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Bronchial breath sound is the sound of turmoil flow produced by the inspiratory air 

through glottis, trachea or major bronchi. It cannot be only used to diagnose the respiratory 
tract and lung-related diseases but also used to distinguish one person from the other and 
thereby identifying patients since it contains personal physiological characteristics. This study 
captures the bronchial breath sound by using a stethoscope attached on a subject’s neck. For 
each person, the Mel Frequency Cepstral Coefficients (MFCCs) are computed for his/her 
bronchial breath sounds, and then represented by a stochastic model. Given an unknown breath 
sound recording, the proposed person identification system determines who among a set of 
candidate people produced the breath sound by matching the MFCCs of the sound to each of 
the stochastic models. Furthermore, we apply the i-vector approach in the system to boost the 
identification accuracy. To evaluate the generality of our experimental results, we additionally 
utilize other general identification schemes including support vector machine, random forest, 
and naive Bayes. Our experiments conducted on a dataset composed of 8 persons show that 
the accuracy of identifying people from their breath sounds can attain 92%. 
 
Keywords: bronchial breath sound, Gaussian mixture model (GMM), i-vector, MFCCs, person 
identification 

 
 

1. INTRODUCTION 
 

Person identification (PID) has long been an important need in many applications 
involving different treatments for different individuals. Biometric-based PID, which 
identifies an individual based on his/her distinguishing physiological and/or behavioral 
characteristics, has advantages on better convenience and reliability than the traditional 
token or knowledge-based identification, such as ID card or password. Thus, a great deal 
of research has been done on biometric-based PID techniques, such as facial imaging, iris 
or retina biometrics, signature, voice, finger/palm-print imaging, and finger/hand geometry. 
However, no single technique is absolutely superior to others, since each technique has its 
own occasion of use. For example, voice-based PID shows its superiority over finger- 
printing and eye-based methods when hand-busy or eye-busy situations like driving are 
involved, but its performance may suffer from noisy environments. Thus, several bio- 
metric-based PID techniques sometimes may work together and even work with token or 
knowledge-based PID for double confirmation. In contrast to the existing PID techniques, 
this work proposes a novel biometric based on bronchial breath sounds for PID. To the  
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best of our knowledge, no prior research has been done on PID using bronchial breath 
sounds. 

Breath sound is a result of ventilation caused by the expansion and contraction of the 
lungs. More specifically, the air flow that causes vibration in the trachea is defined as the 
breath sound, which can be heard with the aid of a stethoscope. In the past, breath sounds 
were commonly used by doctors for diagnoses. Recently, analyses of breath sounds have 
created new applications. For example, R. Darooei proposed a method to detect asthma by 
analyzing the length of breathing sounds, respiratory rate, and volume [1]. E. Kaniusas 
recorded sleep breathing sounds through a stethoscope to analyze whether breathing is 
aborted [2]. R. L. Moedomo et al. analyzed breathing rate per minute and exhaled carbon 
dioxide concentration to determine the degree of psychological stress [3]. In [4], Y. Ren 
introduced a system that has the capability to monitor an individual’s breathing rate as well 
as sleep events using off-the-shelf smartphones. The system employs the readily available 
earphone for smartphones to capture the breathing sound and measure the breathing rate, and 
support vector machine is used as a classifier to detect and identify each sleep event including 
snore, cough, turn over, and get up. In [5], the authors applied semi-supervised deep learning 
algorithm for automatically classifying the lung sound of patients to diagnose lung-related 
diseases, which can be applied in remote patient monitoring application and point-of-care 
diagnostics. S. A. Taplidou et al. proposed a wheeze detection system, namely time-fre- 
quency wheeze detector (TF-WD) [6], which analyses the time-frequency characteristics of 
the breath sound signal to identify wheezing-episodes from breath sound recordings. 

Breath sounds can be divided into two categories, namely, vesicular breath sounds and 
bronchial or tracheal breath sounds. Several mechanisms of vesicular breath sound genera- 
tion are discussed in [7] and it is shown that turbulence in the central airways is the source 
of most vesicular sounds. Vesicular breath sounds are present at sites that are at a distance 
from large airways, and they are commonly heard over the chest. The respiratory sounds 
heard in the chest wall undergo the attenuation since the small airways, lung parenchyma and 
chest wall act as a low-pass filter which does not allow high-frequency components of the 
sound to pass through [8, 9]. Therefore, the vesicular breath sounds heard over the chest wall 
mainly consists of low-frequency components. In addition, the inhalation phase of vesicular 
breath sound is approximately two times longer than the exhalation phase during tidal 
breathing, and there is no pause between inhalation and exhalation [9]. Bronchial breath 
sound refers to the air that produces a wheezing sound between the glottis and the trachea. 
When breathing in, the glottis widens to allow the air to pass faster, whereas the glottis 
narrows as air flow slows down. Bronchial breathing sound can be heard nearby the tracheal 
position, throat, sternum, suprasternal fossa, and posteriorly between the 7th cervical ver- 
tebrae (C7) and the 3rd thoracic vertebrae (T3). Bronchial breath sounds contain more high-
frequency components than vesicular breath sounds due to alteration of the low pass filtering 
function of the alveoli, as occurs in consolidation [8, 9]. In contrast to vesicular breath sound, 
bronchial breath sound is loud, hollow, and high pitched. 

