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Energy optimization is a critical issue in randomly deployed dense wireless sensor 

networks (WSNs). In dense WSNs, the transmitted signal from a source sensor suffers by 
the interfering signals from surrounding sensors and unwanted events. In such network 
scenarios nodes are more likely to become non-functional because of noisy environment 
and residual battery energy depletion etc. This further arises the need for redundant sen-
sor deployment and an energy efficient solution is to schedule sensors to go into sleep 
state periodically. In this present paper, we address a probabilistic coordinated sensor 
scheduling scheme to overcome the redundancy in sensor deployment and conserve en-
ergy thus extending the overall network lifetime. This scheme uses the concept of inhibi-
tion distance of hard-core point process (HCPP) for coordination among sensors with lit-
tle communication overhead. We analyze the influence of various channel parameters 
and interferers on sensor activation probability. Further, we perform Monte Carlo simula-
tion and show that the coverage fraction achieved by the coordinated scheduling outper-
forms random scheduling at same active sensor density. We also study the impact of node 
failure and K-coverage degree on the achievable coverage fraction in interference limited 
WSNs.     
 
Keywords: coordinated sensor scheduling, hard-core point process, coverage fraction, in- 
terference sensing channel model, node failure 
 
 

1. INTRODUCTION 
 

In recent decades, wireless sensor networks (WSNs) have emerged as a critical area 
of research for variety of applications starting from military surveillance to health care 
monitoring, transportation traffic monitoring, smart home and offices etc. A sensor net-
work has to be highly self-organizing as most of the time the sensor nodes remain unat-
tended for a longer period of time. In such network scenarios sensors often have limited 
battery energy which are not replaceable and rechargeable, affecting coverage and life-
time of the overall network. Therefore, energy conservation is a critical issue for design 
consideration in many WSN applications.  

Network coverage and connectivity are of paramount importance for measuring the 
quality of surveillance (QoS) offered by the sensor network. The coverage performance 
of a sensor network depends on several factors including the node sensing model used to 
design the network model [1]. To achieve a desired coverage fraction in energy-con- 
strained sensor networks, huge amount of low power sensors are deployed in the targeted 
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region of interest (RoI). The energy consumed by the individual nodes increases the 
overall network cost. To make WSN, a cost effective technology energy saving is the 
most important requirement [2]. In densely deployed sensor networks, all the sensors are 
not needed to be active at all times as several sensors may redundantly cover the same 
location. To overcome this sensor redundancy and conserve energy, an energy-efficient 
approach is to implement sensor scheduling schemes by turning on and off only a subset 
of sensors. 

Several authors in [3-8] have discussed many sleep scheduling schemes for densely 
deployed WSNs. They are broadly classified into random scheduling and coordinated 
scheduling schemes. However, the selection of the set of sensors to make active or asleep 
affects the overall network performance [5]. In random scheduling (RS) scheme, nodes 
are activated randomly with certain probability without any coordination with their 
neighbouring sensors. However, this energy conserving RS scheme cannot provide 
guarantee of adequate coverage, as a result critical events may miss unless all the sensors 
are on. On the contrary, in coordinated scheduling scheme, sensors need to communicate 
with their neighbouring sensors to get their exact locations and their state. Jaleel and 
Egerstedt [9] have proposed a coordinated scheduling scheme using tools from stochastic 
geometry, while they have considered fixed range sensors for coverage analysis of the 
network. They have neglected the inherent effect of interference on the sensing coverage 
of sensors in dense WSNs. 

It is found that most of the studies on sensor scheduling schemes have considered 
only the fixed radius Boolean sensing model to design their network model, neglecting 
the inherent effect of channel randomness on sensing signal strength and have ensured 
only 1-coverage to the monitored RoI. Probabilistic sensing models viz. Elfes [10], 
shadow fading [11], and Lognormal shadowing fading and Rayleigh fading [12] sensing 
models have also been widely adopted and explored for coverage analysis of WSNs. 
These models consider realistic sensing range of sensors subject to inherent randomness 
of the propagation environment and path loss effects. In dense WSNs, sensors also suffer 
from the interference or interferences caused by simultaneous transmissions of neigh-
bouring sensors or transmitters within the same frequency band. In such network sce-
narios, there is high probability that a node to become non-functional. On the other hand, 
some WSN applications demand higher accuracy of coverage such as border security 
surveillance, target tracking, and intruder detection. To achieve K-coverage (K > 1), each 
and every point in the region of interest should be under the observable area of at least K 
active sensors [13]. A lot of research has already been done focusing K-coverage of the 
targeted field and at the same time maintaining K-connectivity [14-16] considering only 
the idealistic Boolean sensing model. 

In this paper, we have introduced probabilistic coordinated scheduling scheme for 
sensor activation to meet desired coverage in dense WSNs. The sensor activation is 
scheduled using the concept of inhibition distance of hard-core point process (HCPP) 
from stochastic geometry. A network with high sensor density is usually subjected to 
interference from the neighbouring transmitting sensors. The interference sensing chan-
nel model implicitly reflects interference effects on the sensing signal strength of a sen-
sor in dense WSNs. We have investigated how the sensing channel parameters and 
number of interferers influence the sensor activation probability. Further, we have shown 
the coverage fraction achieved has been improved by coordinated scheduling of the sen-
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sors in comparison to random scheduling while activating same number of sensor nodes. 
We have also shown the joint impact of coverage degree and node failure probability on 
coverage fraction in presence of interferers. 

