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Underwater wireless sensor networks (UWSNs) are used for the exploration of un-

derwater resources, oceanographic data collection, flood or disaster prevention, tactical 

surveillance systems, and unmanned underwater vehicles. Underwater Wireless Sensor 

Networks offer innovative ways to investigate and anticipate how aquatic environments 

behave. Without position information, sensed data is useless in approximating target track-

ing or disaster avoidance. In this research, we propose the RLS (Reverse Localization 

Scheme), for short, a unique 3D centralized localization structure for MWSNs. The pro-

posed approach enhances energy economy and condenses localization reaction time by an 

apposite level of accurateness in expressions of the motion exemplary of water currents, 

according to simulation findings. It reduces the number of message exchanges required for 

localization, average localization response time and saves vitality. Acoustic communica-

tions are the most used physical layer technology in underwater networks. Radio waves 

may only travel great distances over conductive salty water at extremely low frequencies 

(30-300 Hz), necessitating outsized antennae and significant transmission power. This 

RLS Enabled LoRa Networks architecture is built on an ad-hoc WiFi network. 

 

Keywords: MWSNs, reverse localization scheme, clustering, data aggregation, effective 

routing, energy analysis, TWSN 

 

 

1. INTRODUCTION 
 

Since about 70% of the water on Earth can be regarded as the most significant 

resources, our planet has indeed been covered with roughly 70% of that water. Approxi-

mately millions of marine animals rely on ocean water as their primary habitat, as it is the 

primary habitation of all existing beings on the planet. Earth water absorbs everywhere 

one-fourth of the carbon dioxide produced by humanoid accomplishments. Navigation is 

one of the primary functions of water, which humans rely on heavily. Despite the fact that 

approximately 90% of the oceanic portion cannot be realized with the uncovered eye or is 

in accessible, there are hundreds of possessions waiting to be discovered in this vast 

oceanic. It is critical to comprehend the mineral possessions that must be developed deep 

beneath the water in order for the realm to develop. This obligates provided an excellent 

opportunity to have a better understanding of mother earth as more research is conducted  
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Fig. 1. Representation of data collection in UWN. 

 

within the ocean. As illustrated in Fig. 1, connections that permit underwater connectivity 

are referred to as underwater wireless networks, underwater acoustic networks, or under-

water wireless sensor networks. Nonetheless, we will refer to them together as underwater 

wireless networks (UWNs) in this context [1-3]. 

Offshore static sensor network, equipped with sensors, attached to or sitting on the 

bottom, and float at different elevations. Additionally, there are floating connections off of 

the coastline being under the sea that are somewhat autonomously or tested separately. The 

primary goal of UWNs is to sense and monitor the underwater environment that includes 

AUVs in order to transmit knowledge to an offshore station. Underwater WNM nodes have 

sensing capabilities to capture underwater features and parameters. Through the use of 

stations drifting over the sea surface (such as boats or buoys), such sensed data will be sent 

to the onshore stations. Additionally, several new technologies are being utilized, but this 

issue every of them faces is that they are too pricey and are proven to be inflexible [4]. 

Table 1 represents the factors involved in Terrestrial WSN and Underwater WSN. 

The biggest obstacles to deploying any such connection are computational power, 

cost, memory, processing capacity, and sensor lifespan. Researchers will have a difficult 

time obtaining long operating duration while sacrificing performance of the system if in-

deed the battery’s capacities are constrained. Therefore, a significant number of top re-

searchers have invested time in the design of data aggregation algorithms to support 

UWSN nodes functionalities. The master node in UWSN data aggregation takes data from 

the nodes, processes, and sends it to the sink. When data redundancy is kept to a minimum 

while assuring a high level of data correctness, the primary difficulty for data aggregation 

in UWSNs comes into view [5, 6]. 

 

Table 1. Differential factors of WSN. 

S.No Terrestrial WSNs  Underwater WSNs  

1 
Because nodes are constant, the nodes of 
differing topologies can be supposed to 
apply. 

Nodes flow with the water current, mak-
ing the network more dynamic and diffi-
cult to see as a fixed topology. 

2 
Nodes are in 2D space, and are taken in to 
consideration to be progressing. 

When you move modules in 3D volume, 
you don’t have to move them according 
to any set pattern. 