In this study, we choose bronchial breath sounds as the basis for PID given the difficulty 
of measuring vesicular breath sounds. In addition, the lower frequency distribution of vehi- 
cular breath sounds, which overlaps partially with heart sounds also result in difficulty in the 
follow-up treatment. By contrast, louder bronchial breath sounds with higher frequency 
distribution is advantageous to perform analysis.   

Breath sound based PID is particularly suitable for confirming patients’ identities in  
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hospitals. Without extra equipment, breath sound based PID could help doctors identify 
patients by simply using stethoscopes to prevent misdiagnosis. In some situations, that people 
are unconscious, such as sleeping, fainted, or anesthetized, breath sound based PID may be 
more useful than other biometric-based PID, such as voices or iris. 

The remainder of this paper is organized as follows. In Section 2, we describe a funda- 
mental of breath sound based person identification. Section 3 presents methods to implement 
a breath sound based PID system using Gaussian mixture model (GMM), i-vector in com- 
bination with linear discriminant analysis (LDA), support vector machine (SVM), naive 
Bayes (NB), and random forest (RF). Section 4 discusses different experiment scenarios and 
results. Then, we present our conclusions and indicate the direction of our future work in 
Section 5. 

2. FUNDAMENTAL OF PERSON IDENTIFICATION BASED 
ON BRONCHIAL BREATH SOUNDS 

2.1 Measurement of Bronchial Breath Sounds 

Given an unknown breath sound recording, our aim is to develop a system that auto- 
matically determines who among a set of people produced the breath sounds. In this work, 
bronchial breath sound is recorded using a traditional stethoscope, CK-T601P, produced by 
Spirit Medical Co., Ltd. together with an audio-technica AT9931PC microphone. One 
earpiece of the stethoscope is connected to the microphone as shown in Fig. 1, so that bron- 
chial breath sounds sensed from the stethoscope can be recorded into a computer with a 
microphone. The chest-piece of the stethoscope is attached to the subject’s neck as in Fig. 2. 

 

           
Fig. 1. Bronchial breath sound measurement tools: 
stethoscope and microphone. 

Fig. 2. Position of bronchial breath sound mea- 
surement.

2.2 Bronchial Breath Sound Characteristics 

In our experiments, the position near the trachea on the left side of the neck is selected 
for measurement of bronchial breath sounds, as shown in Fig. 2. Since the recorded breath 
sounds are produced close to the tracheal position, the sounds are louder and less overlapped 
with pulse tones. It is also indicated in [10] that we can obtain the largest power of breath 
sound signal when the sensor is attached on the neck. From Fig. 3 we can observe that there 
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are several pulse tones mixed into the waveform of recorded breath sound, these pulses are 
brought about by the cardiac vasomotor activity where blood flow is transmitted through the 
artery and causes the arterial wall to pulsate. In the waveform, the lower amplitude part from 
0 to 2 seconds is the breath sound signal during the inspiratory phase, and the higher 
amplitude part from 2 to 4 seconds is the signal of the expiratory phase. Due to the difference 
in the physiological structure of each person, there is no absolute relationship between the 
amplitude and the phase of breath signals during inspiratory and expiratory phases. The 
subject producing the signal in Fig. 3 has significantly higher exhaled sound amplitude than 
inhaled sound; however, we observed the opposite trend in breath sound waveforms of 
several other subjects. 

    
Fig. 3. The waveform of a bronchial breath sound 
recording. 

Fig. 4. Spectrogram of the bronchial breath so- 
und in Fig. 3. 

Fig. 4 shows the corresponding spectrogram of the breath sound signal in Fig. 3, in 
which the brighter color represents the higher energy. At the low-frequency range of 0-
150 Hz, we can see the spectrogram of pulse sounds shown as the periodic pulses, whereas 
the remaining lighter color part is spectrogram of breath sound signal, indicating that most 
of pure breath sound energy is distributed between around 150 Hz and 750 Hz. In fact, 
some subjects can produce breath sounds that have the main frequency components above 
850 Hz. Since the characteristics of bronchial breath sound are different from person to 
person, it is possible to employ breath sounds as the basis for identity recognition. 

2.3 Different Breathing Ways 

This study discusses several ways of breathing, mainly including guided breathing and 
natural breathing. In guided breathing, we regulate a subject’s breathing on the basis of 2-
second inhalation and 3-second exhalation. On the other hand, in natural breathing type 
subject breathes in a usual manner. In our experiments, we further consider three types of 
breathing: 

 
Type 1: Inhalation with nose and exhalation with nose (nasal breathing). 
Type 2: Inhalation with mouth and exhalation with mouth (mouth breathing). 
Type 3: Inhalation with nose and exhalation with mouth (nasal inhale oral exhale). 
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We requested participants to provide breath sound recordings taken by mentioned 
breathing types to analyze and explore the characteristics of corresponding signals. Firstly, 
we analyzed the signal of nasal breathing type which is referred to as Type 1 breathing. 
Figs. 5 and 6 respectively present the waveform and spectrogram of a nasal breathing 
sound. The prominent pulses in the time domain waveform are pulse tones from the carotid 
artery. The first 0 to 1.5 seconds is the nasal inhalation waveform while the latter 2.5 to 
4.0 seconds is the signal of the exhalation phase. In the frequency domain, we can observe 
that the energy of the nasal breathing sound is concentrated within 1250 Hz, and there is 
no energy distribution from 750 to 800 Hz.  