The rest of the paper is organized as follows. A brief discussion about related work 
on node scheduling schemes is presented in Section 2. Section 3 presents the system 
model and the average sensing radius of sensor in presence of channel randomness and 
interference. A brief description about the hard-core point process and the probabilistic 
coordinated scheduling scheme is presented in Section 4. This section presents the vari-
ous channel parameters influencing the sensor activation probability and the impact of 
coordinated scheduling scheme on network coverage fraction. The combined effect of 
node failure probability and coverage degree on coverage fraction in interference limited 
dense WSN is presented in Section 5. Section 6 presents results and discussions. Finally, 
Section 7 presents the concluding remarks.  

2. RELATED WORK 

Authors in [17] have proposed an S-MAC protocol for self-organizing WSNs. 
S-MAC reduces energy consumption by randomly selecting idle nodes to periodically go 
into sleep mode. By avoiding idle listening this protocol obtains significant energy sav-
ing and increases network lifetime. In [18], authors have investigated both random 
scheduling (RS) and coordinated scheduling algorithms for low duty cycled sensors in 
the context of network coverage. Duty cycle is the fraction of time a sensor remains in 
active state. They have concluded that their coordinated scheduling can obtain greater 
reduction in duty cycle with the same amount of redundancy for fixed network coverage 
in comparison to RS. Authors in [8] have proposed a Linear distance-based scheduling 
(LDS) scheme for clustered WSNs and have compared it with the Random scheduling 
(RS) scheme. In LDS scheme, the sleeping probability of nodes depends on the distance 
from cluster head (CH), the farther away nodes from CH will go to sleep mode with 
higher probability and thus balancing energy consumption. This leads to unequal energy 
consumption by the sensors. To overcome this, authors have further proposed balanced 
energy scheduling (BS) scheme a special case of DS scheme in [5]. They have derived a 
sleeping probability function, which no longer depends on the distance from the cluster 
head. In [19], authors have developed a Traffic-aware density-based sleep scheduling 
(TDSS) strategy for sensor scheduling considering Gaussian distribution of nodes in a 
2-D RoI and compared it with RS, LDS, and BS schemes respectively. This scheme de-
termines the sleeping probability of the sensor nodes considering the node density of an 
annulus and the relay traffic-load. 

Authors in [4] have studied the K-coverage problem in WSNs and have derived a 
bound on sensor spatial density to provide K-coverage to a RoI. Further, they have con-
cluded that to maintain connectivity among the active nodes the communication range 
must be at least equal to the sensors sensing range. They have proposed four sensor 
scheduling algorithms to achieve K-coverage while guaranteeing connectivity. In [20], 
authors have proposed two methods 3-Sym and O-Sym of connected K-coverage assur-
ance for sensor scheduling adapting virtual hexagonal tessellation to divide sensors into 
groups. These algorithms ensure that each and every sensor node will be selected with 



SUNANDITA DEBNATH AND ASHRAF HOSSAIN 

 

940

 

equal probability to become active thus achieving load balancing. In [21], authors have 
addressed the problem of K-coverage of a 3-D RoI with heterogeneous sensor nodes 
considering Boolean sensing model. They have derived the expression of the probability 
a sensor being redundant for K-coverage. Further they have proposed a distributed 
scheduling protocol to reduce the number of active sensors based on the information 
gathered about the neighbouring nodes only. In [22], authors have proposed a dynami-
cally distributed energy-efficient duty cycle control scheme named Adaptation duty cycle 
control (ADCC) for energy constrained WSNs based on feedback signals. In this scheme, 
the duty cycle of sensors is determined based on their real-time residual energy.  

The above mentioned algorithms on sensor scheduling have considered only the de- 
terministic sensing model for coverage analysis. These schemes also need the exchange 
of control overheads for coordination among the sensor nodes, which leads to additional 
energy consumption. It is found that most of the state-of-the-art works are relied on the 
deterministic Boolean sensing model. Except in [23-25] authors have evaluated the per-
formance of WSNs employing node scheduling schemes considering probabilistic sens-
ing models. In [23, 24], authors have proposed algorithms to find the set of minimum 
number of active sensors based on their residual energy to provide full coverage to the 
monitored point of interests. They have considered the distance-based probabilistic disc 
sensing model (Elfes sensing model) in their study. Authors in [25] have addressed a 
novel sensor scheduling scheme to provide K-coverage to the target event considering 
Rayleigh fading channel model.  

In our work, sensors are scheduled by coordination among them using the concept 
of inhibition distance from hard-core point process instead of exchanging actual location 
information. The communication overheads needed for coordination is little that it is 
comparable to the RS scheme. Further, to design our network model while scheduling 
we have considered the interference effect on the sensing signal strength of sensors. We 
have also shown the impact of sensing channel parameters, number of interferers, and 
node failure probability on network coverage fraction. 

