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A method to represent first-order predicate logic (Horn clause logic) by a data-flow 

network is presented. Like a data-flow computer for a von Neumann program, the pro-
posed network explicitly represents the logical structure of a declarative program by un-
labeled edges and operation nodes. In the deduction, the network first propagates sym-
bolic tokens to create an expanded AND/OR network by the backward deduction, and 
then executes unification by a newly developed method to solve simultaneous equations 
buried in the network. The paper argues the soundness and completeness of the network 
in a conventional way, then explains how a kind of ambiguous solution is obtained by the 
newly developed method. Numerical experiments are also conducted with some da-
ta-flow networks, and the method’s convergence ability and scaling property to larger 
problems are investigated.     
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1. INTRODUCTION 
 

Network has been one of the most well-studied representation tools of knowledge in 
Artificial Intelligence. Back in the 1980s, some models that explicitly manipulate human 
words or concepts have been proposed and pursued by a number of authors: Peirce’s 
existential graphs [19], semantic networks [16, 17], conceptual graphs [6, 23], and so on. 
Among these, in the conceptual graph, to represent a nested structure in predicate logic, 
Sowa introduced a hyper-concept named ‘proposition’ and succeeded in describing any 
knowledge in the form of first-order predicate logic. These highly human-oriented repre- 
sentation schemes, however, require computationally heavy operations for deductive infer-
ence, as represented by the semantic networks that need structural matching between graphs. 

A more inference-oriented network model, Petri-net, was extensively studied by 
Murata et al. [7, 12-14]. Every atom being expressed as a ‘place’ and every term and 
argument set being expressed as a ‘token’, this model concisely represents Horn clause 
logic by a ‘high-level’ Petri-net (Petri-net with labeled arcs), and conducts forward [14] 
or backward [7] deduction by parallel firing of ‘transitions’. The final answer is obtained 
simply from tokens arriving at the goal transition [14] or by combining unifiers accumu-
lated in the transitions during the deduction [7]. The backward deduction can be regard-
ed as graphical visualization of the SLD-resolution (Selective Linear Definite clause 
resolution), whereas the forward deduction suffers from a serious problem, token num-
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ber’s explosion, when the depth of deduction is large. 
As a revised method of this previous model, Suzuki et al. very recently proposed a 

concept of the network-based inference system named “Knowledge Transitive Network 
(KTN)” [27-29]. The KTN is an extension of the authors’ former model named ATN (Al- 
gorithmically Transitive Network), a data-flow computational model with learning abili-
ties [25, 26]. While propagating numerical tokens with ‘reliability’ values, the ATN can 
revise its inner algorithm/function by using the feedback information from the teaching 
signals (supervised learning). Taking the same scheme, the KTN manipulates symbolic 
information (such as terms in predicate logic) and infers with ambiguity. 

Following [29], the present paper formulates the transformation scheme by which a 
data-flow graph (DFG [4, 21], i.e., KTN) is constructed from a logic program. All the 
symbols such as constants, variables, and function symbols comprising a term in predi-
cate logic are directly translated into symbol nodes. This enables the KTN to deal with 
not only variables but also function symbols explicitly and avoid some common prob-
lems in current approaches, including inefficiency owing to symbol grounding. Markov 
logic network in probabilistic logic programming [8, 18] or the answer set programming 
for non-monotonic reasoning [1, 11] are based upon the symbol grounding (elimination 
of variables) and unable to deal with an infinite constant set. The recent ‘lifted’ ap-
proaches on graphical models [3, 15, 22, 30] have pursued for a method to manipulate 
first-order logic within the framework of probabilistic reasoning; and yet, in formulating, 
these approaches consider only clauses free of function symbols which the KTN can 
naturally represent. 