  
Fig. 5. The waveform of a nasal breathing sound 
recording. 

Fig. 6. Spectrogram of the nasal breathing so- 
und in Fig. 5.

The second type of respiration is mouth breathing referred to as Type 2 breathing. 
The representations of mouth breathing sound in the time domain and frequency domain 
are shown in Figs. 7 and 8. In the time domain, it can be seen that the mouth breathing 
sound is clearer with larger amplitude compared to nasal breathing sound. In the frequency 
domain, most energy of both inhalation and exhalation phases is concentrated below 1000 
Hz, in which from 100 to 750 Hz is the area where the energy distribution is mostly con- 
centrated while from 750 to 800 Hz the energy is relatively small. 

    
Fig. 7. The waveform of a mouth-breathing sound. Fig. 8. Spectrogram of the mouth breathing 

sound in Fig. 7.
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The third type of respiration is “nasal inhale and oral exhale” referred to as Type 3 
breathing. Time-domain waveform and spectrogram of type 3 breath sound are shown in 
Figs. 9 and 10, respectively. It is obvious that the time of nasal inhalation is longer than that 
of oral exhalation. This is due to the relationship between the size of the nasal/oral aperture 
and speed of inhalation/exhalation: the larger the size of the oral aperture, the faster the 
exhalation speed. In the frequency domain, we can see that there is an obvious difference in 
energy distribution between inhalation/exhalation phases, resulting from a fact that the 
amount of exhaled air in the mouth is large so the energy is larger than that of nasal inhalation. 

   
Fig. 9. The waveform of a type-3 (nasal inhale 
oral exhale) breath sound. 

Fig. 10. Spectrogram of the type-3 (nasal in- 
hale oral exhale) breath sound in Fig. 9. 

2.4 Experimental Data Collection 

Twenty subjects are invited to participate in our collection of experimental breath sound 
data. There was an equal number of female and male participants. The dataset is divided into 
two subsets. The first one, labeled as Dataset A, includes eight subjects, and the second one, 
labeled as Dataset B, includes the remaining twelve subjects. The data are collected on two 
discontinuous days for each subject, in which the data collected on the first day is labeled as 
Dataset A-I and Dataset B-I, and the data collected on the second day is labeled as Dataset 
A-II and Dataset B-II, respectively. On the second day of collection, we asked participants 
to provide data in different activities involving walking, running for a short while, and after 
climbing the stairs. For each type of breathing, every person provides 32 breath sound re- 
cordings. Each recording contains at least two breath cycles, up to 10 seconds in length. 

3. METHODOLOGY 

3.1 Identification Schemes 

This study applies five classifiers to identify bronchial breath sounds, namely, Gaussian 
mixture model (GMM), i-vector approach, support vector machine (SVM), random forest 
(RF), and naive Bayes (NB). 
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3.1.1 GMM approach 

Gaussian mixture models approach has become the widely used approach for modeling 
in text-independent speaker recognition applications. A GMM is used in speaker recognition 
applications as a generic probabilistic model for multivariate densities capable of represent- 
ting arbitrary densities, which makes it well suited for unconstrained text-independent 
applications [11]. Because the breath sound may be also considered as a type of human voice, 
this study proposes using the Gaussian mixture model to evaluate the feasibility and effect- 
tiveness of breath sound identification. The process of identification can be roughly divided 
into two parts including training and testing as shown in Fig. 11. The training phase consists 
of feature parameters acquisition and identity model establishment while the testing phase is 
mainly separated into the feature extraction process of the unknown audio and model com- 
parison followed by scoring step to make the final decision. 

iλ

1λ

Nλ

2λ

 
Fig. 11. Breath sound based PID using GMM approach. 

Like human voice signal, breath sound signal is also time-varying and changes rapidly 
over time, which is not conducive to analysis. In contrast, in the frequency domain, the signal 
changes slowly with time. Therefore, the frequency domain analysis is more favorable than 
the time domain analysis for further processing steps. The parameters commonly used in 
speech signal analysis include Mel-frequency Cepstral Coefficients (MFCCs) and Linear 
Predictive Coding (LPC), in which the Mel-frequency system considers the nature of the 
human auditory system. In this study, we choose MFCC feature extraction method to derive 
the features of breath sound signals. Given a signal, the system partitions the signal into 
frames, invokes a window function to increase the continuity of voice signals in a frame, 
utilizes the Fast Fourier Transform (FFT) to convert the digital signals into spectrum data, 
and employs the triangular band-pass filter designed to simulate the spectral data of the 
human hearing. Finally, to obtain MFCCs, a Discrete Cosine Transform (DCT) is applied to 
the filter banks retaining a number of the resulting coefficients while the rest are discarded. 

3.1.2 i-vector approach 

This study also attempts to use i-vector in combination with linear discriminant analysis 
(LDA) to implement a breath sound based PID system. i-vector is a front-end factor analysis 
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method proposed by Dehak et al. [12] and it has been effectively applied to the speaker 
verification application [13, 14]. i-vector is inspired by the earlier use of joint factor analysis 
(JFA); however, unlike JFA which decomposes the speaker-dependent GMM super-vector 
into the separate speaker- and channel-dependent parts, i-vector uses only a single space 
called total variability space to represent GMM super-vector. The channel space of the JFA 
is still informative and its information can be used for classifying classes; therefore, the use 
of a total variability space can contribute to enhancing the identification capability of our 
system. Since the i-vector extraction algorithm does not separate the speaker variability and 
the channel variability, channel compensation methods such as LDA, within-class covari- 
ance normalization (WCCN) and/or nuisance attribute projection (NAP) should be utilized. 

