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The research of the difference measure method for risk probability distribution plays 

a key role in the early warning decision-making management of retail supply chain un-
conventional emergency. However, the common difference measure indices are estab-
lished by the specific density function or distribution law of the risk probability distribu-
tion. In Knight uncertain environment, only the moments of the risk probability distribu-
tion can be obtained. This study proposes the difference moment measure method of risk 
probability distribution based on moment generating function and fuzzy data stream 
clustering for the retail supply chain unconventional emergency. The big data statistical 
analysis is performed on the risk assessment indices to obtain the moments of the risk 
probability distribution for unconventional emergency. The difference of moment gener-
ating functions for unconventional emergency risk is measured by the distance function 
in the real vector space of infinite dimensional moments and then the difference between 
the real distribution and the reference distribution of the risk probability for unconven-
tional emergency is further measured by the moments. The main contribution of this 
study is that we propose a new difference measure method of risk probability distribution 
for unconventional emergency based on cloud model method, moment generating func-
tion theory, functional function and big data fuzzy statistics technology in Knight uncer-
tain and big date environments, which can overcome the drawbacks of the existing dif-
ference measure methods for probability distributions.    
 
Keywords: difference moment measure method, risk probability distribution, moment 
generating function, fuzzy data stream clustering algorithm, unconventional emergency 
 
 

1. INTRODUCTION 
 

Since the beginning of the 21st century, unconventional emergencies have frequent- 
ly occurred [1], such as “SARS”, “A H1N1” flu, New Orleans hurricane, Indian Ocean 
tsunami, Wenchuan earthquake and “9.11” terrorist incident. Characterized by emergen-
cy, major destructiveness, coupling, derivation, and major social influences, such inci-
dents cause tremendous damage to human life, property, and physical and mental health 
[2]. The emergency management of unconventional emergency has become highly prior-
itized topic to governments and academia. The risk early warning decision of unconven-
tional emergency in retail supply chain is associated with Knight uncertain and big data 
environment [3]. The robust multi-criteria early warning decision method for maximum 
and minimum expected utility needs to select a suitable difference measure index of risk 
probability distributions to measure the deviation between the real distribution and the 
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reference distribution of the risk probability for unconventional emergency, which de-
scribes the Knight uncertainty faced by decision makers of retail supply chain. 

At present, commonly used indices for measuring the differences in probability dis-
tributions are Csiszar f-metrics (which include common L1 distances, relative entropy, 
and Heringer distance measures) and Bregman metrics (including common L2 distance 
and relative entropy measures). Latif N. used Csiszar f-divergence to reduce the results 
for majorization inequality in the form of the Kullback-Leibler divergence and Shannon 
entropy [4]. Chen G. S. used Csiszar’s f-divergence of two probability measures to study 
generalizations of the Holder’s inequality [5]. Kumar P. proposed a symmetric measure 
belonging to the class of Csiszar’s f-divergences [6]. Stummer W. introduced scaled 
Bregman distances of probability distributions covering not only the distances of discrete 
and continuous stochastic observations, but also the distances of random processes and 
signals [7]. The common indices are established by the specific density function or dis-
tribution law of the probability distribution, which measure the differences between 
probability distributions [8, 9]. However, in the Knight uncertain environment, the spe-
cific probability distribution form of risk is often difficult to obtain, and only the mo-
ments of the probability distribution can be obtained [10]. 

Some scholars use the moments to generate moment generating function. Wen L. M. 
deduced the estimates of the risk moments and then estimated moment-generating func-
tions (MGFs) of risks by Buhlmann’s credibility procedure [11]. Stefano D. M. proposed 
the moment generating function expression on its analyticity domain [12]. Murakami H. 
studied the moment generating function (MGF) of various Jonckheere Terpstratype sta-
tistics by using the MGF with higher order moments [13]. 

Some scholars use clustering algorithms for statistical analysis. Peters G. provided a 
framework, DCC Dynamic Clustering Cube, to categorize existing dynamic granular 
clustering algorithms. Furthermore, the DCC Framework can be used as a research map 
and starting point for new developments in this area [14]. Lingras P. W. described a 
concept of meta-clustering that clusters a set of granules using clustering information 
from another or the same set of networked granules. Cluster membership of one granule 
can affect another granules cluster membership, resulting in a recursive meta-clustering 
process [15]. Chen J. R. proposed a novel dynamic evolutionary clustering algorithm 
based on time weight and latent attributes. The network model is established by intro-
ducing the forgetting function to score matrix [16]. Abdullahi S. studied an unsupervised 
two-stage clustering approach for forest structure classification [17]. Bi W. J. proposed a 
big data clustering algorithm that ensures profit maximization and mitigates the risk of 
customer churn [18]. Memon K. H. has studied generalized kernel weighted fuzzy 
c-means clustering algorithm with local information [19]. Vignati F. presented an en-
hanced technique for hierarchical agglomerative clustering. The data weighting depends 
dynamically on the degree of advancement of the clustering procedure [20]. The duration, 
type and structure of connections between individuals in real-world populations play a 
crucial role in how diseases invade and spread. Barnard R. C. incorporated the heteroge-
neities into a model by considering a dual-layer static-dynamic multiplex network with 
tunable clustering [21]. Yang M. S. used feature-weighted entropy to research a fea-
ture-reduction fuzzy clustering algorithm and simultaneously reduce these irrelevant 
feature components [22]. 

Some scholars have studied uncertainties in the system. Kreinovich V. explained 



DIFFERENCE MEASURE METHOD OF RISK PROBABILITY DISTRIBUTION 1399

that to obtain an adequate solution, we need to take into accounts not only the system of 
equations and the granules describing uncertainty, and also need to take into accounts the 
original practical problem [23]. Sanchez M. A. proposed a new method for the formation 
of fuzzy higher type granular models, which is accomplished by directly discovering 
uncertainty from a sample of numerical information [24]. DUrso P. reviewed the princi-
pal exploratory multivariate analysis methods for imprecise data proposed in the litera-
ture, i.e., cluster analysis and other exploratory statistical approaches [25]. Yager R. R. 
provided an approach to decision making in the face of uncertainty where the uncertain 
information is expressed on a space of granular objects and the underlying uncertainty is 
most generally represented by a measure [26]. Alberink I. used the Welch-Satterthwaite 
equation to quantify uncertainty in estimations of the total weight of drugs in groups of 
complex matrices, which does not assume constant relative standard deviations [27]. 
Ghosh S. embarked on functional uncertainty analysis using fuzzy hidden Markov model, 
which provides with optimal path for hidden failures to mitigate propagation of uncer-
tainty amongst the functional blocks [28]. Jafarzadeh H. proposed a method combing 
with Quality Function Development (QFD), fuzzy logic, and Data Envelopment Analysis 
(DEA) to accounts for prioritization, uncertainty and interdependency [29]. Selecting a 
renewable energy source portfolio is an uncertain multi-criteria decision-making problem. 
Hocine A. proposed a multi-segment fuzzy goal programming method, which addresses 
decision-making problems with high levels of uncertainty [30]. 