3 
It is also the adjusted destination but in-
stead changes rapidly destination. 

For sinks, it is critical to place them on 
the surface of the water to follow water 
currents. 

4 

Devices can communicate at low time de-
lay with the help of radio waves. 

Instead of using radio waves, an acous-
tic wave sets the data rate to 1.6104 
meters per second. 
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2. RELATED WORK 

Even though much research has been devoted to the development of novel applica-

tions and advanced architectures, relatively little research has been conducted in regard to 

the implementation of communication and networking protocols. Several original achieve-

ments have dealt with design of acoustically and modem acoustic and modem currently, a 

number of routing protocols aimed at underwater sensor networks has been advanced, and 

only certain of them are appropriate for network connections. UWSN architecture is cov-

ered in great detail. VBF is a standard protocol while HH-VBF (Hop-By-Hop Vector-

Based Forwarding (HH-VBF) Protocol) is its more energy-efficient form. Both VBF and 

HH-VBF care for networking mobility, but they necessitate a connected network and a 

significant amount of energy. This same mobile UWSN is an intriguing concept in decen-

tralized routing algorithms targeting delay-sensitive and delay-insensitive applications. 

One particular architecture is studied; it’s geared toward long-term applications that aren’t 

time-critical (like oceanographic and environmental monitoring) (e.g., disaster prevention 

and military surveillance) [7, 8]. More information on energy-efficient routing strategies 

for UWSNs can be found in. For determining the life span of Wireless Sensor Networks, 

some critical characteristics have been found, and their utilization of AUVs has been de-

scribed. To alleviate the effect of void infrastructures on vector-based routing protocols, 

like as VBF then HH-VBF, a novel approach named Vector-Based Void Avoidance (VB 

VA) [9] is presented. Vector-shift then back-pressure are applied in separate ways for the 

two kinds of voids, in order to address both types of voids. As a result, it would be difficult 

to carry out VBVA.s recovery operation in the real underwater environment. With this 

technology, it is possible to trap a packet in a concave hole, and before to use a time-con-

serving recovery technique in order to increase end-to-end delay [10]. 

Other location-based routing technology, called Relative Distance Based Forwarding 

(RDBF), applies the same principles. Nodes located close to the sink transfer packets using 

this protocol. Nevertheless, RDBF places a limit on the number of forwarding nodes within 

a pipeline and perhaps additional geometric shape, using a performance factor as a bound-

ary. A RDBF database is also susceptible to the high bit error rate, as the nodes with either 

the shortest distance to the source have the most influence. RDBF is also unsuitable as a 

recovery technique for local maxima nodes. Because unpredictable statistical results may 

be added or eliminated from both the prior data set, control systems are becoming more 

sophisticated if nonlinear behaviors change over time [11]. 

3. DEPTH-BASED ROUTING PROTOCOL 

3.1 Reverse Localization Scheme 

In this research work, a Reverse Localization Scheme (RLS) that may be used for 

sensor networks submerged in water. RLS reduces the total amount of messages that need 

to be sent in order to achieve localization by basing itself on an event-driven location ap-

plicant message. The plan is broken up into its two primary phases, which are a transmis-

sion phase and a centralized geometric localization phase respectively. During the first 

phase, regular sensor nodes watch and identify an event before quickly communicating 
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their findings to the surface. In order to overcome the problem of three-dimensional local-

ization in two dimensions, the virtual position of the detector sensor will be projected onto 

the water’s surface. While the latter is responsible for carrying out the centralized locali-

zation in an onshore sink. 

3.2 Network Architecture 

Due to the design of the multiple-sink underwater sensor network, DBR will be able 

to leverage it. A perfect example of this type of network is presented. Several sinks includ-

ing both RF then acoustic modems are placed at the water’s surface in the network. In the 

relevant 3D area, acoustic modem-equipped underwater sensor nodes are deployed in 

groups, and each is probable to be a data source. Information could be recorded, and data 

can also be used to communicate the data to the various sinks. It is very economical for all 

the sink RF modems to communicate because of the simple radio channels they all use. 