Fig. 12 is the diagram of a breath sound identification system based on the i-vector ap- 
proach. The system can be divided into three parts including pre-processing and i-vector 
extraction, channel compensation, and identification score calculation. Firstly, pre-pro- 
cessing is carried out to retrieve breath sound feature parameters, filter noise, and normalize 
parameters. After that, we train the universal background model (UBM) and the total 
variability space R before extracting i-vectors. After obtaining i-vectors, LDA channel 
compensation technique is utilized to not only reduce the vector dimension but also to better 
distinguish between classes. Lastly, we employ the cosine distance scoring method to com- 
pute the decision score and make the identification decision. 

 
Fig. 12. Breath sound based PID using i-vector approach. 

B-W: Baum-Welch statistics. 

(a) i-vector extraction [12] 
Basically, in the i-vector framework, the person- and channel-dependent GMM super-

vector M is defined by Eq. (1) with an assumption that M has a normal distribution with mean 
vector m and covariance matrix RRt  

M = m + Rw    (1) 

where m represents the person- and channel-independent super-vector which can be extracted 
from UBM super-vector trained on a large development dataset, R is a low-rank rectangular 



ON THE USE OF BRONCHIAL BREATH SOUNDS FOR PERSON IDENTIFICATION 227 

matrix, w is a random vector which is normally distributed with parameters N(0, I), and the 
components of the vector w are the total factors. w is referred to as i-vector. 

In a standard i-vector system, the Baum-Welch statistics is employed to estimate the i-
vectors for given sound files. The details of the total variability space training and i-vector 
extraction process is given in [12]. 

(b) Channel compensation using the LDA technique 
LDA is a widely used approach that can project data from a high-dimensional space to 

a lower one. The main idea of LDA is to find a new space that improves the ability to 
distinguish classes, which means that in the new space the between-class variance can be 
maximized while within-class variance can be minimized. In this study, we apply the concept 
of LDA for breath sound based PID, that is, to reduce the variation of the same subject’s 
breath sounds, and to increase the variation of the breath sounds from different subjects. The 
optimization problem of LDA can be defined by the ratio J(v) which represents the amount 
of information ratio of the between-class variance and within-class variance.      
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In Eq. (2), v is space direction; Sb and Sw are respectively the between-class and within-
class variance matrices defined by Eqs. (3) and (4) where  
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i
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i-vectors for each subject, S is the number of subjects, and ns is the number of breath sound 
files for each subject s. 

 
Fig. 13. Distribution of training data after applying LDA. 
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In LDA, we aim to maximize the value of J(v) and find the projection matrix A com- 
posed by eigenvectors with the highest eigenvalues of the objective Eq. (5). 

Sbv = Swv    (5) 

where is a diagonal matrix formed by eigenvalues. Projection matrix A attained from LDA 
is afterward used for linear conversion of i-vectors to the new space. Fig. 13 indicates the 2-
dimensional distribution of training data after submitting i-vectors to the matrix A. In this 
figure, the breath sound samples from eight subjects are represented by eight different marks. 

(c) Identification scoring 
At the final step, the cosine distance scoring method is used to make the identification 

decision. In this method, we directly use the value of the cosine kernel between each target 
person’s i-vector wk, 1  k  N, and test i-vector wtst as the basis for final decision making.   
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The most likely person K* who produced the test breath sound is determined as the 
one satisfying 
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3.1.3 General classifiers: SVM, NB, and RF 

In order to evaluate the generality of our experimental results, the results obtained from 
the stochastic model method (GMM) and i-vector approach are compared with several PID 
system based on SVM, naive Bayes, and random forest. 

Support vector machine is one of the powerful classifiers applied efficiently to various 
classification problems, such as pattern recognition and speaker identification. The detailed 
description of SVM is given in [15, 16]. SVM is initially designed to deal with the binary 
classification problem. Therefore, in order to solve a problem with only two classes, we can 
directly apply a single SVM. However, to extend SVM for a multi-class classification pro- 
blem we need to use a number of binary classifiers together with special techniques, namely 
“one-against-rest method” and “one-against-another method” or “pairwise method”. In this 
study, we aim to identify breath sounds from eight participants, so it is considered as a multi-
class classification problem in SVM. Moreover, in a study to compare the efficiency of “one-
against-rest method” and “one-against-another method”, C. W. Hsu and C. J. Lin found that 
the former is less effective than the later one [17]. As a consequence, we adopt the “one-
against-another method” to tackle the multi-class classification problem in this study. 

Naive Bayes is a supervised learning technique based on the Bayesian theory, and it is 
an efficient probabilistic classifier widely used in pattern recognition. In NB, we have a 
strong independent assumption that the feature items in one class are independent of other 
attribute values [18]. Since breath sound based PID is a multi-class classification problem 
which can be handled by Naive Bayes classifiers, NB is also used here for classifying the 
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breath sound signals. In addition, Naive Bayes classifier can work with a small training 
dataset to estimate the parameters of the classification system, this is another reason why NB 
can be potentially applied to our case of breath sound based PID with a moderate dataset. 
Besides, in this study, we apply another supervised classification algorithm called random 
forest which utilizes the ensemble approach to improve the classification performance. The 
fundamental idea of the random forest is to combine a number of decision trees into a single 
model; in other words, we group several weak learners to form a strong learner. In actual 
practice, RF is formed by a large number of decision trees ranging from tens to hundreds 
depending on the particular classification task. 