Another merit of the KTN is in the inference’s ambiguity represented by the token 
reliability. Here, the reliability is roughly defined as inter-token consistency that reflects 
to what extent unification is solved successfully. The KTN infers with so-called back-
ward deduction. By propagating symbolic tokens, the original DFG is expanded into an 
acyclic directed graph, to which our newly developed method named “ELiminating In-
consistency by SElection (ELISE)” is applied. ELISE solves unification by numerically 
maximizing the token reliability which finally produces an ambiguous answer if any 
contradiction is found in an expanded search graph. Note that this KTN’s ambiguity is 
naturally introduced without any extra parameters in the original logic or the DFG. By 
contrast, to represent uncertainty, many recent approaches on probabilistic reasoning tag 
predicate logic with various parameters whose values are optimized with learning: 
weight of clauses (facts and rules) [8, 18], probability of clauses [5], weight of atoms 
[30], probability of particular atoms [20], and so on. 

In the following, the paper makes a full description of the translation scheme from 
Horn logic to the DFGs in Section 2. In Section 3, after the semantics of the KTN (Sec-
tion 3.1) and the detailed algorithm of ELISE (Section 3.2) are described, ‘pools’ are in- 
troduced to select tokens ‘locally’ in ELISE (Section 3.3). Some convergence experiments 
of ELISE are conducted in Section 4, and concluding remarks are given in Section 5. 

2. KNOWLEDGE REPRESENTATION 

2.1 From High-level Petri-net to KTN 

Definition 1: Throughout this paper, we take a notation that constants start with an up-
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percase letter and variables start with a lowercase letter. q is a specific variable for the 
query. Looking upon a term f(t1, …, tn) as a list expression f(t1, …, tn), we sometimes 
call a term a symbol sequence. 

The KTN’s basic design can be derived from the high-level Petri-net by making some 
revisions. Let us consider the following logic program. 

 
Example 1 (Man/Human): 

Man(Tom).       (Tom is a man.) 
Human(x)  Man(x).       (A man is a human.)    (1) 
 Human(q)      (Who is a human?). 

 
Fig. 1. Derivation of a KTN from a high-level Petri-net for Prog. (1); (a) High-level Petri-net for 

forward deduction; (b) Data-flow graph for forward deduction; and (c) Data-flow graph for 
backward deduction. 

 
Fig. 1 (a) shows the high-level Petri-net for forward deduction in Prog. (1). This 

Petri-net is modified by introducing symbol nodes labeled with ‘Tom’ and ‘q’, changing 
places into nodes with operation m, removing transitions and arc labels, and adding the B 
and E nodes at both ends (Fig. 1 (b)). See Table 1 for the meanings of the node opera-
tions. Finally, the KTN is derived by reversing the directions of all the edges and intro-
ducing an ‘==’ node specifying the binding condition to ‘Tom’ (Fig. 1 (c)). As compared 
to the original high-level Petri-net, the KTN’s edges are not labeled but its nodes are 
labeled with operations and terms. 

 
2.2 Transformation from Horn Logic to KTN 
 

If we prepare an appropriate set of node operations (Table 1), we can construct a 
DFG representing any form of Horn clause. Fig. 2 shows some examples of such trans-
formation, and Figs. 3 to 6 show the general translation rules that define a KTN in an 
inductive way. The final DFG for a logic program is constructed by making m nodes 
shared between the created subnets. 
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Table 1. Node operations. 

Name 
Oper. 
code 

Input 
num. 

Synchronous/
Asynchronous t r Function 

Begin B 0 (No input)  1 Begin propagation 
End E 1+ Async.   End propagation 

Symbol s 1+ Async. o r Create a symbol token 

Apply a 2 Sync. t0(t1) min(r0, r1) 
Apply the 0th input fun- 
ction to the 1st input 

Merge m 1+ Async. t r Transfer a token freely 

Gate g 2 Sync. t0 min(r0, r1) 
Transfer the 0th input if 
the 1st input exists 

Combine ∋ 2+ Sync. (t0, t1, …) min(rk) Combine the arguments 
Split  1+ Async. tk = tk rk = r Split the arguments 

Equal == 2 Sync.  
min(r0, r1) 

exp((Dis(x0, x1))
2)

Check if the two inputs 
are equal 

And & 2+ Sync.  min(rk) Logical AND 
In the third column, ‘1+’ means that the node can have one or more incoming edges. g, a, , and ∋ are ‘choosy’ 
nodes whose incoming edges (and tokens on them) are ordered (numbered 0, 1, …). An ‘Asynchronous’ node 
fires every time a token arrives at an incoming edge, and a ‘Synchronous’ node fires only if operand tokens 
arrive at all of the incoming edges. The 5th and 6th columns (t and r) specify the output token’s term and 
reliability produced by the node’s firing during forward propagation, respectively. (See Section 3 for the mean-
ing of the ‘forward’.) Here, t or tk is the symbol of the (kth) incoming token, r or rk is its reliability, t or tk is the 
term of the (kth) outgoing token, r or rk is its reliability, and o is the node’s original (current) symbol sequence. 
See Eqs. (3) and (4) for the definition of  and Dis(…), respectively. 