3. SYSTEM MODEL 

We have assumed that sensor nodes are distributed in a random fashion with uni-
form density in a Poisson field of nodes. In such networks, coverage is one of the per-
formance criterion offered by the deployed sensor network. A point is said to be covered 
if it falls under the sensing range of at least one of the active sensor nodes in the de-
ployed region. We have considered that the sensor nodes are all static and homogeneous 
in characteristics with same threshold power. In dense WSNs, a receiver sensor usually 
suffers by the interference from neighbouring transmitters or sensors transmitting simul-
taneously within the same frequency band. The aggregated interference at a receiver de-
pends on the spatial distribution and density of interferers in the Poisson field of interest 
[26]. Therefore, the sensing signal of a node suffers from path loss, shadowing loss, mul-
tipath effects and apart from these also suffers from interference (Fig. 1) from surround-
ing unwanted events in dense WSNs [27]. 

Thus, the sensing radius of a node in interference limited dense WSNs is nonuni-
form in all directions unlike the deterministic Boolean sensing model. In densely de-  
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Fig. 1. Interference effects on the receiver sensor from the surrounding events, we assume the re-

ceiver is placed on the origin of the coordinate. 
 

ployed networks, the cochannel interference strongly depends on the large scale signal 
variations caused by shadowing [28]. The received signals by the intended receiver sen-
sor may be correlated, since the signals may be shadowed by the same source of obsta-
cles in the neighbourhood. Dayya and Beaulieu [29] for the first time have addressed the 
correlation between the interfering signals and between the desired and sum of resulting 
interfering signals. Kumar & Lobiyal [27] have derived the expression for average sen- 
sing radius of sensors in presence of correlated interfering signals and have expressed as  
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We have derived a corrected form of rs in presence of correlated interfering signals 
from k interferers in [30] and have reproduced here for convenience. 
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where a and b are the first and second moments of sum of correlated lognormal random 
variables using Wilkinson’s approach [29]. Interfering signals are often modeled as the 
lognormal random variables. 
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terference ratio). The definitions of the notations used are presented in Table 1 for ready 
reference.  

 
Table 1. Definition of the notation used for the system model. 

Notation Definition 
 SIR threshold at the receiver sensor 
k Number of interferers 
 Standard deviation of shadow fading in dB 
 Correlation coefficient 

Rmax Maximum practicable sensing radius of a node 
 Sensor node density (N/A) 

4. SCHEDULING SCHEME 

In this section, first we have described the hard-core point process from which the 
concept of inhibition distance is employed for sensor scheduling then we have presented 
our proposed probabilistic coordinated scheduling scheme for sensors in section 4.2. 

4.1 Hard-core Point Process 

The nodes locations in a randomly deployed stationary WSN can be modeled as a 
Poisson point process (PPP) Φ of density , expected number of nodes per unit area. To 
model the distribution of randomly and uniformly deployed sensors as spatial Poisson 
point process has received intense attention in the literature of WSNs. Moreover, if the 
sensors are distributed with a constant density  throughout the RoI, then it can be mod-
eled as a Homogenous Poisson point process (HPPP). A number of more complicated 
point processes can be derived from the parent Poisson point process. A fundamental 
operation thinning can be performed on the parent PPP to generate new point processes. 
Thinning is done by randomly deleting a point with some deterministic probability (1–p), 
where p represents the retention probability, and the deletion of each point is independ-
ent of deleting or retaining other points of Φ. This well-known independent thinning is 
called as p-thinning or p(x) thinning; apart from this there also exists distance-dependent 
thinning. Our work is concentrated on dependent thinning more specifically distance- 
dependent thinning. This distance-dependent thinning is also known as the widely ac-
cepted Matern hard-core point process (MPP). Matern first and second order hard-core 
point processes are the examples of dependent thinning [31]. Here, two points are for-
bidden to lie closer than a minimum hard-core distance, d  which is called the inhibition 
distance. In Matern І hard-core process, every point of Φ is deleted in the process if the 
pair wise distances between the constituent points are less than the specified hard-core 
distance, d . On the other hand, in Matern ІІ hard-core process each point of Φ is associ-
ated with independent random time mark. The random time mark is uniformly distribut-
ed in [0, 1]. The point with the smallest time mark in the inhibition range is retained and 
all other points are eliminated. 

4.2 Probabilistic Coordinated Sensor Scheduling Scheme 

To maintain a desired level of coverage especially in applications (e.g. forest fire 
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detection, military surveillance, home security, and environmental hazardous monitoring 
etc.) a huge number of nodes have to be deployed, which also leads to huge energy con-
sumption and a high network cost. An efficient approach to minimize sensor redundancy 
and overall energy consumption is to implement sensor scheduling schemes. An energy 
efficient scheduling scheme should minimize sensor redundancy while maintaining the 
desired coverage fraction. The expression for coverage fraction in randomly deployed 
sensor networks can be represented as  

det

cov 1 NPP e  .   (4) 

Here Pdet is the detection probability of a sensor in presence of k interferers and is r2
s/A, 

A denotes area of the RoI. Pcov in Eq. (4) will reduce with the increase in number of in-
terferers (k). This is because with the increase in number of interferers the average sens-
ing radius of the sensor reduces.  