The Knight uncertain environment is caused by: (1) scenario uncertainty and multi-
ple scenarios in the future; (2) the uncertainty of decision consequences and strong sce-
nario dependence in retail supply chain unconventional emergency. Research on early 
warning decision of retail supply chain unconventional emergency risk involves the un-
certainty problem of the robust multi-criteria early warning decision model for maximum 
and minimum expected utility, which shows the uncertainty of random variable probabil-
ity distribution for unconventional emergency risk. It needs to select a suitable difference 
measure index of risk probability distribution to measure the deviation between the real 
distribution and the reference distribution of unconventional emergency risk. The com-
mon indices are established by the specific density function or distribution law of the 
probability distribution, which measure the differences between probability distributions. 
However, in the Knight uncertain environment, the specific probability distribution form 
of risk is often difficult to obtain, and only the moments of the risk probability distribu-
tion can be obtained. To solve the bottleneck problem of risk probability distribution 
uncertainty measuring in the robust multi-criteria early warning decision model for the 
retail supply chain unconventional emergency, this study proposes the difference mo-
ment measure method of risk probability distribution based on moment generating func-
tion and fuzzy data stream clustering in Knight uncertain and big data environment. It 
does not depend on the specific probability distribution form of risk random variable for 
retail supply chain unconventional emergency. It only relies on the non-parametric indi-
ces of the moments for the risk probability distribution. In consideration of the big data 
characteristics of high dimensional and fast changing data stream for the unconventional 
emergency risk assessment indices, on the basis of the cloud model theory [31] and the 
fuzzy data stream clustering algorithm, the big data of risk assessment indices are statis-
tically analyzed to obtain the non-parametric indices of the moments for the risk proba-
bility distribution of retail supply chain unconventional emergency. Based on the theory 
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of moment generating function and functional theory, the difference between the mo-
ment generating functions of retail supply chain unconventional emergency risk is meas-
ured by the distance function in the real vector space of infinite dimension moments. The 
difference between the real distribution and the reference distribution of the risk proba-
bility for unconventional emergency is further measured by the moments. The main con-
tribution of this study is that we propose a new difference measure method of risk proba-
bility distribution for retail supply chain unconventional emergency based on cloud 
model method, moment generating function theory, functional function and big data 
fuzzy statistics technology in Knight uncertain and big date environment, which can 
overcome the drawbacks of the difference measure methods for probability distributions 
presented in [5-7]. At present, the research results about the difference moment measure 
method of risk probability distribution for retail supply chain unconventional emergency 
have not yet been reported based on moment generating function theory and fuzzy data 
stream clustering algorithm. 

This paper is organized as follows. In Section 2, the cloud model theory and the 
fuzzy data stream clustering algorithm are used to statistically analyze the big data of risk 
assessment indices for retail supply chain unconventional emergency, and to obtain the 
non-parametric indices of the moments for the risk probability distribution of unconven-
tional emergency. In Section 3, the definition and properties of the moment generating 
function generated by the moments of the risk probability distribution for retail supply 
chain unconventional emergency are analyzed. Based on the theory of moment generat-
ing function and functional theory, the difference between the moment generating func-
tions of retail supply chain unconventional emergency risk is measured by the distance 
function in the real vector space of infinite dimension moments. The difference degree 
between the risk probability distributions of unconventional emergency is measured af-
terward, which constructs a difference moment measure index of risk probability distri-
bution for retail supply chain unconventional emergency. This study provides a conven-
ient nonparametric index for the difference measuring of the risk probability distribu-
tions of retail supply chain unconventional emergency in Knight uncertain environment. 
In Section 4, the feasibility of the difference moment measure method of risk probability 
distributions is verified based on the example simulation experiments for retail supply 
chain unconventional emergency. 

2. MEASURE MODEL OF RISK PROBABILITY DISTRIBUTION 
MOMENT BASED ON FUZZY DATA STREAM CLUSTERING 

A measure model of risk probability distribution moment for retail supply chain 
unconventional emergency is built based on the fuzzy data stream clustering algorithm in 
this study. The summary data cloud droplets of the risk assessment indices for retail sup-
ply chain unconventional emergency are extracted by the cloud model summary data 
generation algorithm based on multi data fusion method. The data are then used as a set 
constituted by n risk assessment samples at the time t. n is the width of the window. Each 
sample includes m index attribute values. According to the fuzzy optimization theory, the 
index values of each sample are normalized to obtain the normalized matrix of the index 
attribute values at the time t. 
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where rt
ij represents the normalized number of the index attribute value at time t, 0 ≤ rt

ij ≤ 1. 
At time t, the following objective function can be established based on the smallest 

square sum of the weighted generalized Euclidean distance about the risk assessment 
sample set for all categories. 
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where the generalized Euclidean distance dt 
hj is used to represent the difference between 

sample j and category h. n samples are clustered into c categories according to m indices. 
ut

hj is the relative membership degree of the sample j belonging to category h at time t, 
and meets the following conditions: 
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wt
i is the weight of the ith index at time t, and satisfies the following constraints: 
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st
ih is the normalized number of the cluster center for index i in the category h at time t 

and 0 ≤ st
ih ≤ 1. wt

j is the weight value of data j at time t. 
According to the Lagrangian function method, the various elements in the data 

point weight vector DWt = (wt), the cluster weight vector CWt = (cwt
h), the index weight 

vector Wt = (wt
i), the fuzzy membership matrix Ut = (ut

hj), and the fuzzy clustering center 
matrix St = (st

ih) are obtained when the constraint conditions (3) and (4) are met. 
At time t, data j weight is defined as: 
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where  is the attenuation factor, t0 is the time at which the data point arrives. 
The weight of the hth cluster is defined as: 
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The weight of ith index is defined as: 
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Fuzzy membership of sample j belonging to h cluster is defined as: 
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Fuzzy cluster center of i index for h cluster is defined as: 