 
Fig. 2. Examples of the transformation of Horn logic to DFGs. At each row, a logic/clause (on the 

left side) and a corresponding subgraph (on the right side) are shown. For easier under-
standing, some ‘Merge’ nodes (ms) and edges are labeled with predicate names (Human, 
Man, etc.) and terms (x, y, wife(x), etc.), but these labels are not actually used for the infer-
ence. Because the fifth top clause includes two atoms in the body of the rule, the outgoing 
edges of the m node in the center of the DFG are marked with a thick black arc denoting 
‘AND’. This and the lowest rows create new symbol nodes s with z and s with x, respec-
tively. These nodes represent variables that are not determined by tokens from outside. 
Note that in the lowest two rows, a function symbol wife is represented by a symbol node s 
with wife. 
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Fig. 4. Translation rule for a fact. DFGs for (a) ‘P(t1, …, tn).’ and (b) ‘P(t)’. Here and in subsequent 
figures, dashed arrows are for ‘logical’ tokens that convey only reliability. Chain arrows 
from the ‘m’ node to the T nodes are actually connected to all the Symbol nodes in the sub-
nets t1, …, tn to make them fire. All the arguments of a predicate is split by a ‘’ node and 
connected to variable binding node ‘==’s. The other input edges of the ‘==’s are taken from 
subnets for t1, …, tn. The output edges of the ‘==’ nodes go to a ‘&’ node whose output is 
finally connected to an ‘E’ node. 

 
Fig. 2. (Cont’d) Examples of the transformation of Horn logic to DFGs. At each row, a logic/clause 

(on the left side) and a corresponding subgraph (on the right side) are shown. For easier 
understanding, some ‘Merge’ nodes (ms) and edges are labeled with predicate names (Hu-
man, Man, etc.) and terms (x, y, wife(x), etc.), but these labels are not actually used for the 
inference. Because the fifth top clause includes two atoms in the body of the rule, the out-
going edges of the m node in the center of the DFG are marked with a thick black arc de-
noting ‘AND’. This and the lowest rows create new symbol nodes s with z and s with x, re-
spectively. These nodes represent variables that are not determined by tokens from outside. 
Note that in the lowest two rows, a function symbol wife is represented by a symbol node s 
with wife. 

 
Fig. 3. Translation rule for a term. DFGs for (a) (t1, …, tn) and (b) f(g(x, b)). Here and in the sub-

sequent figures, a dotted node is a ‘tentative’ node T that is to be replaced with an actual sub- 
graph before finishing the translation. (b) is made by first creating a subnet for f(t) using a T for 
the parameter t, creating a subnet for g(x, b), then replacing the T with the subnet for g(x, b). 

 

 
 

 
 

(a) (b)

(a) (b) 
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Example 2 (Family relationship): 
[Fact]  Wife(Mary, Paul).                  (2a) 
[Fact]  Child(Tom, Paul).                  (2b) 
[Rule]  Child(x, y)  Wife(y, z), Child(x, z).              (2c) 
[Goal]   Child(q, Mary).                 (2d) 

 
Fig. 5. Translation rule for a goal. DFGs for (a) ‘ G1(t1, ..., tn), …, Gm(…).’ and (b) ‘ G1(t).’. 

The thick black arc on the outgoing edges of the node ‘B’ denotes logical ‘AND’ between 
the edges. For each atom in the body, a ‘∋’ node is prepared which receives inputs from 
tentative nodes for t1, …, tn and combines them. Though in Fig. 5, ‘g’s are inserted after 
the ‘∋’s, the ‘∋’s’ outputs may go directly to the ‘m’ nodes for the predicates G1, …., Gm 
because the ‘g’s’ 1st inputs come from ‘B’ which always fires at the beginning of the oper-
ations. 