For random scheduling scheme, the expression for Pcov can be expressed as 

2

cov 1 s rr PP e   .    (5) 

where Pr ( [0,1]) is the probability of a sensor node to be in on state, then (1  Pr) rep-
resents the probability to be in off state. A sensor decides its states randomly depending 
on the value of Pr, whether to be turn on or off. Random scheduling scheme is energy 
efficient in the sense that the sensors need not to communicate with their neighbouring 
sensors. As a result of this critical events may miss out if the corresponding sensor is off. 
Thus, in our work we have adopted coordinated scheduling scheme to activate minimum 
number of sensors with probabilistic sensing range in interference limited dense WSN. 
For this we have employed the concept of hard-core point process from stochastic geom-
etry. Using the inhibition distance from hard-core point process two simultaneously ac-
tive sensors are inhibited by communicating a random time mark. Inhibition distance is 
the minimum allowable distance between two simultaneously active sensors and in our 
case, it is the average sensing radius of sensors (rs). A random time mark mi is assigned 
to every sensor and the sensor with the lowest mark in the inhibition range rs is being 
activated. mi are random numbers uniformly distributed between 0 and 1. Since only 
random numbers are communicated for coordination among the neighbouring sensors 
instead of their actual location information, the communication overheads are effectively 
reduced. The probability of sensors to be in on state defined as the sensor activation 
probability (Pψ) using probabilistic hard-core coordinated scheduling (HCCS) scheme 
can be expressed as  
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where q(m0) is the probability that a sensor with mark m0 will remain on in area r2
s. m0 is 

uniformly distributed in [0, 1]. For large values of N, Eq. (7) reduces to  
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Eq. (9) can be directly followed from the properties of hard-core point process from sto-
chastic geometry [32]. Substituting the expression of rs from Eq. (2) in Eq. (9), the sen-
sor activation probability (Pψ) for dense WSNs in presence of k interferers is 
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(a) Random scheduling (RS) for Pr = 0.33. (b) Probabilistic hard-core coordinated schedul-

ing (HCCS) for Pψ = 0.33. 
Fig. 2. Comparison between the distribution of active sensor nodes in presence of k = 6 number of 

interferers. 
 

Figs. 2 (a) and (b) demonstrate the possible distribution of active sensors under ran- 
dom scheduling (RS) and probabilistic hard-core coordinated scheduling (HCCS) schemes 
simulated in MATLAB under same sensor activation probability Pr = Pψ = 0.33. HCCS 
scheme is simulated with inhibition distance d = rs. The circles represent the footprints 
of active sensors. It is obvious from the figure that the coverage area has increased for 
probabilistic HCCS scheme in comparison to RS scheme for equal number of active 
sensors. Put another way, for a desired coverage the number of nodes required by HCCS 
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scheme is much smaller than the RS scheme. This in a subtle way also reduces the inter-
ference effects by reducing the number of active sensors. For clarity of understanding 
and implementation the basic form of probabilistic hard-core scheduling scheme is pre-
sented in Algorithm 1. 

 
Algorithm 1: Coordinated Scheduling Scheme 
Inputs: , , , k, Rmax, A, K and Pf 
Process Step 1: compute the average sensing radius rs in presence of k interferers accord-

ing to Eq. (2) 
Step 2: deploy N sensor nodes randomly following Poisson distribution of inten-
sity  
Step 3: select a sensor randomly from N deployed sensors, say the selected sen-
sor xi is located at location i (i  1, 2, ..., N) 
Step 4: generate and assign independent random variable mi to all the neighbour-
ing sensors of node xi, where mi is uniformly distributed between 0 and 1 i.e. mi ~ 
unif [0, 1] 
 

Nd(xi) = {xj: for all xj B(xi, rs)} and i  j   
 
Here Nd'(xi) denotes set of the neighbouring sensors of the selected sensor xi and 
B(xi, rs) is the sensing region of xi with radius rs 
Step 5: the sensor with mark mi will become active if  
 

mi < mj  for all jNd(xi) 
 
Step 6: repeat this process for all the deployed N sensor nodes 
Step 7: run steps 1 to 4 for 1000 iterations and average the results to get the cov-
erage curve for probabilistic HCCS scheme

 

To further validate the performance of our proposed scheme over RS scheme, we 
have resorted to the concept of deployment entropy first introduced in [33] to investigate 
the quality of coverage for a given sensor deployment. In [34], authors have evaluated 
the deployment entropy to measure the quality of sensor deployment in a region of inter-
est by partitioning the RoI into concentric virtual hexagonal structures. Hexagonal struc-
tures are the most universally accepted structures for wireless communication networks. 
The expression for deployment entropy is same as the information entropy as reported in 
[33] and can be represented here as  
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In Eq. (12), rl represents the ratio of number of sensors over the area of lth concentric 
hexagonal cell and 
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  is the sum of all such ratios. ns is the number of concentric hex- 

agonal cells. H attains maximum value when all events are equiprobable and it is possi-
ble when the sensors are approximately uniformly distributed. Higher value of H implies 
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more sensing coverage. The significance of evaluating deployment entropy to measure 
the sensor distribution after sensor scheduling is presented in Section 6.3. 