2 2 2

1

2 2

1

( ) ( ) ( )

,  1,  2,  ...,  ,  and 1,  2,  ...,  .
( ) ( )

n
t t t t
j hj i ij

jt
ih n

t t
hj i

j

w u w r

s i m h c
u w





  



   (9) 

Based on cloud models theory, according to the historical data stream of risk as-
sessment index summaries for retail supply chain unconventional emergency, the weigh- 
ted generalized expectation (first moment) of risk probability reference distribution FXt 

for unconventional emergency is calculated by Eq. (10). 
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The weighted generalized variance (secondary moment) of risk probability refer-
ence distribution FXt for unconventional emergency is calculated by Eq. (11). 

Fuzzy membership of sample j belonging to h cluster is defined as: 
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where Eh[Xt] is the weighted generalized expectation of historical data stream for h clus-
ter. 

According to the current data stream of risk assessment index summaries for retail 
supply chain unconventional emergency, the weighted generalized expectation (first 
moment) of risk probability real distribution FYt for unconventional emergency is calcu-
lated by Eq. (12). 
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The weighted generalized variance (secondary moment) of risk probability real dis-
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tribution FYt for unconventional emergency is calculated by Eq. (13). 
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where Eh[Yt] is the weighted generalized expectation of current data stream for h cluster. 

3. DIFFERENCE MEASURE MODEL OF RISK PROBABILITY DISTRI- 
BUTION BASED ON MOMENT GENERATING FUNCTION 

3.1 Moment Generating Function of Risk Random Variable for Unconventional 
Emergency 
 

(A) Definition of moment generating function for risk random variable 
 

Definition 1: A hypothesis is that Xt is the risk random variable of retail supply chain 
unconventional emergency at time t, eaXt

 is a function of real number a. The moment 
generating function of the risk random variable Xt for the unconventional emergency is 
defined as: 
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where the expectation exists (Namely, the integral or the series converges absolutely). 
 
(B) Property of moment generating function for risk random variable 
 
Property 1: If the moment generating function MXt(a) of the risk random variable Xt for 
retail supply chain unconventional emergency is defined in an open interval of a which 
contains 0, MXt(a) has an arbitrary order derivative, which is calculated by Eq. (15). 
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The special case is as follows. 
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Property 3: If Xt and Yt are independent risk random variables of retail supply chain 
unconventional emergency at time t, Eq. (18) is met on the interval that the moment gen-
erating function MXt(a) and MYt(a) are established. 

( ) ( ) ( )t t t tX Y X Y
M a M a M a


     (18) 

Namely, the moment generating function of the sum of two independent risk ran-
dom variables is equal to the product of the moment generating functions of the two risk 
random variables for retail supply chain unconventional emergency. 
 
Property 4: (uniqueness theorem) If the moment generating function MXt(a) is defined in 
an open interval of a containing 0, MXt(a) uniquely determines a risk probability distribu-
tion function of retail supply chain unconventional emergency. 
 
Property 5: (convergence theorem) If a column of the moment generating function Mn

t(a) 
converges to a certain moment generating function in an open interval of a containing 0, 
that is:   
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It is true for all a in the open interval containing 0. Then the risk probability distri-
bution Fn

t(x), corresponding to the column of the moment generating function Mn
t(a), 

converges to the risk probability distribution Ft(x), corresponding to the limit moment 
generating function Mt(a) in the retail supply chain unconventional emergency, that is: 
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3.2 Relationship between Moment Generating Function and Moments of Risk 
Probability Distribution for Unconventional Emergency 
 

The moment generating function is generated by the moments of the risk probability 
distribution for retail supply chain unconventional emergency. If the certain constraint 
conditions are met, the moment generating function can determine the risk probability 
distribution of retail supply chain unconventional emergency. 

The moment generating function can be expanded into a power series within the 
symmetry maximum open interval about a = 0 contained in its domain. 
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The coefficients can be used as a point in the real vector space S = {(x1, x2, …, xn, …) 
|xiR} of infinite dimension moments, denoted as point x, that is: 
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It may be desirable to associate the moment generating function with the real vector 
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of an infinite dimension moments, namely corresponding to the moments of the risk pro- 
bability distribution for retail supply chain unconventional emergency. 

 

3.3 Difference Moment Measure Model of Risk Probability Distribution for Uncon-
ventional Emergency 
 

The moment generating function has good properties such as uniqueness theorem 
and convergence theorem. This study uses the difference of the moment generating func-
tions to measure the difference degree of the risk probability distributions in retail supply 
chain unconventional emergency. If the probability distribution functions of risk refer-
ence random variable Xt and real random variable Yt for retail supply chain unconven-
tional emergency meet the conditions of the uniqueness theorem for moment generating 
function or their moments meet the conditions of the Karman’s theorem, based on the 
moment generating function theory and functional theory, it is possible to measure mo-
ment generating function difference of retail supply chain unconventional emergency 
risk through the distance functions in real vector space of infinite dimensional moments. 
The difference degree of the risk probability distributions is measured based on the mo-
ments in retail supply chain unconventional emergency. 
 
Proposition 1: If there is a real number R > 0, when |a| < R, both the moment generating 
functions MXt(a) and MYt(a) of the risk reference random variable Xt and real random 
variable Yt converge in retail supply chain unconventional emergency, or the moments of 
Xt and Yt exist and meet with: 
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At time t, the difference of the distribution functions FXt and FYt of the risk reference 
random variable Xt and the real random variable Yt for retail supply chain unconventional 
emergency can be measured as follow: 
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Obviously, if all moment differences of the two risk probability distributions are 
bounded, that is |E [(Xt)n] − E [(Yt)n]| ≤ M, where M is a positive constant, then it will be: 

( || ) 1.t tX Y
D F F M e     (26) 

So that the series converges. This measure makes sense. 
The measure D(FXt || FYt) does not depend on the specific form of the risk probability 

distribution for retail supply chain unconventional emergency. It is represented only by 
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the moments of the risk probability distribution, and it has the following characteristics: 
 
(1) Formally, the measure D(FXt || FYt) is the square root of the weighted squares sum 

(with a weight of 

1
!n ) of the origin moment differences of the two risk probability dis- 

tributions. And as the order increases, the weights of the moment differences of each 
order decrease. At the same time, the measure D(FXt || FYt) is the increasing function 
of the origin moment differences for the two risk probability distributions. 