Since all sinks are capable of receiving data packets, we should assume that the data pack-

ets arrive and can be sent to any of the other sinks or faraway data centers efficiently. More 

than one neighboring forwarding nodes on the path towards the next packet transmission 

could be appropriate to forward a packet. A high collision then high energy usage would 

indeed follow if altogether of these qualifying nodes tried to broadcast the packet. The 

frequency of forwarding nodes requests to be regulated in order to reduce collision and 

energy usage. As a result, DBR nodes frequently broadcast the very same packet many 

times because of their multiple-path functionality, which causes them to receive the same 

packet numerous times [12]. 

3.3 UWSN Segmentation and Data Aggregation Policies and Procedures are Juxta-

posed. 

Table 2 shows various under network data collection schemes with the support of 

various protocols and clustering schemes, among all schemes LEACH and LCAD proto-

cols offers, low use of bandwidth and average energy production. 

 

Table 2. Comparison of protocols for data collection with clustering schemes. 

Protocols for data 

collection with 

clustering schemes 

Efficient use of 

bandwidth 

Energy  

Productivity 

Enhancement 

Value 

Distribution 

Ratio Bit 

PCRA -Data Low High Average Average 

VBF -Data Moderate Moderate Low Low 

HH-VBF -Data Moderate Less Moderate Average 

LEACH Low Low Moderate Low 

LCAD Average Moderate Low Middle 

 

Sensor node n1 and n2 have a height difference d1. Consider n1 receiving packets from 

S at time t1, n2 receiving packets across S at time t2, and refuse t12 connecting n1 and n2 at 

time t2. The relevant inequalities can be used to describe the following conditions: 

f(y1) < f(y2), (2) then t1 + f(y1) + t1 ≤ ty2 + f(y2). (1) 

Replacing f(y) by our linear term expression, we must 
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 ≤ (t2 − t1) − ty2 y1 − y2, ( < 0). (2) 

Now  is negative. As extended as  

|| ≥ (ty1 − ty2) + t12 d1 – d2 (3) 

both circumstances could be happened Seeing the wickedest situations for n1 also n2, we 

could elect 

|| = 2 y1 − y2 (4) 

wherever  = R/v0 has the maximal broadcast makes delay of 1 hop (Z is the maximal com-

munication range for a device node and v0 as the sound broadcast speed in water). The 

value of  be determined by on (y1 − y2), the depth change of nodes n1 and n2. 

One-hop neighbors of a base station,  can differ among 0 and R, the maximal broad-

cast variety of a sensor node. Once (d1 − d2) methods 0,  → −∞. Here by the demonstra-

tions that we can’t discover a constant  to kind condition (2) continuously contented. As 

a substitute, we usage a global value  to substitute (y1 − y2) for this holding time design. 

There are three-dimensional Static Underwater Sensor Network Sensor nodes on the ocean 

floor are not able to detect and perceive occurrences that cannot be detected or viewed 

satisfactorily by means of 3D underwater networks. Three-dimensional (three-dimension-

al) UWSNs have sensor nodes that hover at varying depths to monitor a particular phe-

nomenon. When it comes to the 3D situation, we have developed a really creative approach 

in which sensors are fixed to the oceanic floor and well-appointed with fluctuating buoys 

that may be expanded by an air propel. As the sensor is pulled towards the water surface, 

the buoy is also pulled it toward the surface. 3D random, below random and bottom grid 

deployment strategies have been presented. First 2 stratagems have sensors indiscrimi-

nately arrayed on the ocean floor wherever they are attached, but the bottom grid technique 

requires sensors to be aided by an author or several authors who organize these underwater 

sensors in a grid on the oceanic floor in order to acquire grid deployment. With the bottom-

random technique as well as the 3D-random policy, a similar reporting ratio is achieved 

[13]. 

3.4 Energy Consumption for Hops 

For underwater environment wireless communication, the battery power requisite for 

detecting and handling is low, thus we evaluate solely the energy usage for wireless com-

munication. Fig. 2 shows the energy comparison based on data transfer. This is based on 

our assumption that the sensor nodes have a fixed accept power, but variable transmit 

power − that is to say, a variable transmit power that varies with operating range.  

For our design calculations, we evaluate the effects of return loss and noise, with 

attenuation as well as spreading being the two main types of transmission losses. Using a 

propagation model, we may estimate the transmission rate required to achieve a given de-

sired signal-to-noise ratio (SNR). The inactive acoustic general electric the SNR of a sub-

merged received signal simply 

SNR = SL − TL(l, f) − NL(f) + DI, (5) 
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Fig. 2. Energy comparison with respective to transfer of data. 