 Node Saving Ratio 

To obtain a desired coverage fraction Pcov = Pdes, the number of nodes required to be ac-
tive for random scheduling as well as for probabilistic HCCS schemes are NPr and NPΨ 
respectively. For a fixed Pdes, the required Pr and PΨ can be computed from Eqs. (5) and 
(10). To compare the performance of probabilistic HCCS over RS, we have calculated 
the node saving ratio (ψ) and can be expressed as 

 -r

r

P P

P
  .    (13) 

 Network Lifetime  

To further validate the supremacy of our proposed scheme over the random scheduling 
(RS) scheme, we have analyzed the lifetime of the deployed network for both the sched-
uling schemes. For RS scheme the energy consumption is only due to sensing of the cir-
cular region of radius rs. Therefore, energy consumption model for RS scheme can be 
expressed as 

s s sE r T     (14) 

where  is the constant for power density of sensor,  is the path loss exponent, Ts is the 
time interval for which the sensor remains active. The sensor will dissipate energy only 
in active state. On contrary to RS scheme, the energy consumption for probabilistic 
HCCS scheme is due to both sensing and transmission of random numbers between the 
neighbouring nodes within the inhibition range. Therefore, the energy model for HCCS 
can be represented as 

t s cE E E      (15) 

where Ec is the energy required for communication between nodes and is given by  

 .c t d sE m e e r      (16) 

Here m is the number of transmitted bits. In our model, we have considered that the ran-
dom numbers are 8 bits uniformly distributed numbers, so that the proposed scheme can 
be implementable using an 8-bit processor. The term et and ed are radio parameters [35]. 

The network lifetime can be expressed as the number of data gathering cycles (Td) 
the network will survive [36]. In other words, after Td data gathering cycles the network 
will become non-functional due to battery energy depletion of the sensor nodes. There-
fore, the network lifetime for RS scheme can be expressed as  

0
d

r s

E
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P E
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where E0 is the initial energy of the deployed network. We have considered that all the  
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sensor nodes have same initial energy. Similarly, for HCCS scheme network lifetime (Td) 
can be expressed as 
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0 .d

s c

E
T

P E E
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    (18) 

In Section 6.2, we have shown that though our proposed probabilistic HCCS 
scheme needs communication overheads for synchronization among the neighbouring 
sensors, the lifetime achieved by the network using RS and HCCS schemes is approxi-
mately same.  

5. EFFECT OF NODE FAILURE ON K-COVERAGE 
TO A TARGETED EVENT 

In this section, we have shown the combined effect of node failure and coverage 
degree on coverage fraction in interference limited sensor networks. To provide K-co- 
verage to a region of interest (RoI) a usual approach found in literature is to add sensor 
redundancy in the deployed network. On the other hand, in such densely deployed sensor 
networks, interference is an inherent source of performance degradation. A substantial 
amount of nodes may become non-functional due to harsh environment condition, soft-
ware and hardware problems, limited battery energy etc. In a network of energy-con- 
strained sensor nodes, a node will fail to detect an event in two conditions: (a) the event 
to be detected does not lie within the sensing area of the node; (b) event lies within the 
sensing area and the node fails to detect. Let Pf be the probability of node failure, then 
the probability of no node failure is (1  Pf). In presence of node failure, the probability 
that an event will not be detected by a sensor node is given by [1] 

 det det1 1un fP P P       (19) 

Here Pdet is the detection probability of a sensor node. Substituting rs from Eq. (2), Pundet 
in presence of k interferers is 
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               
                

.    (20) 

Therefore, the coverage fraction in presence of k interferers and node failure can be 
expressed as 

 
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                
                

.    (21) 
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Eq. (21) ensures 1-coverage to the region of interest by the deployed network. A 
network to be fault tolerable, each and every location of the field has to be K-covered, 
where K is configurable according to the desired accuracy of detection demanded by the 
network applications. The degree of coverage can be considered as a measure of QoS 
that a sensor network provides [13]. Following [37], the expression for K-coverage 
probability in presence of node failure Pf can be represented as 

     cov det det1 1 1
N M N M

M

N f f
M K

P C P P P P




           (22) 

where N is total number of randomly deployed sensor nodes.  
In network environments where nodes are prone to failure a large value of K is de-

sired. To ensure K-coverage to a targeted event while sensor scheduling we have consid-
ered the inhibition distance between the sensors to be the average sensing radius rs. This 
will ensure that no critical event to be missed during sensor scheduling and at the same 
time providing K-coverage while activating minimum number of sensor nodes. For cov-
erage degree K = 3, the coverage fraction Pcov achieved after sensor scheduling can be 
expressed as 
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    (23) 

where Nactive is number of active sensor nodes after scheduling. 

6. RESULT AND DISCUSSIONS 

6.1 Sensor Activation Probability in Presence of Interferers  

In this sub-section, firstly we have examined the impact of sensing channel param-
eters and interferers on sensor activation probability to the sensor node density. The en-
tire sensing region of interest (RoI) is assumed to be a rectilinear field with area A = 50 × 
50m2. Here, we have assumed the maximum number of interferers can be k = 6. The 
maximum practicable sensing radius Rmax is considered to be 1m and other system pa-
rameters used for performance analysis are shown in Table 2. We have done the numer-
ical analysis considering a small RoI but these results are also applicable for large area 
networks. 
 