(2) The measure D(FXt || FYt) is a distance function that meets non-negativity, symmetry, 
triangle inequality. 

(3) The measure D(FXt || FYt) has good astringency. 
 
The measure D(FXt || FYt) is sensitive to translational and scale transformations of 

random variable, for which it is necessary to standardize processing risk reference ran-
dom variable Xt and real random variable Yt of retail supply chain unconventional emer-
gency in this study. 

This study considers the following weighted moment sequences as: 

3
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   (28) 

where the expectation and variance are scaled with respect to the variance of Xt. The 
third-order and more than third-order central moments are scaled with respect to their 
variance. In this study, the distribution difference of risk reference random variable Xt 
and real random variable Yt of retail supply chain unconventional emergency is measured 
by the distance of the above two infinite dimensional real number sequences, shown as 
proposition 2. 
 
Proposition 2: If there is a real number R > 0, when |a| < R, both the moment generating 
functions MXt(a) and MYt(a) of the risk reference random variable Xt and the real random 
variable Yt of retail supply chain unconventional emergency converge, or the moments of 
Xt and Yt exist and meet with: 

1
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{ [( ) ]} nt n
n E X
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1
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1

1
.

{ [( ) ]} nt n
n E Y





      

At time t, the difference of the probability distribution functions FXt and FYt for the 
risk reference random variable Xt and the real random variable Yt in retail supply chain 
unconventional emergency can be measured as follow: 
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   (29) 

MD(FYt||FXt) is called as the difference moment measure of the risk probability dis-
tribution for retail supply chain unconventional emergency. 

In the risk early warning decision system of retail supply chain unconventional 
emergency, this study uses the first two terms of Eq. (29), and calculates the difference 
moment measure value of the risk probability distributions for retail supply chain un-
conventional emergency based on Eqs. (10)-(13). 
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   (30) 

4. THE EXAMPLE ANALYSIS 

This study takes the MN chain retail supply chain as the research object. The simu-
lation experiment platform is MATLAB R2012b under the Windows 7 operating system. 
The experimental environment is CPU Intel 2.5GHz 4G memory. 

 
4.1 Parameters Used in the Example 

 
The risk assessment indices and current values of retail supply chain unconvention-

al emergency are shown in Table 1. 
 

4.2 Databases of the Example 
 

The multi-data fusion-based cloud model summary data generation algorithm is 
used to extract the three-dimensional feature values, namely m = 3 index feature values, 
and summary center cloud drips rt

ij of the risk assessment index system for retail supply 
chain unconventional emergency as shown in Table 2. 
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Table 1. Risk assessment monitoring indices and current values. 

Risk 
dimensions 

Monitoring indices 
Expecta-

tion 
(Ex) 

Entropy 
(En) 

Hyper 
entropy 

(He) 
Supply risk 
dimension 

Supplier order satisfaction rate  
Supplier delivery failure rate  
Supplier production flexibility  
Supplier product qualification rate 
Supply chain node enterprise owned rate  
Supply chain core enterprise owned rate  
Production flexibility 
Fraction defective of product 
Core enterprise innovation ability 
Core enterprise overall coordination and control ability
Profit distribution fair degree 
Contract trust 
Contract execution rate

0.6594
0.6594
0.6414
0.6785
0.7921
0.7157
0.6982
0.8105
0.8703
0.6692
0.5987
0.6871
0.6138

0.5971 
0.5971 
0.3974 
0.3478 
0.6051 
0.6133 
0.5322 
0.5199 
0.5366 
0.7022 
0.4901 
0.5257 
0.3510 

0.4124 
0.4124 
0.4851 
0.6471 
0.5529 
0.5628 
0.3977 
0.4098 
0.5492 
0.5920 
0.3920 
0.4688 
0.3188 

Demand risk 
dimension 

Final product price level  
Demand fluctuations level  
Key customer churning rate  
Customer satisfaction

0.6474
0.7021
0.7322
0.6912

0.3195 
0.5089 
0.6698 
0.4321 

0.3368 
0.5239 
0.6240 
0.4103 

Logistics risk 
dimension 

Delaying in delivery rate  
Product damage rate  
Information sharing 
Strength of the bullwhip effect 
Data conversion failure degree 
Information technology and major equipment failure rate
Cash flow blocking degree 
Return on equity 
Asset-liability ratio 
Quick action ratio of main node enterprises

0.6171
0.7367
0.7684
0.7841
0.6781
0.7156
0.7354
0.8015
0.8912
0.7864

0.5698 
0.5364 
0.4098 
0.6912 
0.6681 
0.3098 
0.7098 
0.6951 
0.4523 
0.3856 

0.3398 
0.3912 
0.4985 
0.4681 
0.4952 
0.3521 
0.6057 
0.6685 
0.4494 
0.3691 

 

Table 2. Three-dimensional feature values and summary center cloud drips. 

Risk dimensions 
Expectation

(Ex) 
Entropy

(En) 
Hyperentropy

(He) 
Summary center 
cloud drip (rt

ij) 
Supply risk dimension 0.7187 0.5105 0.5012 0.6553 

Demand risk dimension 0.6815 0.4578 0.4748 0.4875 
Logistics risk dimension 0.7323 0.5432 0.4478 0.5276 
 

For the current data stream of the risk probability real distribution assessment index 
summaries for retail supply chain unconventional emergency in 2016, according to the 
k-means algorithm, the feature values of summary center cloud drips for the three risk 
dimensions at each day are clustered in each month to get c centroids with weights, and 
set c = 8. After repeating this process by q times (namely, window length), n = c × q 
weighted centroids are obtained, which is the number of the summary data samples of 
risk probability real distribution assessment index system for retail supply chain uncon-
ventional emergency, taking q = 12 months. n = c × q centroid data with weight values 
are shown in Table 3. 