 

Packet Forwarding Algorithm 

Performance Evaluation 

Forward Packet (Q)  

 A: Check preceding depth rq from k 

B: Infer current node depth dc 

C: Calculate ΔZ = (rp – rc)  

 D: IF Δr < Depth value Threshold rth THEN  

 E: while r is in Q1 THEN 

  F: Eradicate r from Q1  

G: ENDIF  

H: Fall r 

I: return value 

J: ENDIF  

K: IF P in Q2 THEN 

L: Fall r 

M: return 

 N: ENDIF  

O: Modernize r with current depth rc 

P: Calculate fixing time FT  

Q: Calculate release time RT 

 R: IF r in Z1 THEN  

 S: Get preceding sending time of r RTp 

 T: Apprise p’s time sent with min(FT, RTp)  

U: ELSE  

V: Enhance the item into Z1 

 W: ENDIF A 

 

In our research, we placed it at an indiscriminate position in the bottom layer. Nodes 

at the source generate a packet every second, with a 55-byte size. As with a professional 

auditory modem, Link Quest UWM1500, the data rate is 15kbps; the maximum transmit 

power is 95 meters (in all dimensions); and those power depletion in transmitting, accep-
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tance, and idle mode is 2.5w, 0.2.5w, and 11mwatts, correspondingly. In our experiments, 

we employ the identical broadcast Media Access Control (MAC) protocol has in [14, 15]. 

Parametric Chain Based Routing Approach are introduced the Energy Efficient PEGASIS 

Based protocol (EEPB), which has a network architecture that has major presentation con-

cerns, the inefficient commander node selection is one such example. Besides which, it 

failed to take into consideration critical factors, such as how far apart the nodes are and 

which nodes are leading. Additionally, it neglected to examine the impact of energy, re-

sidual energy, and congested roads. All of which are major issues in underwater sensor 

networking. To address these and many other challenges, as developed a parametric chain 

based routing method (PCRA), which defines an algorithmic approach for next neighbour 

selection. The task entails defining an optimum path that begins at the farthest node from 

the base station and ends with the transfer of aggregate data to the base station after cov-

ering all network nodes [16]. Conclude all devices are located in sensor networks that are 

completely submerged in water. The project’s goal is to implement a chain-based approach 

to connecting additional nodes, to increasing energy life. The nodes will be ordered into 

chains, which can be done by the sensor nodes themselves or by employing a greedy algo-

rithm that starts at one node. When a node dies, the chain is rebuilt in the same way to skip 

the node that has died. To begin data transmission from the chain endpoints, the cluster 

head launches a token passing operation. Each node combines its own data with that of its 

neighbors to create a single packet of the same length. For selecting the next neighbour, an 

efficient and trustworthy approach is defined. However, it has completely eradicated issues 

based on several parameters also including distance, residual energy, and congestion, and 

that has done away with nodes having geographic parameters like distance, residual energy, 

and congestion in the water. Each base station performs these activities, taking into con-

sideration the lack of GPS signal. The inclusion of a diverse range of sensor nodes poses a 

number of technical concerns around data routing [17]. 

3.5 PEGASIS  

Approach to Routing Using Parametric Chains (PCRA) introduced the Energy Effi-

cient PEGASIS Based protocol (EEPB), since it has a network architecture that has major 

performance concerns, such as inefficient leader node selection. Additionally, it neglected 

to consider important criteria, such as the distance connecting nodes and also the leader 

nodes, energy, residual energy, and congestion, which are all major issues in underwater 

sensor networking. Utilizing a parametric chain based routing method (PCRA), which uti-

lizes an automated response for next neighbour selection, they have developed a mecha-

nism to address the issues that have arisen. To accomplish this, we will start with the far-

thest base station from the base station and travel to each network node before transferring 

aggregate data to the base station [18].  

This floating sensor network routing uses chain-based aggregation. Each project’s 

objective is to generate a chain-based way to transfer assets through fewer nodes, thus pro-

longing network life. Ordered into chains, which can then be accomplished by sensor nodes 

using a greedy algorithm that begins at one node, or a sensor node using a greedy algorithm 

that allocates nodes based on its neighbouring nodes. To remove a node from the chain, 

the remaining nodes will duplicate themselves to continue the chain without the dead node. 