Table 2. System parameters for performance analysis. 
Parameter Value 

Fading parameter,  2 dB ≤  ≤ 6 dB
Correlation coefficient,  0.1 ≤  ≤ 1 

SIR threshold of detection,  0.1 
Sensor node density,   0 <  ≤ 1 
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(a)       (b) 
Fig. 4. Variation of activation probability (P) with node density () for different values of corre-

lation coefficient (): (a) interferer k = 1 and  = 4 dB; (b) interferer k = 3 and  = 4 dB. 

 
(a) Different number of interferers (k) and  = 

4 dB. 
(b) different values of  (in dB) with varying 

number of interferers (k). 
Fig. 3. Variation of activation probability (P) with node density () for  = 0.5. 

 

Fig. 3 (a) shows the variation of activation probability (Pψ) with node density () 
for different number of interferers (k). Here, we have considered  = 4 dB and  = 0.5. It 
is observed from figure that more number of sensors are being activated with the in-
crease in number of interferers (k). The sensing radius rs considered as the inhibition 
distance between two active sensors degrades gradually due to the undesired interference 
from the surrounding environment and as a result to maintain desired coverage more 
number of sensors are being activated. For example, the number of active sensors in-
creases from ~ 40% to 50% for an increase in number of interferers from k = 1 to 4. 

Fig. 3 (b) illustrates the variation of sensor activation probability (P) with node 
density () for two different values of  (in dB) and different number of interferers (k). It 
is observed that when  increases from 4 dB to 6 dB i.e. the propagation environment be-
comes more severe due to fading, the activation probability (P) increases at a given sensor 
node density (). For example when  = 6 dB, P increases by ~ 5% and when  = 4 dB, P 
increases by ~ 7% for an increase in number of interferers from k = 1 to 3 respectively. It is 
clear from the figure that when the propagation environment becomes more adverse i.e. at  = 
6 dB due to shadowing losses of the propagation channel, the effect of number of interferers 
(k) on sensor activation probability (P) becomes less significant. This is due to the fact that 
when the transmit environment is adversely affected by shadowing the receiver becomes more 
rigid to the received sensing signal from the source sensor. 

Figs. 4 (a) and (b) show the variation of activation probability (P) with node dens- 
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 Fig. 5. (a) Coverage fraction (Pcov) versus number of sensor nodes (N) for different values of node 
failure probability (Pf) with coverage degree K= 3 and number of interferers k = 2 (solid 
lines) and k = 6 (dashed lines); (b) Coverage fraction (Pcov) versus probability of node fail-
ure (Pf) for different coverage degrees (K) and number of interferers k = 2 (solid lines) and 
k = 6 (dashed lines). 

fity () for different values of correlation coefficient () and number interferers k = 1 and 
3 respectively. It is observed from both the figures that with increase in the value of cor-
relation coefficient , the sensor activation probability (P) decreases i.e. at a given node 
density (λ) lesser number of sensors are being activated. For example, when  increases 
from 0.1 to 1.0 the reduction in P is about ~ 3.5% at higher node density in presence of 
k = 1 interferer. In addition, for k = 3 interferers, the percentage reduction in activation 
probability (P) is about ~ 7% for an increase in the value of  from 0.1 to 1.0 at higher 
node density. It can be concluded from both the figures that with the increase in number 
of interferers (k) the significance of correlation coefficient () becomes more pro-
nounced. These results are obtained for  = 4 dB. 

6.2 Impact of Node Failure and Coverage Degree on Coverage Fraction without 
Sensor Scheduling  

In this sub-section, we have studied the combined effect of node failure probability 
(Pf) and coverage degree (K) on network coverage fraction in presence of interferers. 
Here, all the system parameters remain same as mentioned in Table 2. 

Fig. 5 (a) illustrates the variation of coverage fraction (Pcov) with number of sensor 
nodes (N) in presence of different number of interferers k = 2 and 6 respectively. Here, 
the curves are obtained for coverage degree, K = 3. The solid lines and dashed lines de-
pict the curves for k = 2 and 6 respectively. It is observed that coverage fraction increas-
es with the increase in number of sensor nodes irrespective of the value of node failure 
probability (Pf). For Pf  = 0, i.e. in no node failure case and N = 300, the coverage frac-
tion achieved is ~ 94% in presences of k = 2 interferers. It falls to ~ 79% and severely 
degrades to ~ 43% for Pf  = 0.3 and 0.6 respectively. The decrease in coverage fraction 
(Pcov) for first 30% node failure is ~ 15% and it is ~ 36% for additional 30% node failure. 
In addition, it is observed that in presence of more number of interferers i.e. when k = 6, 
the coverage achieved is ~ 76% for N = 300 in no node failure case. The coverage frac-
tion further reduces to ~ 53% and ~ 21% for Pf  = 0.3 and 0.6 respectively. It is also 
clear from figure that slope of the curve has decreased when the number of interferers 

 

  

(a)         (b) 
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has increased from k = 2 to 6. For k = 6, the decrease in coverage fraction (Pcov) for first 
30% node failure is ~ 23% and it is ~ 32% for additional 30% node failure. In addition, 
even in no node failure case (i.e. Pf = 0) the decrement in Pcov is about ~ 18% when 
number of interferers increases from k = 2 to 6. 