The fuzzy clustering center St
ih of risk probability real distribution assessment index 

attribute i for category h in 2016 is shown in Table 4 in retail supply chain unconven-
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CC1: clustering center       SD2: sample data 

tional emergency. 
The updated fuzzy membership degree ut of the risk probability real distribution 

sample j belonging to category h in 2016 is shown in Table 5 in retail supply chain un-
conventional emergency. 

 
Table 3. Centroid data with weight value.  

Numbe rof
past months

First 
dimension

Second
dimension

Third 
dimension

1 

0.7254
0.6631
0.7632
0.5731
0.6371
0.7861
0.7112
0.5214

0.5731
0.5127
0.4351
0.4671
0.4276
0.6412
0.6721
0.3147

0.6421
0.6314
0.6421
0.7314
0.4376
0.5314
0.4111
0.7421

. . . 
.. . 

.. . 
.. . 

12 

0.0123
0.0268
0.0364
0.0168
0.0069
0.0514
0.0351
0.0169

0.0657
0.0384
0.0958
0.1035
0.0358
0.0235
0.0098
0.0369

0.1308
0.2014
0.0749
0.0374
0.0981
0.1684
0.1098
0.0951

 

Table 4. Fuzzy clustering center value. 
center Supply risk dimension Demand risk dimension Logistics risk dimension 

S1 0.3854 0.2489 0.1224 
S2 0.2125 0.2089 0.1865 
S3 0.1389 0.1984 0.1668 
S4 0.2089 0.1974 0.1751 
S5 0.3068 0.5174 0.6118 
S6 0.4951 0.3877 0.3106 
S7 0.1415 0.1001 0.0958 
S8 0.0231 0.0148 0.0078 

 

Table 5. Updated fuzzy membership degree matrix U. 
    SD2 

CC1 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 … r96 

S1 0.1548 0.1809 0.0977 0.1404 0.0246 0.0991 0.3301 0.4672 0.2761 0.0329 … 0.0022 
S2 0.5098 0.1483 0.0696 0.2237 0.9035 0.5351 0.1678 0.1004 0.0354 0.0136 … 0.0011 
S3 0.0454 0.0801 0.0981 0.0770 0.0084 0.0406 0.0684 0.0312 0.0679 0.4925 … 0.0162 
S4 0.0860 0.2366 0.1471 0.1138 0.0168 0.0701 0.1263 0.0996 0.2491 0.1187 … 0.0047 
S5 0.1115 0.2306 0.4100 0.2753 0.0306 0.1711 0.1667 0.2503 0.2776 0.0341 … 0.0027 
S6 0.0342 0.0461 0.0544 0.0559 0.0058 0.0289 0.0526 0.0193 0.0355 0.1381 … 0.0134 
S7 0.0303 0.0431 0.0821 0.0673 0.0057 0.0314 0.0460 0.0178 0.0343 0.0956 … 0.9493 
S8 0.0280 0.0342 0.0411 0.0465 0.0047 0.0237 0.0421 0.0143 0.0239 0.0745 … 0.0104 
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The cluster weight cwt
h(h = 1, 2, …, c) of the weight vector DWt for risk severity  

assessment cluster in 2016 is shown in Table 6, which reflects the importance of risk 
probability grade for retail supply chain unconventional emergency. The cluster weight 
value of risk probability grade 3 is the highest, which shows that the unconventional 
emergency in retail supply chain is small probability event that is not easy to occur, but 
once it occurs, the degree of harm is very significant. 

 

Table 6. The cluster weight value. 

          Cluster 
Numerical  

value 
cw1 cw2 cw3 cw4 cw5 cw6 cw7 cw8 

Cluster weight value 5.5571 7.2858 10.6585 5.027 5.4678 8.046 6.9475 3.0103 
 

4.3 Difference Moment Measure Values of Risk Probability Distributions 
 

In this study, the historical data stream of risk assessment monitoring index sum-
maries for the long-term operation is used as the summary data stream of risk probability 
reference distribution for retail supply chain unconventional emergency in 2016. Com-
bined with the summary data stream of risk probability real distribution, the difference 
moment measure value of the risk probability distributions for retail supply chain un-
conventional emergency is calculated by Eq. (30) in 2016. 
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It can be seen from the simulation result that the difference moment measure value 
of the probability distribution functions FYt and FXt of the risk real random variable Yt 
and the risk reference random variable Xt is larger in 2016. The risk probability real dis-
tribution has a wider range of change relative to the risk probability reference distribu-
tion in robust multi criteria early warning decision model for retail supply chain uncon-
ventional emergency. 

Similarly, according to the summary data streams of the risk assessment monitoring 
indices for retail supply chain unconventional emergencies in 2014 and 2015, the differ-
ence moment measure values of the probability distributions of unconventional emer-
gencies are calculated as shown in Table 7. 
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Table 7. Difference moment measure values of risk probability distributions. 
  Parameter

Year cw1 cw2 cw3 cw4 cw5 cw6 cw7 cw8 MD1 

2014 2.7392 4.9064 7.3851 2.1593 2.6438 6.3820 5.0631 1.9532 0.3527 
2015 4.9058 6.2750 9.3852 4.1580 4.6384 7.3814 5.7312 2.1649 0.6841 
2016 5.5571 7.2858 10.6585 5.0270 5.4678 8.0460 6.9475 3.0103 0.8179 

MD1: MD(FYt||FXt) 

 
As shown in Table 7, with the change of summary data stream parameter values of 

unconventional emergency risk assessment indices in retail supply chain, the cluster 
weight value cwn

t
 (h = 1, 2, …, c) of the weight vector DWt of unconventional emergency 

risk severity assessment cluster increases continuously, that is to say that the cluster 
weight value of risk probability grade increases continuously indicating increasing pro- 
bability of the retail supply chain unconventional emergency. 