To begin data transmission from the chain endpoints, the cluster head launches a token 
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passing operation. Each node combines its own data with that of its neighbours to create a 

single packet of the same length. For selecting the next neighbour, an efficient and trust-

worthy approach is defined. It has, however, resolved concerns based on parameters such 

as distance and residual [19]. 

3.6 Acoustic-Centric Algorithms 

There have been two algorithms centered around acoustics. A completely different 

approach for the far and near neighbours. Acoustic guitars have descriptive names: Greedy 

Furthest Acoustic and Greedy Shallowest Acoustic, Most Extremely Visceral. To deter-

mine the network node furthest connected neighbour, a node receives a radio message and 

uses the interoperability matrix. After a short delay, a return command is sent to that neigh-

bor, and the radio transmission is broadcast again. Wake-up commands are an acoustic 

message that rings in the ears (Table 3). This data-containing packet doesn’t contain any 

data. The three fields in the packet are the destination, source, and a protocol/command 

field that identifies the “rise” command. 
 

Table 3. Comparison of acoustic message with different nodes. 

Windows Platform 
Number of Nodes 

40 100 

Memory Pre-Run (B) 3704 125672 

Memory Post-Run (B) 20787 700828 

Run Time 0.17 7.36 

 

Algorithm 1: Overview of Greedy Furthest Acoustic 

for 

loop 

receive radio packet Q 

if R.Final Address ≡ Self then 

exit 

else 

queue R for delayed-transmission 

find furthest acoustic node. 

 send increment cmd 

end if 

end loop 

 

The first synthesizer with extreme acoustics. If all the nodes’ forward-neighbors are 

unavailable, then one node closer to the destination is required. If nodes are evenly spaced 

throughout the audible range, then this topology is said to have only one forward neighbor. 

This algorithm sees significant performance improvement due to nodes located parallel 

together or having acoustic range sufficient to allow besides multiple forward-neighbors. 
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Algorithm 2: Greedy Shallowest Acoustic 

loop 

receive radio packet P 

if Q.Destination-Self then 

exit 

else 

queue Q for delayed-transmission 

find shallowest acoustic neighbor. 

send increase command 

end if 

end loop 

 

In particular, instead of looking for our farthest neighbour, we instead look for all of 

our nearest neighbours, identify them, and pick the shallowest of that set to get promoted. 

This algorithm’s best-case scenario occurs when the acoustic neighbor closest to the lis-

tener is also the shallower. If this approach is used, the worst-case scenario is an increasing 

depth monotonically and all nodes needing. The closest neighbor is one forward. Some all 

situations happen if either of these two things occurs [20].  

4 INVESTIGATIONS  

4.1 Leach  

The Algorithm Low-Energy Adaptive Clustering Hierarchy is a protocol on behalf of 

terrestrial sensor networks (LEACH). As a consequence of this technique, the sensor net-

work is allocated obsessed by clusters, apiece of which is formed of a cluster node and 

then a cluster node head. A number of algorithms can be used to select so every cluster's 

head. TDMAP allows the mobile node to be in a dream state on behalf of a long length of 

time, saving power, while the cluster member’s necessity constantly is conscious to collect 

all information since its cluster nodes and relay that to additional heads [21]. 

4.2 Data Packet Size with Energy Efficiency 

It can be described in data communication systems as the ratio between the amounts 

of data communicated and energy consumed during that procedure. Therefore, lowering 

the overall energy expended on its processes is a crucial component for a thermally saving 

technology, as is minimizing the overall amount of energy disbursed on its procedures. 

System failure is a potential in the underwater wireless channel due to its time-varying but 

noisy nature; packets are dropped at the sink and must be retransmitted consequential in a 

waste of energy and valuable resources. In reality, signal attenuation of data packets is a 

distinguished source of energy waste [22]. Energy efficiency declines with accumulative 

BER, which means that the more power is required, the less energy can be saved. When 

the network quality depreciates, further data packets will be degraded. As a consequence, 

more power is generated for package signal attenuation as shown in Eq. (6). 
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Algorithm 3: Determining the shallowest connected neighbor; excerpt from MATLAB 

code 

Functionid=greedyshallowestalgorithm(selfID, conn, dstid, Node Pos) 

id=0; 

Connquickref=[]; 