 

 
Fig. 6. Translation rule for a rule, namely, DFG for ‘P(t1, …, tn)  Q1(u1, …, ul), …, Qm(…).’. 

The network for a rule is obtained by combining the networks for the component fact and 
goal. The ‘g’ nodes succeeding the ‘∋’ nodes and Symbol nodes in the subnets for u1, …, 
ul receive inputs from the ‘&’ of the fact.   

(a) 

(b) 
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Fig. 7 shows Example 2 and its translation result. After translating the clauses into 
subnets, they were combined by sharing ‘m’ nodes (for Wife and Child) among the sub-
nets. Since the atom Child appears at both the head and body of the clauses, the final 
DFG has a loop. 

As shown in Fig. 7, a KTN has the original Horn logic’s constants and variables as 
nodes. The binding conditions between them are explicitly specified by the KTN’s to-
pology. Some other translation results for test programs are shown in Table 2 and Fig. 8. 
Table 2 suggests that the KTN’s size (i.e., the numbers of constituent nodes and edges) 
increases approximately linearly with the clause number in a logic program. 

 

 
Fig. 7. Transformation from logic program (Example 2) to KTN. The subnets superscripted with 

(a), (b), (c), and (d) stand for Clauses (2a), (2b), (2c), and (2d), respectively. 

Table 2. Translation results from Logic programs to KTNs. 
Program name Clause number Node number Edge number 

append 3 43 70 
perm 5 69 113 

intcalc1 5 71 115 
reverse 5 73 119 
hanoi 5 102 181 

fib 8 107 177 
greek 19 127 195 

intcalc2 13 204 341 
The translation program was implemented in Java. It combines all the logical elements (terms, atoms, and 
clauses) with a parser part to create graphical elements (nodes and edges). ‘append’ is a logic program for ap-
pending lists, ‘perm’ is a program for calculating permutation, ‘intcalc1’ is for addition and multiplication of 
integers (Example 3 in this paper), ‘reverse’ reverses the order of a list, ‘hanoi’ is a program solving the Tower 
of Hanoi, ‘fib’ calculates Fibonacci numbers, ‘greek’ defines the relationship between characters in the Greek 
myths, and ‘intcalc2’ is a program for such integer calculation as addition, multiplication, Fibonacci numbers, 
Ackermann Function, and factorial. The second column stands for the number of Horn clauses in the original 
logic programs, and the third and fourth columns stand for the numbers of nodes and edges in the detailed 
KTNs, respectively. Concrete expressions of the logic programs can be found in [2, 9, 24].   
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Fig. 8. Translation result for the ‘greek’ program in Table 2. (a) The general view of the entire 

KTN, and (b) an enlarged view of the top central part of (a). The first/second/third entry of 
each node label represents the node number/operation code/node name, respectively. For 
example, (126, s, Harmonia) stands for a constant node with term ‘Harmonia’, and (124, -], 
t) means a ‘Combine’ (∋) node (‘t’ has no meaning in this case). The edge labels ‘L’ and 
‘R’ stand for the first and second incoming edges of a ‘choosy’ node (g, ∋, or ==), respec-
tively. The graphs are drawn using software named ‘aiSee’. 

3. DEDUCTIVE INFERENCE 

The KTN’s semantics is argued in two different levels. The first level deals with 
truth or falsehood of the network without considering the possibility of finding a solution 
of unification. The soundness and completeness of the KTN are demonstrated in a con-
ventional way. The second level deals with the unification. ELISE is introduced, and in- 
ference ambiguity is represented by the token reliability. 

(a) 

(b) 
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3.1 Soundness and Completeness 
 
Definition 2: An Exp-DFG is an acyclic directed DFG created by the expansion of the 
original DFG (KTN). Its ‘==’ nodes are called leaves, and its node with no incoming 
edges, i.e., B node is called root. An Exp-DFG is referred to as TRUE/FALSE if its root 
is TRUE/FALSE, respectively.   
 