3.2 Breath Sound Pre-processing 

In practical use, breath sounds can be recorded in a noisy environment existing several 
sources of noise such as speech, machine on operating, door closing, and event noise 
generated by subjects. Under such condition, it is necessary to do pre-processing on our data 
to mitigate the effects of noise. 

 
Fig. 14. MVA post-processing technique. 

Fig. 14 is the diagram of the pre-processing method applied in this study. Firstly, we 
extract MFCC features, and then use the MVA technique [19] to generate the robust feature 
vectors. In feature extraction, we not only consider MFCC features but also consider their 
first-order and second-order derivatives which provide the information of dynamics of 
MFCCs over time. In fact, using the derivatives of MFCCs together with original MFCC 
features increases the performance in a number of audio analytics applications. 

The MVA processing can be broken down into three parts including mean subtraction 
(MS), variance normalization (VN), and auto-regression moving average (ARMA) filtering 
as shown in Fig. 14. MS is used to normalize the first-order moment of the feature vectors. 
Suppose Xt,d is the feature vector extracted from the noise-containing breath sound at time t, 
d represents the dimension of feature space, and ud is the mean vector estimated from data. 
After the mean value is eliminated we get the subtracted feature Xt,d as in Eq. (9). 

,1

1 T

d t dt
u X

T 
  t = 1, 2, …, T   d = 1, 2, …, D,    (8) 

Xt,d = Xt,d  ud.   (9) 

The mean value of each dimension from the feature vector after MS step is equal to zero 
so that the feature parameters are less influenced by the environment at the time of extraction. 
MS can contribute to reducing the channel effects by removing time-invariant distortions 
introduced by the transmission channel and recording device [20]. The VN step further nor- 
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malizes the second-order moment of the feature vector. Assume d is the standard deviation 
of the d-dimensional feature parameter, so the VN step is defined by Eq. (11). 
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After variance normalization, each dimension parameter not only has zero mean but 
also has a variance of one. In addition, to mean subtraction, VN contributes to further mitigate 
the influence of environment on the feature parameters. 

The final step of MVA post-processing is processing by ARMA filtering. The ARMA 
filter is a low-pass filter used together with the MS and VN to achieve a good additive effect. 
The main function of ARMA filter is to reduce the feature parameter sequence and eliminate 
the problem that the parameters change too fast, so as to meet the requirement that the signal 
changes relatively slowly in a short time interval. The expression of ARMA is defined by Eq. 
(12), where L is the order of ARMA filter. 
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 (12) 

4. EXPERIMENTS AND RESULTS 

This section describes the experimental results of the breath sound based PID using 
Gaussian Mixture Model, i-vector approach and general identifiers. In order to find out the 
effects of several breathing ways and data preprocessing on breath sound identification, 
we divide our experiments into three scenarios for discussion. In our experiments, the 
identification accuracy is defined by: 

#Correctly Identified Recordings
Accuracy(in %) 100%.

#Testing Recordings
   

4.1 First Experiment Scenario 

In this experiment scenario, firstly we compare the influences of three breathing types 
on identification performance so that we can find the most appropriate one facilitating the 
identification purpose. Following breathing types are examined respectively: nasal breathing, 
mouth breathing and nasal inhale oral exhale. We collected data for this primary experiment 
by natural breathing method, in which participants breathe in their natural manner. Secondly, 
since bronchial breath sounds are recorded along with the pulse sounds, we perform an 
experiment of pulse sound identification to evaluate how the mixed pulses can contribute to 
identity recognition, which is the fundamental for other experiments afterward. 
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4.1.1 Breath sound identification across different breathing types 

In this experiment, we performed PID on a database collected from three breathing types. 
There are 8 subjects participating in our collection of experimental data. In each type of 
breathing, each person provided 32 breath sound recordings consisting of 16 recordings 
(Dataset A-I) for training and the remaining 16 recordings for testing (Dataset A-II). We set 
the sampling frequency to 16 KHz, and the length of each file is about 5 to 6 seconds. 39-
dimensional features (including 13-MFCCs as well as their first-order and second-order 
derivatives) are extracted from each recording to use as the input of our models. Since the 
frequency components of breath sounds are mostly smaller than 1500 Hz, we set the upper 
cut-off frequency to 2000 Hz. Table 1 shows the results of breath sound identification on 
three breathing types using GMM, random forest, SVM and naive Bayes classifiers. 
 

Table 1. Results of breath sound identification across three breathing types. 

Type of Breathing 
Identification Approach and Accuracy

GMM RF SVM NB 
Nasal breathing *72.65% 48.43% 64.06% 59.37% 
Mouth breathing 62.50% 39.06% 56.25% 53.12% 

Nasal inhale 
Oral exhale 

70.31% 42.96% 61.71% 54.68% 

* is the best value 

 

From the detailed statistics in Table 1, it is clear that the identification accuracies of 
nasal breathing sounds are significantly higher than that of other breathing types. We 
achieved the highest identification accuracy of 72.65% with a dataset collected from nasal 
breathing type and classified by GMM approach. On the other hand, the figures for other 
breathing methods are much lower, especially for mouth breathing which obtains the lowest 
results fluctuating from 39.06% (RF approach) to 62.50% (GMM approach). 