Because of the increasing value of the difference moment measure MD(FYt||FXt) of 
the risk probability distributions for retail supply chain unconventional emergency from 
2014 to 2016, the Knight uncertainties faced by decision makers are increasing. The 
more the real distribution of risk probability deviates from the reference distribution of 
risk probability corresponding with the normal operation of retail supply chain, the high-
er the early warning grade of unconventional emergencies risk in retail supply chain will 
be. 
 
4.4 Theoretical Comparison Analysis between Difference Moment Measure of Risk 

Probability Distributions and Common Indices 
 

The common indices for measuring the differences of probability distributions are 
Csiszar-f metrics and Bregman metrics. The common indices are established by the spe-
cific density function or distribution law of the probability distribution. In this study, the 
relative entropy is taken as an example to achieve theoretical comparison analysis be-
tween difference moment measure MD(FYt||FXt) of risk probability distributions and 
common indices in the retail supply chain unconventional emergency. 
 
Definition 2: The relative entropy of the random variable X (distribution column: P(X = 
xi) = pi, i = 1, 2, …, nD) relative to Y (distribution column: P(Y = yi) = qi, i =1, 2, …, nD) 
is defined as: 

1
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The relative entropy of the probability density function f(x) relative to g(x) (also 
known as Kullback-Leibler information) is defined as: 
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The relative entropy D(f||g) metric measures the difference between probability dis-
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tributions from the perspective of information degradation, and measures the information 
lost when the prior distribution g(x) is used to replace the unknown real distribution f(x). 
The difference between the two probability distributions can be measured to some extent. 
The larger the D(f||g) is, the greater f(x) deviates from g(x). Relative entropy has asym-
metry and does not satisfy the triangle inequality, so it is not a true distance metric. 

The difference moment measure MD(FYt ||FXt) of risk probability distributions for 
retail supply chain unconventional emergency measures the information lost when the 
reference distribution FXt is used to replace the unknown real distribution FYt , and can 
measure the difference between the two probability distributions from the deviation of 
the first two moments of the probability distribution to some extent. Compared with rela-
tive entropy, MD(FYt ||FXt) has the following advantages in applications: 

 
(1) Relative entropy needs to be calculated using the density function or distribution law 
of the probability distribution. If the specific form of the probability distribution for ran-
dom variable can be obtained, the relative entropy calculation of the probability distribu-
tion often involves complex integral operation or summation operation, which is very 
cumbersome and even impossible to obtain analytical solutions. In Knight uncertain en-
vironment, the specific probability distribution form of retail supply chain unconven-
tional emergency risk is often difficult to obtain, while only the moments of the risk 
probability distribution can be obtained. The relative entropy can not be calculated. 

The difference moment measure MD(FYt ||FXt) of risk probability distributions for 
retail supply chain unconventional emergency only depends on the first two moments of 
the risk probability distribution, which can be obtained according to the big data statisti-
cal method based on fuzzy data stream clustering algorithm. It is a nonparametric index 
that can be easily calculated, which greatly facilitates its application. 
 
(2) In Knight uncertain environment, using a single risk probability real distribution for 
early warning decision brings certain risks in the retail supply chain unconventional 
emergency. Based on the historical data and other information, a maximum entropy de-
cision model is established to get the risk probability reference distribution in this study. 
The neighborhood of the risk probability reference distribution is used to describe the 
uncertainties of probability distribution for the risk real random variable of retail supply 
chain unconventional emergency. Due to the difficulty of obtaining the specific proba-
bility distribution form of risk real random variable, it is barely possible to calculate the 
common probability distribution difference measures such as relative entropy. 

The difference moment measure MD(FYt ||FXt) of risk probability distributions for 
retail supply chain unconventional emergency eliminates the dependency on the specific 
probability distribution form. The deviation of the first two moments for the real distri-
bution FYt and the reference distribution FXt is calculated by big data statistic method, 
which approximately describes the degree of deviation between the real distribution and 
the reference distribution of the risk probability for unconventional emergency. Fur-
thermore, the uncertainties of the probability distribution for risk real random variable of 
retail supply chain unconventional emergency is approximately described by a neigh-
borhood {FYt |MD(FYt ||FXt) ≤ } of the reference distribution based on the risk probabil-
ity distribution difference moment measure. It is helpful to improve the accuracy of the 
robust multi criteria early warning decision for unconventional emergency risk in the 
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retail supply chain. 
Retail supply chain unconventional emergency risk has the characteristics of cou-

pling, derivative, sudden, destructive, persistent and significant impact [32, 33]. Under 
Knight uncertain environment, combined with the summary data stream parameter val-
ues of the risk assessment indices for the MN retail supply chain unconventional emer-
gency, this study uses the fuzzy data stream clustering algorithm to obtain the updated 
fuzzy membership degree ut

hj of the risk assessment sample j belonging to category h and 
the cluster weight cwt

h for risk severity assessment cluster in retail supply chain uncon-
ventional emergency. The difference moment measure value MD(FYt||FXt) of the risk 
probability real distribution and the reference distribution is calculated depending only 
upon the moments for the risk probability distribution in retail supply chain unconven-
tional emergency, which verifies the feasibility of the difference moment measure meth-
od for unconventional emergency risk probability distribution based on moment gener-
ating function and fuzzy data stream clustering proposed in this study. 

5. CONCLUSIONS 

The research of the robust multi-criteria early warning decision involves the uncer-
tainty of the probability distribution for risk random variable of retail supply chain un-
conventional emergency. In Knight uncertain environment, using the single risk proba-
bility real distribution of unconventional emergency for early warning decision brings 
certain risks. Therefore, under the uncertain environment of early warning decision 
model, the moments of the risk probability reference distribution are determined based 
on summary historical data stream of long-term operational risk assessment monitoring 
indices, while the moments of the risk probability real distribution are determined based 
on summary current data stream of risk assessment monitoring indices in retail supply 
chain unconventional emergency. The difference between the moment generating func-
tions of retail supply chain unconventional emergency risk is measured by the distance 
function in the real vector space of infinite dimension moments. The deviation range 
between the real distribution and the reference distribution of the risk probability for 
unconventional emergency is further evaluated based on the moments. The uncertainty 
of the robust multi-criteria early warning decision model is described by multiple risk 
probability real distributions for unconventional emergency based on the deviation range. 
This can avoid the uncertain risk of the robust multi-criteria early warning decision- 
making and make the robust multi-criteria early warning decision-making optimal within 
a certain setting error range of probability distribution model. 