The variation of coverage fraction (Pcov) with probability of node failure (Pf) is 
shown in Fig. 5 (b) for different number of interferers k = 2 and 6 respectively. It is ob-
served from Fig. 5 (b) that the coverage fraction (Pcov) is gradually decreasing with the in-
crease in node failure probability (Pf). In addition, the coverage fraction further reduces with 
the increase in coverage degree K. For coverage degree K= 3, the sensing coverage reduces 
from ~ 76% to ~ 49% for the increase in number of interferers from k = 2 to 6 at Pf = 0.6. The 
reduction in coverage fraction (Pcov) for first 30% node failure is ~ 13% and is ~ 27% for ad-
ditional 30% node failure when number of interferers k increases from 2 to 6. Here also the 
solid lines and dashed lines represent the curves for k = 2 and 6 respectively. 

6.3 Impact of Node Failure and Coverage Degree on Coverage Fraction 
with Sensor Scheduling  

To validate the performance of probabilistic coordinated scheduling over random 
scheduling, we have performed Monte Carlo simulations of the deployed sensor network. 
The sensing channel parameters considered are  = 4 dB,  = 0.5, and  = 0.1. The ac-
tive sensor node density varies from 0 <  ≤ 0.1. To enhance the accuracy of coverage 
performance (Pcov) under HCCS and RS schemes at every active node density, the results 
for Pcov are averaged over 1000 iterations of the simulation. We have done the simulation 
in MATLAB environment. 

The inhibition distance considered for probabilistic coordinated scheduling scheme 
is the average sensing radius of sensor nodes in presence of k interferers. We have ap-
plied the probabilistic HCCS scheme considering d  = rs, and have evaluated the cover-
age fraction Pcov for k = 2 and 6 interferers respectively. Then, we have used the values 
of P corresponding to d  = rs for interferers k = 2 and 6 and have measured Pcov for 
random scheduling (RS) scheme considering P = Pr. 

Figs. 6 (a) and (b) show the variation of coverage fraction (Pcov) with node density 
() for coverage degree K = 1 and number of interferers k = 2 for different scheduling 
schemes in the event of no node failure and 40% node failure.  

 

  

(a)       (b) 
Fig. 6. Coverage fraction (Pcov) versus node density () for different scheduling schemes with cov-

erage degree K= 1 and number of interferers k = 2: (a) Pf = 0 and (b) Pf = 0.4. 
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It is observed from Fig. 6 (a) that Pcov achieved for HCCS curve is ~ 23% more as 
compared to RS at active node density  = 0.05/m2 in no node failure case (i.e. Pf = 0). In 
addition, Fig. 6 (b) shows that for 40% node failure (i.e. Pf = 0.4) the enhancement in 
Pcov for probabilistic HCCS scheme is almost ~ 41% in comparison to RS scheme at  = 
0.05/m2. 

The variation of coverage fraction (Pcov) with node density () for K = 1 and num-
ber of interferers k = 6 is shown in Figs. 7 (a) and (b) for different scheduling schemes.  

 

  

(a)           (b) 
Fig. 7. Coverage fraction (Pcov) versus node density () for different scheduling schemes with cov-

erage degree K= 1 and number of interferers k = 6: (a) Pf = 0 and (b) Pf = 0.4. 

It is observed from both the Figs. 7 (a) and (b) that Pcov decreases in comparison to 
Figs. 6 (a) and (b) with the increase in number of interferers as expected. In Fig. 7 (a), 
the achievable coverage (Pcov) in presence of no node failure (i.e. Pf = 0) is ~ 35% more 
as compared to RS at active node density  = 0.05/m2. Additionally, it is observed from 
Fig. 7 (b), that for 40% node failure (i.e. Pf = 0.4) the enhancement in Pcov for probabilis-
tic HCCS scheme is almost ~52% in comparison to RS scheme at  = 0.05/m2. 

Figs. 8 (a) and (b) show the coverage fraction (Pcov) for coverage degree K = 3 and k 
= 6 under different scheduling schemes in the event of no node failure and 40% node 
failure respectively.  

 
  

(a)        (b) 
Fig. 8. Coverage fraction (Pcov) versus node density () for different scheduling schemes with cov-

erage degree K= 3 and number of interferers k = 6: (a) Pf = 0 and (b) Pf = 0.4. 
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It is observed from Figs. 8 (a) and (b) that for increasing coverage degree (i.e. K = 3) 
the coverage fraction (Pcov) further reduces in comparison to Figs. 6-7 and it degrades 
severely for RS scheme. Due to nonuniformity in active sensor distribution, the RS 
scheme fails to provide the desired coverage fraction for increased coverage degree. 