According to [21], nasal breathing is a normal, most common type of breathing and it 
has two major advantages over mouth breathing: filtration of particulate matter by the 
vibrissae hairs and better humidification of inspired gas. Therefore, in a natural manner, the 
prominent experimental result of nasal breathing sound is an advantage to our study as we 
can employ this common breathing type to collect data for the remaining experiments. 

4.1.2 Pulse sound identification 

The purpose of this experiment is to find out how recorded pulse sounds can influence 
the result of breath sound identification. As a consequence, the feasibility of using pulse 
sounds for identity recognition is taken into consideration. Basing on the result of this 
experiment, we can further try to examine whether the performance of breath sound based 
PID system can be improved with or without the presence of pulse sounds. Figs. 15 and 
16 are respectively the waveform and spectrogram of pulse sound from a volunteer. The 
first pulse in the waveform is pulse tone when the heart contracts and the second pulse is 
signal during diastole. From Fig. 16, we can observe that the energy of pulse sound mostly 
distributes from 0-200 Hz. 
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Fig. 15. The waveform of pulse sound from the 
first subject. 

Fig. 16. Spectrogram of pulse sound from the 
first subject.

The number of participants in this experiment is 8 and 32 pulse sound recordings are 
provided by each person. The recordings in Dataset A-I are used for training our models 
while the remaining 128 recordings in Dataset A-II are used for testing, and each recording 
has a length of 9 to 10 seconds. In the feature extraction stage, 39-dimensional features 
consisting of MFCCs and their first-order and second-order derivatives are extracted from 
each recording. 

We performed identification experiments using several approaches and obtained the 
highest accuracy of 39.06% with GMM method. RF, SVM, and NB also yielded similarly 
poor performances as shown in Table 2. Fig. 17 is the confusion matrix of pulse sound 
identification using GMM method. It is obvious that except subject 3 (S3) and subject 8 (S8), 
the identification accuracies are relatively low and most of the misidentification is concen- 
trated on subject 1 (S1). In conclusion, it is not feasible to use pulse sound for person 
identification. 

 
Fig. 17. Confusion matrix of pulse sound identification using GMM approach. 

 

Table 2. Results of the pulse sound identification experiment. 

Sound Type 
Identification Approach and Accuracy

GMM RF SVM NB 
Pulse sounds *39.06% 25.78% 9.375% 35.93% 

* is the best value 
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4.2 Second Experiment Scenario 

This experiment scenario focuses on exploring the influence of respiratory rhythm and 
energy factor on breath sound identification. Firstly, we analyze the energy characteristics of 
breath sounds from two datasets recorded by two breathing manners including natural 
breathing and guided breathing. After that, we perform independent experiments on those 
datasets. In the part of natural breathing, there is no restriction in breathing patterns, the 
frequency of respiration varied according to the individual’s natural habits. Each recording 
has a length of about 9-10 seconds that is equivalent to 2-4 breath cycles. On the other hand, 
the guided breathing sounds are recorded by asking subjects to breathe deeply in accordance 
with the rhythm of approximately 2-second inhalation and 3-second exhalation; each 
recording is also about 9 to 10 seconds in length, approximately 2 breath cycles. 

According to the results obtained from the first experiment scenario, the identification 
effectiveness of nasal breathing sounds is most prominent. Therefore, in this experiment 
scenario, we only asked participants to provide nasal breathing sounds but the length of each 
recording is longer. Furthermore, apart from using GMM which yielded the best results in 
the first experiment scenario, we also employed the i-vector approach and compared their 
identification performances. 

4.2.1 Energy analysis of natural-breathing sounds and guided-breathing sounds 

We analyzed the changes in the energy of bronchial breath sounds from each subject in 
order to find out the characteristics which contribute to improving the identification per- 
formance. Fig. 18 is the energy analysis of natural breathing sounds, where the horizontal 
axis represents the subject’s index while the vertical axis represents the average energy of 
the subjects’ breath sounds. The values of average energy (AE) and energy standard 
deviation (ESD) of natural breathing sounds from each subject are provided in a table at the 
bottom side. Likewise, Fig. 19 shows the energy analysis of the guided breathing sounds. 

 
Fig. 18. Energy analysis of natural breathing sounds. 
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Fig. 19. Energy analysis of guided breathing sounds. 

In comparison, the average energy of guided breathing sounds is larger than that of the 
natural breathing sounds, and the energy standard deviation of the former is much smaller 
than the figures of the latter. This indicates that the variation of the energy between guided 
breathing sounds is smaller, in other words; the change in energy between the natural 
breathing sounds is larger. This is mainly because the rhythm of guided breathing is regulated, 
in which subjects are required to take deep breath with the rule of 2-second inhalation and 3-
second exhalation. Thus, guided breathing sound has larger average energy and there is an 
obvious downward change in the values of energy standard deviation. In addition, there is 
also a certain gap between average energy from subject to subject, so during the prepro- 
cessing stage, we also include the energy parameters (Log Energy) in the scope of feature 
extraction. 

4.2.2 Identification experiments 

The breathing type adopted in this experiment scenario is nasal breathing only. We 
trained the models basing on MFCC-based features together with energy parameters ex- 
tracted from breath sound recordings. Table 3 summarizes the results of the second ex- 
periment scenario. 

 
Table 3. Results of the second scenario experiment. 

