379 905 52.18 13.38 
 

Table 9. Performance of scenario 4.   

Algorithm FND HND RE_500 RE_1000 

LEACH 137 460 13.76 1.32 

EEUC 213 594 20.71 1.91 

EAUCF 221 512 18.25 1.51 

MCFL 231 351 19.3 1.85 

FBUCA 225 345 19.1 1.75 

ABCRF 263 625 23.6 3.78 
 

 

The remaining energy vs. rounds of protocols is shown in Figs. 8-11 for Scenarios 1-

4 4 respectively. The remaining energy of the ABCRF protocol is higher than other proto-

cols considered in each scenario.  

[B] Large area network − The algorithms execute 200 rounds and the results are 

shown in Figs. 12-14. FND, HND, packets transmitted to BS, cluster overhead are the 

parameters taken for simulation of a large network scenario. The ratio of energy required 

during the setup phase and total dissipated energy calculates the cluster overhead. 

Throughput is a measure of packets transmitted to BS. Due to the large size of the network, 

most of the nodes die early so we consider that the algorithms execute only for 200 rounds. 

ABCRF performs significantly better for all the parameters as compared to LEACH, 

EEUC, EAUCF, MCFL, and FBUCA.  
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Fig. 11. Remaining energy vs. rounds in scenario 4.     Fig. 12. FND and HND for large scale network. 

Fig. 9. Remaining energy vs. rounds in scenario 2.   Fig. 10. Remaining energy vs. rounds in scenario 3. 
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Fig. 13. Cluster overhead for large scale network.      Fig. 14. Throughput for large scale network. 
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[C] Dynamic network, mobile sink, and secure artificial intelligence − We perform 

the simulations for the dynamic network (ABCRF-DN), sink mobility (ABCRF-SM), and 

secure artificial intelligence (ABCRF-SAI) separately and perform a comparison with 

ABCRF protocol. We consider FND and HND parameters for the simulation. The value 

of FND for ABCRF, ABCRF-DN, ABCRF-SM, and ABCRF-SAI protocols are 65, 131, 

188, 195 respectively. The value of HND for ABCRF, ABCRF-DN, ABCRF-SM, and 

ABCRF-SAI protocols are 161, 191, 502, 521 respectively. Here we assume that nodes 

and sink are mobile and the rest of the simulation parameters are the same as the static 

network and fixed sink scenario of a large area network. Fig. 15 shows a comparison of 

ABCRF protocol with ABCRF-DN, ABCRF-SM, and ABCRF-SAI for FND and HND. 

ABCRF-SAI performs better than ABCRF, ABCRF-DN, and ABCRF-SM for FND and 

HND. 

 
Fig. 15. Performance for sink mobility, dynamic network and secure artificial intelligence. 

 

We perform the simulation of the proposed protocol using the neuro-fuzzy optimiza-

tion model and Gorti’s Enhanced Homomorphic Cryptosystem (EHC) technique for the 

FND and HND. 

The above simulation work proves that the ABCRF algorithm is better than other 

algorithms. The proposed algorithm shows better performance due to the use of energy and 

total coupling index for cluster head chance value calculation. The total coupling index 

performs better CH distribution in the network and extends network lifetime. Range cal-

culation of ABCRF algorithm considers more informative parameters and proves its use-

fulness by extending the network lifetime. 

6. CONCLUSIONS 

Nodes closer to BS die quickly due to heavy traffic in multi-hop WSN and create hot 

spot issues. The proposed ABCRF protocol handles the hot spot issue properly and in-

creases network stability by combining the fuzzy inference feature with the unequal clus-

tering method. Double range optimization ensures a suitable range value for each node and 

helps to lower the intra-cluster cost of a cluster. ABCRF algorithm uses an atomic bond 

connectivity index to calculate the initial range value, which is further used with other 

network features like energy and distance from BS to calculate the final range value. 

ABCRF performs better than in comparison to LEACH, EEUC, EAUCF, MCFL, and 

FBUCA in each scenario.  
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