The early warning decision model of retail supply chain unconventional emergency 
risk is established base on the robust multi-criteria early warning decision model for 
maximum and minimum expected utility. The uncertainty influence of the robust multi- 
criteria early warning decision model shows as the uncertainty influence of the probabil-
ity distribution for risk real random variable of retail supply chain unconventional emer-
gency. In the Knight uncertain environment, the moments of the probability distribution 
rather than the specific probability distribution form of unconventional emergency risk 
can be obtained. The main contribution of this study is the proposal of a new difference 
moment measure method of risk probability distribution for retail supply chain uncon-
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ventional emergency based on the fuzzy statistical method of big data with cloud model 
theory [34, 35], moment generating function theory [36, 37] and functional theory [38, 
39] in Knight uncertain and big date environment, which can overcome the drawbacks of 
the difference measure methods for probability distributions presented in [5-7]. In the 
future, we will apply the difference moment measure method of risk probability distribu-
tions to solve the robust multi-criteria decision-making problems of risk early warning in 
retail supply chain unconventional emergency in Knight uncertain and big data environ-
ment. 

 
ACKNOWLEDGMENTS 

This work is supported by Beijing Social Science Foundation (No. 18GLB036), 
National Natural Science Foundation of China (No. 71573009), Beijing Natural Science 
Foundation (No. 9162002, 9102005), and the Humanities and Social Sciences Founda-
tion Project of Ministry of Education of China (No. 09YJA630003). 

REFERENCES 

1. K. Chen and L. Yang, “Random yield and coordination mechanisms of a supply 
chain with emergency backup sourcing,” International Journal of Production Re-
search, Vol. 52, 2014, pp. 4747-4767. 

2. Y. Xu, L. Y. Yu, and C. Y. Lin, “Research on the warning classification of univer-
sity public crisis by an improved fuzzy topsis based on alpha level sets,” Journal of 
Shanghai University (Natural Science), Vol. 22, 2016, pp. 1-9. 

3. R. Arthmar and M. E. Brady, “De finetti-savage’s and Keynes-knight’s approaches 
to probability and uncertaintya rejoinder to feduzi, runde and zappia,” History of 
Economic Ideas, Vol. 25, 2017, pp. 225-233. 

4. N. Latif, D. Pecaric, and J. Pecaric, “Majorization, Csiszar divergence and Zipf-
Mandelbrot law,” Journal of Inequalities and Applications, Vol. 17, 2017, pp. 197- 
217. 

5. G. S. Chen and X. J. Shi, “Generalizations of Holder inequalities for Csiszar’s di-
vergence,” Journal of Inequalities and Applications, Vol. 151, 2013, pp. 26-46. 

6. P. Kumar and S. Chhina, “A symmetric information divergence measure of the 
Csiszar’s-divergence class and its bounds,” Computers and Mathematics with Ap-
plications, Vol. 49, 2005, pp. 575-588. 

7. W. Stummer and I. Vajda, “On Bregman distances and divergences of probability 
measures,” IEEE Transactions on Information Theory, Vol. 58, 2012, pp. 1277- 
1288. 

8. T. Y. Chen, “A novel risk evaluation method of technological innovation using an 
inferior ratio-based assignment model in the face of complex uncertainty,” Expert 
Systems with Applications, Vol. 95, 2018, pp. 333-350. 

9. H. L. Liao, Q. W. Deng, and Y. R. Wang, “An environmental benefits and costs as-
sessment model for remanufacturing process under quality uncertainty,” Journal of 
Cleaner Production, Vol. 178, 2018, pp. 45-58. 

10. R. V. Ivanov and G. Temnov, “Truncated moment-generating functions of the NIG 



DIFFERENCE MEASURE METHOD OF RISK PROBABILITY DISTRIBUTION 1415

process and their applications,” Stochastics and Dynamics, Vol. 17, 2017, pp. 175- 
193. 

11. L. M. Wen, J. Yu, G. P. Mei, and Y. Zhang, “The credibility premiums based on 
estimated moment-generating function,” Communications in Statistics-Theory and 
Methods, Vol. 46, 2017, pp. 1090-1106. 

12. D. M. Stefano and M. Claude, “Moment generating functions and normalized im-
plied volatilities: unification and extension via Fukasawa’s pricing formula,” Quan-
titative Finance, Vol. 18, 2018, pp. 609-622. 

13. H. Murakami and S. K. Lee, “The unbiased nonparametric test and its moment gen-
erating function for the ordered alternative,” Statistics and Probability Letters, Vol. 
126, 2017, pp. 193-197. 

14. G. Peters and R. H. Weber, “DCC: a framework for dynamic granular clustering,” 
Granular Computing, Vol. 1, 2016, pp. 1-11. 

15. P. W. Lingras, F. H. Haider, and M. Triff, “Granular meta-clustering based on hier-
archical, network, and temporal connections,” Granular Computing, Vol. 1, 2016, 
pp. 71-92. 

16. J. R. Chen, L. D. Wei, and L. Zhang, “Dynamic evolutionary clustering approach 
based on time weight and latent attributes for collaborative filtering recommenda-
tion,” Chaos Solitons and Fractals, Vol. 114, 2018, pp. 8-18. 

17. S. Abdullahi, M. Schardt, and H. Pretzsch, “An unsupervised two-stage clustering 
approach for forest structure classification based on X-band InSAR data-A case 
study in complex temperate forest stands,” International Journal of Applied Earth 
Observation and Geo information, Vol. 57, 2017, pp. 36-48. 

18. W. J. Bi, M. L. Cai, and M. Q. Liu, “A big data clustering algorithm for mitigating 
the risk of customer churn,” IEEE Transactions on Industrial Informatics, Vol. 12, 
2016, pp. 1270-1281. 

19. K. H. Memon and D. H. Lee, “Generalised kernel weighted fuzzy C-means cluster-
ing algorithm with local information,” Fuzzy Sets and Systems, Vol. 340, 2018, pp. 
91-108. 

20. F. Vignati, D. Fustinonl, and A. Niro, “A novel scale-invariant, dynamic method for 
hierarchical clustering of data affected by measurement uncertainty,” Journal of 
Computational and Applied Mathematics, Vol. 344, 2018, pp. 521-531. 