Since the KTN includes a feedback loop in general, we first propagate tokens in the 
original DFG and expand it, in order to argue the soundness and completeness. A token 
that propagates for this purpose has the form of (t) or (t1, …, tn), where t, t1, and so on 
represent terms. The propagation starts with the firing of the ‘Begin’ node. When a node 
fires, the node calculates a new term with a formula in the 5th column of Table 1 and 
emits it to its outgoing edges. 

While the propagation continues, the firing-propagation history is logged in a mem- 
ory, and after a sufficient number of firing occurs in the DFG, a prototype of an Exp- 
DFG is created from the history. When a Symbol node with ‘o’ fires and is expanded 
several times on account of the feedback loop, different symbols, written for example as 
o0, o1, …, are attached to the expanded nodes. 

Then the final Exp-DFG is created from the prototype by the following operations. 
First, AND relations between edges in the original DFG (shown in Figs. 5 (a) and 6) are 
copied to the corresponding edges in the Exp-DFG. Second, a new AND relation is in-
serted between every set of outgoing edges carrying the same term from a node. All the 
other edges in the Exp-DFG are regarded as OR edges. 

Since the Exp-DFG has AND/OR structure, if we specify logical values, TRUE or 
FALSE, of all the leaves in an Exp-DFG, the logical value of its root can be also deter-
mined. By specifying the leaves’ truth or falsehood, we are specifying an interpretation, 
under which all the variables’ values are determined through unification (when unifia-
ble). 

 
Proposition 1: (Soundness and Completeness): Let G be a subgraph of the Exp-DFG 
such that G’s root is the root of the Exp-DFG and G does not include an OR junction, 
and U be unification. Then, 
 

There exists a G that is TRUE under U. 
 The Exp-DFG is TRUE under U. 

 
Proof:  (soundness): Because G does not include an OR junction, TRUTH of the root 
of G means that all the nodes in G are TRUE. Since any addition of an AND or OR edge 
to a TRUE node cannot make the node be FALSE, G’s truthiness is conserved to the 
entire Exp-DFG. 
 
 (completeness): If the Exp-DFG, that is an AND/OR graph, is TRUE, every OR node 
in the Exp-DFG has at least one TRUE outgoing edge. By cutting all the other edges in 
all the OR nodes, we can transform the Exp-DFG into a G while conserving the truth-
iness of the root.                               
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The proposition states that for deductive inference of a KTN, we only have to iden-
tify a minimum TRUE subgraph G while growing the Exp-DFG. If we cannot find such 
a subgraph G in the current Exp-DFG, we have to propagate tokens in the original DFG 
further and grow the Exp-DFG. Note that for a general Horn logic program there can be 
two or more solutions. To obtain them, we have to repeat the above operation until we 
find an appropriate number of Gs. The final answers of the deduction are given by the 
terms for q under the Us. 
 
3.2 ELISE 
 

Though in the previous subsection, we argued semantics of the KTN only in terms 
of truth or falsehood of the Exp-DFG, here we extend the truth value to a continuous real 
value within [0, 1] and represent some ambiguity. From this point of view, we deal with 
a token in the form of (t, r) or (t1, …, tn; r) in this subsection. Here, t, t1, … represent 
terms, and r represents ‘reliability’. 
 
Definition 3: A branch of the Exp-DFG is a subgraph with just one incoming edge, and 
its root is the terminal node of the incoming edge. A branch is called TRUE/FALSE if 
its root is TRUE/FALSE, respectively. Reliability is a real value within [0, 1] that rep-
resents the inter-term consistency between tokens. This also specifies the logical TRUTH 
of a node at which a token is staying, and finally determines the logical TRUTH of a 
branch or the Exp-DFG. We call the node/branch/Exp-DFG’s logical TRUTH reliability 
as well. 

The token reliability r is basically the product of ‘consistency factors’ formulated as 
 
exp((Dis(u, v))2),    (3) 
 

where  is a predefined constant (selection coefficient) and 

0      if 
Dis( , )

1       if 

u v
u v

u v


  

    (4) 

is an inter-term distance function. (Although the square of Dis(u, v) in Eq. (3) is mean-
ingless under Eq. (4), it would become meaningful when we introduce such a more com-
plex distance function as Levenshtein distance [10] in the future.) 