Breathing Method 
Identification Approach and Accuracy

GMM i-vetor
Natural breathing 75.00% 79.68% 
Guided breathing 87.50% *89.84% 

 * is the best value 

Firstly, we conducted identification experiments with GMM approach. In the natural 
breathing part, we tried to identify 128 breath sound recordings from 8 subjects, 96 of which 
are correctly identified, and the overall identification accuracy is 75%. It is indicated by the 
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statistics in Fig. 20 that the lowest identification rate is from the 7th subject (S7) whose natural 
breathing sounds has the highest energy standard deviation. In guided breathing sound 
identification, we achieved considerable improvement in system performance, in which 112 
out of 128 recordings were identified correctly, resulting in the overall identification 
accuracy of 87.5%, 12.5% higher than natural breathing test. Fig. 21 indicates the detailed 
result of guided breathing sound identification using GMM, the identification accuracy of 
the 7th subject (S7) still stays the same at the lowest value of 50% as in natural breathing 
manner. 

   
Fig. 20. Confusion matrix of natural breathing 
sound identification using GMM approach.

Fig. 21. Confusion matrix of guided breathing 
sound identification using GMM approach. 

In the i-vector experiment, we also carried out identification with natural and guided 
breathing datasets separately. Before the establishment of the i-vector model, a universal 
background model is trained to serve as a reference for our model. We set the number of 
Gaussian components to 64 to train UBM model on 1024 breath sound recordings from 
Dataset B provided by the 12 subjects. There are 128 natural breathing sound recordings in 
the testing set (Dataset A-II), 102 of which are correctly identified, and the overall iden- 
tification accuracy is 79.68%. Among all subjects, the identification rate of the second 
subject (S2) is lowest, at 43.75% as shown in Fig. 22. On the other hand, we achieved higher 
accuracy of 89.84% from the experiment on guided breathing sound dataset. Generally, the 
identification accuracies for almost subjects are significantly improved, as shown in Fig. 23. 

     
Fig. 22. Confusion matrix of natural breathing 
sound identification using i-vector approach.

Fig. 23. Confusion matrix of guided breathing 
sound identification using i-vector approach. 
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According to results from this experiment scenario, we can conclude that the identi- 
fication accuracy of guided breathing sounds is higher than that of natural breathing sounds, 
as indicated by statistics in Table 3. Our results are consistent with the initial assumption that 
the smaller standard deviation of energy the better capability of identification. In fact, during 
the collection of natural breathing sounds some subjects could provide small breath sounds 
resulting in an inaccurate sound collection and affects the identification performance. In 
contrast, in guided breathing, by regulating subjects’ breath rhythm and asking subjects to 
take deeper breath we can get a better experimental dataset leading to better experiment 
results. 

Another conclusion is that i-vector approach yielded better performance than GMM 
counterpart. Using i-vector approach, we obtained identification accuracy of natural respir- 
ation at 79.68% which is higher than 75.0% of GMM method. Similarly, the identification 
accuracy of guided breathing sounds also increased from 87.5% (GMM approach) to 89.84% 
(i-vector approach). 

4.3 Third Experiment Scenario 

As per the result from the first experiment scenario, due to the poor performance of 
pulse sound identification, we can consider that mixed pulse tones in breath sound data 
may not contribute efficiently to the result of breath sound based PID and even negatively 
affect the system performance. Recognizing this, we further performed the identification of 
pure breath sounds to explore whether the system performance can be better by removing 
the pulse tones from original breath sound data. 

Our measure to obtain a pure breath sound dataset is filtering out the pulse tones from 
the original recordings. In Section 2, we found that the frequency components of pulse 
sounds recorded at our neck is ranging from 0 to 150 Hz, so we filter out all frequency 
components smaller than 100 Hz, this cut-off frequency value of 100 Hz is chosen to avoid 
information loss resulted in from filtering process. Figs. 24 and 25 are waveform and spec- 
trogram of a pure breath sound’s file, we can see that only clean breath sound is presented 
in the waveform, and the frequency components below 100 Hz are clearly removed from 
the corresponding spectrogram. 

   
Fig. 24. The waveform of a pure breath sound. Fig. 25. Spectrogram of the pure breath sound 

in Fig. 27. 
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Due to the prominent results of identification on guided, nasal breathing sounds (nasal 
breathing, and breath rhythm is regulated) in previous experiment scenarios, in this 
experiment, we used the dataset of guided breathing sounds in second experiment scenario 
as the original dataset. Two experiments on pure breath sounds are performed using GMM 
and i-vector methods, respectively. The experiment configuration is mainly similar to the 
second experiment scenario except we additionally set the lower cut-off frequency to 150 Hz 
to filter out the pulse tones from our data. Table 4 shows the results of the third experiment 
scenario. In both identification approaches, the overall identification accuracies have in- 
creased when the pulse sounds are filtered out from original data. 

 

Table 4. Results of pure breath sound identification experiment. 
Identification Approach Breath Sound Data Accuracy 

GMM 
Original data 87.50% 

Filtered out pulse sounds 89.84% 

i-vector 
Original data 89.84% 

Filtered out pulse sounds *92.97% 
* is the best value 

 

Fig. 26. Confusion matrix of pure breath sound 
identification using GMM approach.

Fig. 27. Confusion matrix of pure breath sound 
identification using i-vector approach. 