For i=1:length(conn) 

if i==selfID; 

continue 

end 

ifconn(i) 

if i==dstid 

id=1; 

return 

else 

Connquickref=[Connquickrefi]; 

end 

end 

end 

Pos=zeros(length(Connquickref)+2,3); 

For i=1:(length(Connquickref)) 

Pos(i+2)=Node Pos(Connquickref(i)); 

end 

Pos(1,:)=Node Pos(dstid); 

Pos(2,:)=Node Pos(selfID); 

dist=squareform(pdist(Pos(1:2))); 

depthiter=inf; 

for i=3:length(dist(1)) 

if(dist(i,1)<dist(2,1))&&(depthiter<=Pos(i,3)) 

depthiter=Pos(i,3) 

id=i; 

end 

end 

if id==0 

error(‘Could not find any neighbors, which is not likely.nn’) 

else 

id=Connquickref(id2); 

end 

end 
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Compared to Greedy Furthest Acoustic, the required prediction accuracy has a similar 

range. It just takes a little longer to complete. Table 4 shows sample Statistics for Greedy 

Shallowest Acoustic. The outermost plot is used to show estimates of the error rates for 

acoustic-centric algorithms such as Greedy Shallowest Acoustic. Almost all of two radio-

centric algorithms can be found in the lower plot (excluded are Greedy Look-Back and 

Min-Hop Furthest). While both Greedy Shallowest Radio and Min-Hop Shallowest reveal 

an error margin, Greedy Shallowest Radio reports more errors. Acoustic and radio algo-

rithms are fundamentally different, and so we prefer to split the acoustic and radio algo-

rithms. In order to accommodate these algorithms, it is imperative that there be more mo-

tion. This has a very negative impact on the standard deviation for the acoustic algorithms 

[23, 24]. Those who seem to be Min-Hop Shallowest, Greedy Look-Ahead, Greedy Shal-

lowest Radio, and Greedy Shallowest Acoustic.  

 

Table 4. Sample statistics for greedy shallowest acoustic. 

Windows Platform 
Number of Nodes 

30 60 100 

Avg. Distance of node (m) 7.1 6.5 6.2 

Avg. under water Depth (m) 11.0 9.8 11.0 

Avg. transmission Energy (J) 91.2 88.7 88.1 

Avg. Time Taken by the node (s) 64.2 64.5 62.1 

 

When we are discussing global optimal algorithms, we should keep in mind that they 

are always centralized, and that they begin the chain by using the first node as the source 

point for all packets. Because of this decision, the algorithm’s power requirement is artifi-

cially inflated and greater the distance travelled, the greater the power and the distance 

between two achieve the national as the separation between them increases. Fig. 3 depicts 

the connection between energy efficiency with respect to Packet size.  

 

 
Fig. 3. Representation of energy efficiency with respective to packet size. 

 

As disconnection increases, the distance between two nodes becomes greater, which 

means fewer potential neighbors to choose from, which leads to more nodes taking part in 

routing, which then necessitates even wider area travelled [25-27].  
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In Fig. 4, the effect of changing radio range based on the distance travelled is repre-

sented in four cases. Interestingly, the energy efficiency of a link without low BER dimin-

ishes added slowly afterward the maximum than that of a link without high BER, as shown 

in the graph below. We can see that energy efficiency might not deteriorate greatly under-

neath good network feature although with huge packet sizes. That’s an important issue to 

keep in mind. The ideal packet width can be changed from 145 bits to 850 bits through 

energy efficiency of 92% or more. With the transmitting packets containing larger payload, 

better performance efficiency is possible. It would be used to generate the graphic [28, 29]. 

Table 5 shows comparison of Energy Efficiency with packet size. 

 

 
  Number of Nodes 

Fig. 4. Numbers of effects of changing radio range on distance travelled. 

 
Table 5. Comparison of energy efficiency with packet size. 