As described in the previous section, the Exp-DFG can grow infinitely with an in-
crease in the depth of the backward deduction, but if we are able to cut the Exp-DFG’s 
redundant branches during the expansion, it will narrow down the search space and ac-
celerate the deduction. The token reliability r is used not only to select tokens for unifi-
cation but also to identify such branches. r is calculated by our newly developed unifica-
tion algorithm named ELISE (ELiminating Inconsistency by SElection). 

ELISE is basically an agent-based evolutionary method to solve simultaneous equa-
tions (binding conditions) buried in the network. The detailed algorithm of ELISE is as 
follows: 
 
(1) [Initial Setting]  Substitute the Exp-DFG’s variable nodes with initial constant 
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symbols chosen randomly. 
(2) [Forward Propagation]  Based on the variable nodes’ original (current) terms, create 

tokens with term-reliability pairs (t, r)s and propagate them towards the ‘End’ node. 
At each node, the output token (t, r) is calculated using the formulas in Table 1. 

(3) [Backward Propagation]  Create a ‘correction’ token with a term-reliability pair at 
the ‘End’ node and propagate it backward until tokens arrive at the variable nodes. 
During this process, the reliability value is basically conserved at each node from an 
outgoing token to incoming tokens, except that the conflict occurs between them (see 
below for the conflict processing). The term is also conserved, but in such a node as 
‘==’ and ‘a’, new correction terms are produced so that the input/output tokens might 
become consistent with each other around the node. (An == node creates correction 
terms t1 and t0 on the 0th and 1st incoming edges, respectively, and an a node that 
receives the correction term t̂ produces the correction terms t̂0 and t̂1 that satisf t̂0(t1) 
= t̂ and t0(t̂1) = t̂, respectively. Hereafter, x̂ represents the correction of x.) During 
the backward propagation, if conflict occurs between the correction terms at a node, 
token selection takes place. Based on r, tokens are selected or eliminated according 
to their logical relationship. Tokens are randomly selected among ‘AND’-tokens (i.e., 
tokens on edges connected with AND operations), and tokens are selected in propor-
tion to r among ‘OR’-tokens (i.e., tokens on edges connected with OR operations). 
The random selection among AND-tokens ensures that the outgoing AND edges have 
equal chance to provide correction terms. (Steps 2 and 3 are exemplified in Fig. 9.) 

 
Fig. 9. Artificial DFG for the binding conditions q = x0, Mary = y0, x0 = Tom, and z0 = Paul. The 

conditions were extracted from the depth-two Exp-DFG of Fig. 7. (Here, ‘depth’ is the 
number of times that tokens circulate around the loop.) Tokens propagated in Steps 2 and 3 
are depicted in black and red, respectively. At each ‘==’ node, the correction term for an 
operand is calculated by keeping the other operands intact. For example, the top ‘==’ node 
which received Mary and Paul in the forward propagation produces the correction terms, 
Paul and Mary. Since the variable node x0 is an AND node, the node chooses the correction 
term randomly out of the two arriving tokens, before going to Step 4. 
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(4) [Selection (Evolution)]  From a correction token arriving at a variable node, the 
consistency factor is calculated between the original and correction terms by Eq. (3), 
and the reliability is multiplied by the factor. Using this reliability, tokens are select-
ed globally or locally (see below), and the variable nodes’ original terms are updated. 
If the reliability of the final tokens is sufficiently high, namely, the variables have 
self-consistent terms, stop the procedure and answer the query node’s term. Other-
wise, go to Step 2. 

In a typical Exp-DFG, two consistency factors are evaluated during one return pro- 
pagation  one at a constraint node ‘==’ at the end of the forward propagation (see r’s 
formula in Table 1 and another at a variable node at the end of the backward propagation 
 and they are accumulated (multiplied) at reliability r. ELISE which selects tokens with 
higher reliability gradually gets rid of the conflict between token terms and finally makes 
the variables have a self-consistent solution. In the paper, we prepare two different selec-
tion schemes (global and local) and evaluate their performance. 