Fig. 26 is the confusion matrix of pure breath sound identification experiment using 
GMM approach. After filtering out the pulse sounds, the identification accuracy increases by 
2.34% to 89.84% as there are 115 out of 128 sound files are correctly identified. Fig. 27 
shows the result of pure breath sound identification obtained by i-vector approach. The 
accuracy increases from 89.84% (without filtering out pulse sounds) to 92.97%. The overall 
identification accuracy is improved significantly and among all subject the identification 
accuracies of subject number 2 (S2) and 8 (S8) increase considerably (compared to result in 
Fig. 23). 

In conclusion, it is clear that identification performance can be improved by removing 
pulses tones from recorded breath sounds. We finally achieved the highest identification 
accuracy of 92.97% when pure breath sounds are identified by the i-vector system. 
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4.4 The Influence of Background Noise on System Performance 

This experiment evaluates if the proposed identification system is capable of resisting 
to ambient noises. We collected two levels of noise signals. The first one represents the low 
level of noise signals, which were recorded in a normal condition of a business office. The 
second one represents high level of noise signals, which were collected when there are more 
activities in the office such as playing music on a mobile phone, having discussions, and 
printing documents. We used the same tools and procedures described in Section 2.1 to 
collect the background noise samples. Figs. 28 and 29 are spectrograms of a level-1 noise 
sample and a level-2 noise sample, respectively. For each noise level, we randomly chose a 
sample of background noise and added it to a sample of testing data in the guided breathing 
sound dataset, so that two new testing datasets corresponding to two levels of background 
noise were created. The experiment configuration in this analysis is the same as in the third 
experiment scenario, we test the system performance with the two datasets containing 
ambient noises. 

    

 

 

 

 

 
Fig. 28. Spectrogram of a level-1 noise sample. Fig. 29. Spectrogram of a level-2 noise sample. 

 

Table 5. The influence of background noises on the system performance. 
Identification Approach Accuracy

 Clean Data Data with level-1 noise Data with level-2 noise 
GMM 89.84% 88.28% 86.72% 

i-vector *92.97% 92.97% 90.63% 
* is the best value 

Table 5 shows the results of this experiment. We can clearly see that the identification 
system quite resists to ambient noise. The system performance just decreases moderately, 
especially in the normal condition (level-1 noise) where the accuracies almost remain 
unchanged. In the noisier environment (level-2 noise), the identification accuracies are down 
slightly by 2.7%, from 92.97% and 89.84% to 90.63% and 86.72% for i-vector and GMM 
approaches, separately. 

5. CONCLUSION AND FUTURE WORKS 

This study has proposed a novel method for biometric-based person identification using 
bronchial breath sounds recorded from each person. Most of the previous breath sound  
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related studies are used to diagnose diseases or to determine the phase of breathing while this 
study used the measured breathing signals to achieve the identification purpose. We 
examined several factors that influence the identification performance, such as different 
types of breathing, breathing manners (natural breathing and guided breathing), the inter- 
ference of pulse sounds and different identification methods. In this paper, three experiment 
scenarios were conducted to find out the most suitable condition for person identification 
based on bronchial breath sounds. 

In the first experiment scenario, different breathing types were considered to assess their 
influences on the performances of identification systems. We divided the way of breathing 
into three types and then found the best one for breath sound identification application. 
Across all applied identification approaches, nasal breathing (inhalation with nose and 
exhalation with nose) yielded the highest identification accuracies, peaking at 72.65% with 
GMM identifier. In the second experiment scenario, we analyzed the energy distribution of 
natural breathing sounds and guided breathing sounds. We found that the energy of guided 
breath sounds is more stable with smaller standard deviation, resulting in better identification 
capability. In the natural breathing, the accuracy of GMM identifier is 75%, and that of the 
i-vector method is 79.68%. In guided breathing, we obtained the accuracies of 87.5% and 
89.84% using GMM and i-vector approaches, respectively. 

When we record the breath sound on the subject’s neck by a microphone attached to an 
earpiece of a stethoscope, not only the pure breath sounds but also the pulse tones are 
recorded. Therefore, we further conduct the third experiment scenario to evaluate how the 
pulse sounds affect the identification results. In this experiment, firstly we carried out the 
PID test on pulse sounds dataset and evaluated the performance. We found that the iden- 
tification accuracies are similarly low over all identification methods, so we decided to filter 
out the pulse sounds from the original data to obtain a clean experimental dataset. Eventually, 
we achieved the final identification accuracies of 89.84% and 92.97% on clean dataset 
identified by GMM and i-vector approaches, respectively. Moreover, among the applied 
identification methods, i-vector approach presented better performance. 

The effect of background noise on the identification system has been examined also. 
We tested the system in two levels of background noise, it was shown that the proposed 
system has good robustness as its accuracy just slightly reduced in the noisy environments. 

The results with the highest accuracy of 92.97% we obtained at this pilot investigation 
are encouraging and lay a good foundation for the future development of a person identi- 
fication system based on bronchial breath sounds. However, future development is needed 
to meet the requirements of actual applications. First of all, in the future, we will extend the 
experimental dataset by taking more samples from a larger number of people. In addition, 
recognizing that the current recording tools are stethoscopes and microphones which are not 
very convenient for portability, it would be more useful and practical if mobile devices with 
a built-in microphone can be used to perform the identification of breath sounds. In such a 
scenario, breath sounds acquired from mobile devices would be rather noisy and need to be 
enhanced. 
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