Packet 

Size(bits) 

EPUB 

(mJ/bit) 
BER PER 

Energy  

Efficiency 

 17 1.9658 

0.01 

0.002 

0.001 

0.15 

0.02 

0.011 

0.44 

0.46 

0.51 

 97 1.0729 

0.001 

0.002 

0.001 

0.62 

0.09 

0.003 

0.35 

0.84 

0.91 

 186 1.0303 

0.001 

0.02 

0.01 

0.83 

0.18 

0.034 

0.17 

0.81 

0.93 

 254 1.0152 

0.001 

0.01 

0.001 

0.93 

0.23 

0.024 

0.08 

0.84 

0.98 

 376 1.0075 

0.1 

0.01 

0.1 

0.97 

0.29 

0.032 

0.04 

0.70 

0.95 

 516 1.0017 

0.1 

0.001 

0.01 

0.99 

0.35 

0.045 

0.02 

0.65 

0.95 
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4.3 Comparison with VBF 

As compared to the three measures, DBR and VBF are the two most important ones. 

(a) DBR attains a comparable packet delivery ratio to VBF in a single sink configuration.  

 

 
Fig. 5. Packet delivery ratio. 

 

It is possible to attain a considerably better delivery ratio with this multi-sink setting of 

DBR. The Fig. 5 depicts packet delivery ration, with respect to number of nodes, from the 

results, VBF outperforms when the number of nodes is 200, if the nodes are increasing 

both multiple sink and VBF equally operated. Fig. 6 shows the energy consumption of the 

proposed research work, it was evaluated with one-sink, multiple sink and VBF. From the 

results, VBF shows better performance in minimizing the energy under various constraints. 

 

 
Fig. 6. Energy consumption. 

 

Fig. 7 shows the Average count of packet consumption of the proposed research work, 

it was evaluated with one-sink, Multiple sink and VBF. From the results, VBF shows better 

performance in minimizing utilization of packets. If the consumption of packet is very less, 

this in turn reflects in energy utilization. 



R. PONNI, T. JAYASANKAR, K. VINOTH KUMAR 

 

402 

 

AVERAGE COUNT OF PACKET CONSUMPTION 

 
Fig. 7. Average count of packets consumption on sensor node. 

 

This is more nearly four times bigger than VBF’s packet delivery ratio of 16 percent 

[30]. BR’s redundant transmission suppression mechanisms are largely responsible for this. 

Due to the two-queue system, duplicated packet transmissions have been considerably 

minimized on DBR’s backbone. Understand that somehow this comparison is based 

around VBF’s basic information. Whenever advanced adaption algorithms are employed 

and ideal settings are established, VBF may achieve higher energy efficiency. Note that 

DBR then VBF target dissimilar network situations and had rather diverse assumptions 

about network behavior and behavior. If you have a single sink, then VBF is not for you! 

In a one-sink network, DBR can be used, but it performs better in a multi-sink system. 

Because of the two buffering, the DBR protocol demands extra memory from the sensor 

nodes. Memory inefficiency is usually not an issue in just about all systems due to the fact 

that underwater sensors have greater resources than land-based sensors do. As a result, 

only tiny buffers now have to be preserved for underwater sensor networks. The average 

amount of packets in the transmission line within apiece location is fewer than 9 in our 

simulations. So, underwater sensor nodes can afford to add additional storage [31-33]. 

5. CONCLUSION 

An examination of data aggregation and clustering strategies for submerged wireless 

sensor networks is offered in this research. Numerous ways and procedures are presented 

to meet the requirements. Research on clustering and aggregation is recognized as a vital 

component of improving network efficiency and reliability. Compares the methods to dif-

ferent parameters. These applications and designs are contrasted with terrestrial networks 

in this article. A number of clustering and data aggregation strategies have been developed 

for UWSNs. Protocols are also classified according to their proficiency. To target market-

ing to set down and create solid foundations for the development of more advanced designs, 

this paper provides a basis for aggregated and clustered schemes that have been developed. 

The first approach is to make the simulator itself more capable. The second way to use 

algorithms is by implementing them on a physical system. Additionally, it is possible to 

expand the simulator in various ways. It could have node sleep or power loss, as well as 

variable power requirements and network interference. We can verify whether power-sav-
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ing measures work in a time-accelerated environment with the methods we show in that 

chapter. It takes multiple forms of interference. A first way to interpret these results is to 

consider how varied the success rate of communication is to serve as a proxy for general 

conditions. This data is available in a standard file format known as a binary file. In order 

to allow for environmental settings, like thermo clines, the simulator could be made more 

complex and capable. A dependable device would take note of all relevant communications, 

calculate the amount of acoustic power they use, and distinguish between background 

noise and other nodes “talking” or objects reflecting off of surfaces. 
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