Figs. 6-8 show that the probabilistic HCCS scheme outperforms the RS one, due to 
uniform distribution of the active sensors in the desired RoI as also depicted in Fig. 2. It 
is clear from the results that in presence of interferers and node failure the random 
scheduling (RS) scheme provides a poor partial coverage of the RoI. It can be concluded 
from the results that the sensing channel parameters and node failure probability has a 
significant impact on the networks achievable coverage. To combat the effect of inter-
ference and node failure probability on network coverage some redundant nodes can be 
deployed and activated by probabilistic HCCS scheme depending on the desired cover-
age requirements. 

To further verify the performance of our proposed scheduling scheme over RS 
scheme, we have evaluated the deployment entropy to measure the uniformity in active 
sensor distribution after scheduling. The region of interest of area A = 50 × 50 m2 is par-
titioned into five concentric hexagonal cells and 50 sensors are randomly deployed. The 
number of interferers is considered to be k = 6. Then both RS and HCCS schemes are 
implemented on the deployed sensor nodes. Figs. 9 (a) and (b) show the distribution of 
active sensor nodes in the simulation scenario after sensor scheduling for RS and proba-
bilistic HCCS respectively. The circles with solid lines represent the footprints of active 
sensors. The values for deployment entropy, H can be calculated by introducing the rati-
os of sensors to area of each sub-region in Eq. (11). The computed deployment entropy 
for RS and probabilistic HCCS schemes are 1.303 and 1.493 respectively. It is also clear 
from the figure that for HCCS scheme sensors are more uniformly distributed over the 
entire RoI. 

 

  

                  (a)       (b) 
Fig. 9. Distribution of active sensors in concentric hexagonal structure after: (a) Random schedul-

ing (RS) of the sensor nodes (b) Probabilistic hard-core coordinated scheduling (HCCS) of 
the sensor nodes. 

 

Fig. 10 shows the variation of node saving ratio (ψ) for probabilistic HCCS scheme 
in comparision to RS for different values of desired coverage fraction (Pdes). 



SUNANDITA DEBNATH AND ASHRAF HOSSAIN 

 

954

 

It is observed that with the increases in Pdes, the node saving ratio (ψ) also increases 
gradually. This is due to the fact that for a fixed sensor density when the desired cov- 
erage demanded by an application increases, RS scheme activates more number of sen- 
sors in comparision to probabilistic HCCS scheme. Therefore, for higher desired cov- 
erage our proposed scheme provides significant performance enhancement. 

   
Fig. 10. Node saving ratio (Ψ) with the variation 

of desired coverage fraction (Pdes). 
Fig. 11. Lifetime variation with node density for 

probabilistic HCCS and RS schemes. 
 

Fig. 11 shows variation of number of data gathering cycle (Td) with varying node 
density () for different scheduling schemes. Here the system parameters used for net-
work lifetime analysis are shown in Table 3. It is observed that the network lifetime in-
creases with the increase in node density as expected. However, for higher node densities 
the increase in network lifetime is not much pronounced as the node density increases 
number of active nodes also increases, this on the other hand increases the overall energy 
consumption of the network. It is further observed that the lifetime curve for probabilis-
tic HCCS scheme coincides with the curve for RS scheme. It can be concluded from the 
figure that though probabilistic HCCS scheme consumes additional energy due to trans-
mission of communication overheads the network lifetime achieved by our proposed 
scheme is almost equal to the RS scheme. 

 

Table 3. System parameters considered for network lifetime analysis. 
Parameter  Value

Packet length, B 8 bits 
Duration of data gathering cycle, Td 500 secs 

Path loss exponent,  4.0 
Power density of sensor node,   388 µW/m2 

et 0.05 µJ/packet 
ed ( = 2) 0.1 nJ/packet/m2 

Initial battery energy, E0 23.760 kJ 

7. CONCLUSIONS 

In this paper, attempt has been made to develop a probabilistic hard-core coordi-
nated scheduling scheme (HCCS) for sensor nodes using the concepts of hard-core point  
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process from stochastic geometry. In dense WSNs, signals emitted by the nodes for sen- 
sing task are affected by the interfering signals from nearby transmissions. In such envi-
ronmental conditions, nodes are prone to become nonfunctional. The existing literature 
has addressed multiple sensor scheduling schemes, however have ignored the impact of 
inherent channel randomness on the achievable coverage during their study. The pro-
posed probabilistic coordinated sensor scheduling based on inhibition distance reduces 
the energy consumption by activating minimum number of sensors using little commu-
nication overheads. We have further analyzed the influence of various sensing channel 
parameters and interferers on sensor activation probability. K-coverage is also ensured to 
the monitored region by adopting the sensing radius as the inhibition distance between 
two simultaneously active sensors. The combined effect of node failure and coverage 
degree on the coverage performance in presence of interference is also shown. The cov-
erage fraction achieved by probabilistic HCCS scheme outperforms the RS scheme even 
in no node failure case by almost ~35% at active sensor node density  = 0.05/m2, cov-
erage degree K = 1 and number of interferers k = 6. It can be concluded from the results 
that probabilistic HCCS scheme outperforms the RS scheme in the event of interference, 
node failure, and required coverage degree.  
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