21. R. C. Barnard, I. Z. Kiss, and L. Berthouze, “Edge-based compartmental modelling 
of an SIR epidemic on a dual-layer static-dynamic multiplex network with tunable 
clustering,” Bulletin of Mathematical Biology, Vol. 80, 2018, pp. 2698-2733. 

22. M. S. Yang and Y. Nataliani, “A feature-reduction fuzzy clustering algorithm based 
on feature-weighted entropy,” IEEE Transactions on Fuzzy Systems, Vol. 26, 2018, 
pp. 817-835. 

23. V. Kreinovich, “Solving equations (and systems of equations) under uncertainty: 
how different practical problems lead to different mathematical and computational 
formulations,” Granular Computing, Vol. 1, 2016, pp. 171-179. 

24. M. A. Sanchez, J. R. Castro, O. Castillo, O. Mendoza, A. R. Diaz, and P. Melin, 
“Fuzzy higher type information granules from an uncertainty measurement,” Gran-
ular Computing, Vol. 2, 2017, pp. 95-103. 

25. P. DUrso, “Exploratory multivariate analysis for empirical information affected by 
uncertainty and modeled in a fuzzy manner: a review,” Granular Computing, Vol. 2, 



HONG XUE, YI YUAN, CHI JIANG AND BO-YU CAI 

 

1416

 

2017, pp. 225-247. 
26. R. R. Yager, “Decision making under measure-based granular uncertainty,” Granu-

lar Computing, Vol. 3, 2018, pp. 345-353. 
27. I. Alberink, A. Sprong, and A. Bolck, “Quantifying uncertainty in estimations of the 

total weight of drugs in groups of complex matrices: using the welch-satterthwaite 
equation,” Journal of Forensic Sciences, Vol. 62, 2017, pp. 1007-1014. 

28. S. Ghosh, D. Ghosh, and D. K. Mohanta, “Functional uncertainty analysis of phasor 
measurement unit using fuzzy hidden markov model,” Iete Journal of Research, Vol. 
64, 2018, pp. 100-107. 

29. H. Jafarzadeh, P. Akbari, and B. Abedin, “A methodology for project portfolio se-
lection under criteria prioritisation, uncertainty and projects interdependency com-
bination of fuzzy QFD and DEA,” Expert Systems with Applications, Vol. 110, 2018, 
pp. 237-249. 

30. A. Hocine, N. Kouaissah, and S. Bettahar, “Optimizing renewable energy portfolios 
under uncertainty: A multi-segment fuzzy goal programming approach,” Renewable 
Energy, Vol. 129, 2018, pp. 540-552. 

31. S. D. Ma, H. Z. Zhang, and G. Q. Yang, “Target threat level assessment based on 
cloud model under fuzzy and uncertain conditions in air combat simulation,” Aero-
space Science and Technology, Vol. 67, 2017, pp. 49-53. 

32. B. Sun and W. M. Ma, “An approach to evaluation of emergency plans for uncon-
ventional emergency events based on soft fuzzy rough set,” Kybernetes, Vol. 45, 
2016, pp. 461-473. 

33. B. S. Joseph, “Planning for the unconventional emergency,” Journal American Wa-
ter Works Association, Vol. 108, 2016, pp. 17-19. 

34. F. Yan and K. Xu, “Application of a cloud model-set pair analysis in hazard assess-
ment for biomass gasification stations,” Plos One, Vol. 12, 2017, pp. 120-131. 

35. J. F. Jiang, G. Q. Han, C. S. Zhu, S. Chan, and J. J. P. C. Rodrigues, “A trust cloud 
model for underwater wireless sensor networks,” IEEE Communications Magazine, 
Vol. 55, 2017, pp. 110-116. 

36. R. V. Ivanov and G. Temnov, “On the conditional moment-generating function of a 
three-factor variance gamma based process and its applications to forward and fu-
tures pricing,” Markov Processes and Related Fields, Vol. 22, 2016, pp. 737-758. 

37. D. A. M. Villela, “Analysis of the vectorial capacity of vector-borne diseases using 
moment-generating functions,” Applied Mathematics and Computation, Vol. 290, 
2016, pp. 1-8. 

38. S. M. Lee, M. Y. Kim, and Y. H. Kim, “Electronic structures of strained InAsxP1-x 
by density functional theory,” Journal of Nanoscience and Nanotechnology, Vol. 18, 
2018, pp. 6650-6652. 

39. E. A. V. Mota, A. F. G. Neto, and F. C. Marques, “Time-dependent density func-
tional theory analysis of triphenylamine-functionalized graphene doped with transi-
tion metals for photocatalytic hydrogen production,” Journal of Nanoscience and 
Nanotechnology, Vol. 18, 2018, pp. 4987-4991. 

 
 
 
 



DIFFERENCE MEASURE METHOD OF RISK PROBABILITY DISTRIBUTION 1417

Hong Xue (薛红) received the Ph.D. degree in Management 
Science and Engineering from Wuhan University of Technology, 
China. She is currently a Professor at Beijing Technology and 
Business University. Her research interests include algorithm de-
sign and analysis, big data statistical analysis, and decision method 
for complex system. 

 
 
 

 

 
Yi Yuan (袁艺) received her bachelor degree of Engineering 

in Automation from Beijing Technology and Business University. 
She is currently pursuing the M.S. degree in the Department of 
Automation, Beijing Technology and Business University. Her 
research interests include supply chain management, intelligent 
control and decision, and risk management. 

 
 
 

 

 
Chi Jiang (蒋驰) received his bachelor degree of Engineer-

ing in Automation from Beijing Technology and Business Univer-
sity. He is currently pursuing the M.S. degree in the Department of 
Automation, Beijing Technology and Business University. His 
research interests include supply chain management, intelligent 
control and decision, and big data analysis. 

 
 
 

 
 

Bo-Yu Cai (蔡博宇) received his bachelor degree of Engi-
neering in Automation from Beijing Technology and Business 
University. He is currently pursuing the M.S. degree in the De-
partment of Automation, Beijing Technology and Business Uni-
versity. His research interests include supply chain management, 
intelligent control and decision, and optimal allocation of materi-
als. 

 
 

 