When we take the global selection scheme, we calculate the ‘correction probability’ 

ˆ ˆ/( )i i ii
p r r 

       (5) 

from the final token reliability {r̂i} (where i is the variable number) after one return pro- 
pagation, and make the original term of the ith variable node be replaced with the correc-
tion term t̂i in the probability of pi. Eq. (5)’s normalization sum is taken for all the varia-
bles in the network. In this way, in the global selection scheme, a single variable correc-
tion happens at a time in the entire network on the average. This helps avoid the conflict 
between correction terms and makes ELISE approach slowly but steadily to a solution. 

Definition 4: We call an Exp-DFG’s branch whose reliability is low a false branch, and 
a branch whose reliability is not yet determined an uncertain branches. 

In Section 3.1, we argued that the truth or falsehood of the Exp-DFG or subgraph G 
is determined by the logical values of its leaves. Likewise, the reliability of the Exp-DFG 
or a branch is calculated from the reliability values of its leaves, which is accomplished 
by the token propagation in ELISE. ELISE calculates rs of leaves at the end of Step 2, 
carries them backward during Step 3, and finally evaluates the reliability of its root. Dur- 
ing this process, we are able to identify false or uncertain branches: a false branch always 
produces low-reliability tokens backward, and an uncertain branch does not produce to- 
kens backward. By cutting false branches and growing the Exp-DFG at the tip of uncer-
tain branches, we can minimize the search of Exp-DFGs and accelerate deduction. A 
similar idea is also found in [5], where the search space is pruned based on probabilities. 

3.3 Token Pool 

When we take the local selection scheme, we no longer use Eq. (5) to select correc-
tion tokens among variables. We prepare ‘token pools’ at the variable nodes instead, put 
all the correction tokens from Step 3 into the pools, and make evolution happen in the 
pools. This makes the operations of ELISE completely local, and at the same time, ac-
celerates its convergence. 

Concrete operations of a token pool is as follows: 
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(1) [Preparation]  Prepare an empty token pool at a variable node whose size is limited 
to N. 

(2) [Push & Reproduction]  If a correction token (t̂i, r̂i), arrives at the variable node 
by Step 3 of the previous subsection, it is pushed onto the pool together with sr̂i 
copies of it. Here, s is a constant named ‘selection coefficient’.   

(3) [Selection]  Tokens are chosen in inverse proportion to r and are eliminated until 
the pool size becomes less than N.   

(4) [Mutation]  At a constant rate u, tokens are randomly chosen and their terms are 
replaced with arbitrary constants.   

(5) [Pop]  A token is randomly chosen (popped) and eliminated out of the pool, and its 
term is substituted for the node’s next original term. Go to Step 2.    

4. CONVERGENCE EXPERIMENTS OF ELISE 

4.1 Problems 
 
To examine the convergence properties of ELISE, numerical experiments are con-

ducted using the following logic program: 

Example 3 (Arithmetic operations): 
Add(0, x, x).    (6a) 
Mul(0, y, 0).    (6b) 
Add(S(u), v, S(w))  Add(u, v, w).    (6c) 
Mul(S(e), f, h)  Mul(e, f, g), Add(g, f, h).    (6d) 

 
S( ) is a successor function. 

In addition to these facts and rules, we prepare a goal clause in the form of 
 
 Mul(S(S(…S(0)…)), S(0), q),     (6e) 
 

extract the binding conditions in the depth-D Exp-DFG of the whole program, and con-
struct an artificial DFG with the same structure as that of Fig. 9 from the binding condi-
tions. Hereafter, with M (defined as the number of Ss included in the first argument of Eq. 
(6e)), we designate a logic program represented by Eqs. 6 (a)-(e) with M Ss as ‘Problem- 
M’. If D  M, the extracted binding conditions are nonunifiable, but if D > M, the condi-
tions are unifiable. From preliminary studies, we obtained the optimal parameters as fol-
lows:  = 0.1, N = 3, s = 5,  = 1, and u = 0. 
 
4.2 Convergence Ability 
 

Fig. 10 shows two example artificial DFGs (nonunifiable and unifiable) for Prob-
lem-2, and Fig. 11 shows the results for them. We see from Figs. 11 (a1) and (a2) that 
with the nonunifiable constraint set, the number of unsatisfied constraints stays at one at 
larger iteration numbers, meaning that a self-consistent solution cannot be found no mat-
ter whether we may use global or local selection scheme. In this case, the token’s final 
reliability is less than one (typically, r̂ = 0.8~0.9). 
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Fig. 10. Artificial DFGs created from the binding condition sets in the (a) depth-2 and (b) depth-3 

Exp-DFGs (a) represents 8 nonunifiable binding conditions on 7 variables, and (b) repre-
sents 17 unifiable binding conditions on 15 variables. The symbol nodes (lightblue) are 
classified into function symbols, variables, or constants. An Apply node ‘a’ (lightgreen) 
always takes the 0th input from a function node. 

 
Fig. 11. ELISE’s results for Figs. 10 (a1) and (b1) are the results by the global token selection 

scheme for Figs. 10 (a) and (b), respectively, and (a2) and (b2) are the results by the local 
selection scheme for Figs. 10 (a) and (b), respectively. The thin gray lines are the results 
for fifty runs using different initial symbols and different random number sequences, and 
a thick red line is their average. 

(a) (b) 
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With the unifiable constraint set (Figs. 11 (b1) and (b2)), on the other hand, the 
number of unsatisfied constraints converges to zero for all the fifty runs, which means 
that ELISE succeeds in finding a solution regardless of the initial constant symbols sub-
stituted. The solution gives the right answer q = S20 = S(S(0)) with the highest reliability 
r = 1.0 in this case. 

In both nonunifiable and unifiable cases, the average of fifty runs monotonously 
decreases over time, from which it is concluded that ELISE has a tendency to minimize 
conflict between token variables and make their terms converge. 
 
4.3 Scaling Properties 
 

We prepare artificial DFGs for unifiable binding conditions for Problems-0 to 7 
and apply ELISE to them. According to the results shown in Table 3 and Fig. 12, we can 
say that the convergence speed of ELISE with the local selection scheme is much faster 
than that with the global selection scheme. From the regression lines in Fig. 12, we see 

 

Table 3. Average convergence time. 

M D(depth) 
Num. of 
variables 

Num. of 
constraints

Convergence time 
global local 

0 1 2 2 3.16 2.26 
1 2 7 8 139.44 28.10 
2 3 15 17 576.22 60.00 
3 4 26 29 1760.88 116.66 
4 5 40 44 5564.18 186.52 
5 6 57 62 9626.60 237.66 
6 7 77 83 20418.92 354.04 
7 8 100 107 35928.52 496.42 

M is the number of Ss included in the first argument of Eq. 6 (e), and D is the depth of an Exp-DFG for a pro-
gram represented by Eqs. 6 (a)-(e). The third and fourth columns are the variable and constraint number in-
cluded in the binding conditions in the Exp-DFGs, respectively, and the fifth and sixth columns represent the 
average iteration number of fifty runs until the convergence of ELISE using the global and local selection 
schemes, respectively. 

 
Fig. 12. The plot of Table 3. The convergence time by the global and local selection (fifth and sixth 

columns) is plotted as a function of the number of variables (third column) in red circles 
and black dotts, respectively. The red and black dashed lines are the regression lines which 
represent 2.3  [Number of variables]2.08 and 3.3  [Number of variables]1.08, respectively. 
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that the convergence time by the local token selection scheme increases almost linearly 
with the number of variables. This suggests that ELISE using token pools is applicable to 
larger inference problems without the risk of convergence time explosion.   

5. CONCLUSION 

A general transformation scheme from a Horn logic program to a data-flow graph 
(KTN) was presented. Using an appropriate set of node operations, the KTN describes 
constants, variables, and function symbols explicitly, and the binding conditions for the 
variables are specified by topological structure of the network. After arguing a sematic 
aspect of the KTN, a graph-based method to solve unification, ELISE, was presented, 
and its semantic meanings and convergence properties were described with some nu-
merical results. 

Future research agendas of the KTN are as follows: 
 

 Full implementation of the KTN’s deduction scheme and experimental verification of 
ELISE on the KTN. 

 Incorporating a learning scheme that revises the KTN’s ground terms or topological 
structure. 

 Devising a method to transform the modified structure of the KTN back into predicate 
logic. This would be useful for humans to interpret the KTN’s knowledge accumulated 
through the learning. 
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