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Most algorithms for local community detection select a seed node using a greedy al-
gorithm and then expand it into a community using optimization functions. This paper
presents a novel approach to community detection based on local expansion. The proposed
Local Community Detection via LOcal Structure Expansion (CLOSE) algorithm features a
novel connective function, which identifies a source node in the center of a highly-connected
component of a graph. The CLOSE algorithm also selects a group of nodes rather than a
single node as a seed for local community expansion, which facilitates the selection of a
community suitable for the hub node. We also developed a system by which to identify the
most suitable source nodes for given target nodes, referred to as Exploring Local Commu-
nities of Target Nodes (ELCTN). The performance of CLOSE and ELCTN was compared
with that of state-of-the-art methods in experiments using synthetic networks generated us-
ing the Lancichinetti-Fortunato-Radicchi benchmark as well as real-world networks. Both
algorithms outperformed previous methods in terms of accuracy and modularity.

Keywords: complex networks, local community detection, source-node selection, neighbor-
ing group expansion, communities identification for target nodes

1. INTRODUCTION

There is growing interest in the study of complex networks such as the world-wide
web, biological and interaction networks, citation networks, online social networks, and
metabolic networks. Complex networks comprise individual elements as well as the rela-
tionships between them as well. For instance, a social network is a social structure com-
prising a group of users as well as the social interactions that occur among users. This
type of network can be represented as graph G = (V,E), where node set V corresponds to
individuals, and edge set E represents the relationships between individuals.

Within a complex network, the term “community” refers to a group of nodes that
form connections of greater density than those outside the community [1]. Community
detection is essentially the process of identifying community structures within complex
networks [2]. Existing community detection algorithms require global knowledge (i.e.,
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pertaining to the entire network) [1, 3, 4], which imposes a heavy computational bur-
den. Thus, researchers have been shifting their focus toward local community detection,
which requires only local knowledge (i.e., pertaining to structures adjacent to a particular
node) [5, 6, 7, 8, 9]. In situations where the availability of information is limited, local
community detection has proven more efficient in detecting communities within complex
networks.

Most existing algorithms for local community expansion can be divided into two
parts: source-node selection and community extension [10]. In source-node selection,
existing methods find the source node at the center of the community to ensure that the
analysis is close to the ground truth [5, 11]. The local community related to the source
node is expanded to include nodes with a close relationship to the source node. The
expansion process is terminated when none of the remaining nodes satisfy conditions for
inclusion in the community.

Nonetheless, there remain a number of challenges to local community detection.
Previous works [12, 13, 14] used greedy methods to maximize local modularity measure-
ments by incorporating vertices in communities one at a time. Greedy algorithms for local
community detection select in each iteration the neighbor of the seed with the highest lo-
cal modularity. Note that greedy algorithms can only search for local optimal solutions;
therefore, selecting a suitable starting node is crucial to the discovery of community struc-
tures. Note also that local community detection is based on the assumption that we do
not have information related to the entire network. This paper also focuses on a scenario
in which we need only determine communities for given target nodes, rather than all of
the nodes in the network. Thus, the selection of source nodes and the expansion of com-
munities should be related to the target nodes. To the best of our knowledge, no existing
method is able to detect local communities for specific target nodes.

This paper presents two algorithms for local community detection. Local Commu-
nity Detection by LOcal Structure Expansion (CLOSE) performs local community detec-
tion for all nodes. Exploring Local Communities for Target Nodes (ELCTN) performs
local community detection for specific target nodes. CLOSE is based on a novel source-
node selection scheme in which we define a novel connective function (referred to as
center prediction) to identify the node that represents the center of a community. Note
that CLOSE selects a group of nodes instead of a single node as the seed for expansion.
The CLOSE algorithm prevents the expansion of nodes at the fringes of the community,
while simultaneously resolving the hub problem.

The ELCTN algorithm calculates a target center prediction (TCP) score with the aim
of identifying the node with the strongest relation to the target node for use as a starting
point from which to form a community.

In experiments, the CLOSE algorithm outperformed state-of-the-art algorithms in
terms of accuracy and modularity for all types of real-world network and especially large
networks involving dense graphs. ELCTN achieved the highest F-score and normalized
mutual information (NMI) score in all types of network.

The main contributions of this paper are summarized as follows.

• We developed a source-node selection method in which a novel connective function
is used to identify the node that is most strongly connected to its neighbors for use
as a source node from which to begin the expansion of a community.
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• We originated the idea of including a group of neighboring nodes in order to mini-
mize the risk of including inappropriate nodes within the community.

• We investigated a scenario involving the identification of communities only for a
given target node using local network information. We also developed a source-
node selection method based on target center prediction.

The remainder of this paper is organized as follows. Section 2 presents related works.
Section 3 outlines the proposed CLOSE and ELCTN algorithms. Section 4 outlines the
experiments used to assess the performance of the algorithms using real-world databases.
Conclusions are drawn in Section 5.

2. RELATED WORKS

Local community detection is an important topic in the field of complex network
analysis. Generally, local community detection is implemented in two phases: seed se-
lection and community expansion. Section 2.1 provides an overview of the seed selection
process. Section 2.2 examines previous works focusing on community expansion.

2.1 Seed Selection

The efficacy of local expansion depends heavily on the selection of an appropriate
source node. Several source-node selection methods have been proposed. The local max-
imum degree method detects the node with highest degree from among the neighbors of
the initial node [15]. Moradi et al. [11] proposed a seeding algorithm based on link pre-
diction, wherein the node with the highest similarity score is selected as the seed node.
The characteristics of the seed node depend on the specifics of the link prediction method.
Gleich and Seshadhri [16] proposed a method that involves selecting the nodes with the
local minimum conductance score within the neighborhood community. Xiaoyu et al. [5]
proposed a core detection method based on node mass and node relation strength. Their
method makes it possible to replace any seed node with the core member of greatest rel-
evance to the target community. Instead of expanding a community from a single source
node, Tabarzad [17] and Zhou [9] advocated detecting a community within a subgraph of
high density. Tabarzad et al. [17] proposed the concept of a minimal cluster, which is the
set of nodes that connect most closely to the initial node provided by the user. Zhou et al.
[9] proposed the concept of an early community, which is a high-density subgraph within
a network representing the community in embryonic form.

2.2 Community Expansion

Following seed selection, the nodes around the seed node are merged to form a com-
munity. Most existing methods perform community expansion using an objective func-
tion, such as the local modularity function [13], the L-metric [12], the M local modularity
measurement [14], or the Quasi- Cliques function [18]. However, the one-by-one greedy
addition of vertices to a community does not necessarily lead to a favorable solution. The
local community metric L proposed by Chen et al. [12] was shown to outperform local
modularity R. Tao et al. [14] advocated merging a node with the community as long as
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Fig. 1. System flow.

it connects more comprehensively to nodes within the community (i.e., with more edges)
than to nodes outside the community. Ding et al. [5] based community extension on node
relational strength by measuring the degree of similarity between adjacent nodes (i.e., be-
tween the community and its neighbors), where nodes with relational strength surpassing
a given threshold are automatically merged into the community.

3. METHODOLOGY

In this section, we introduce the proposed algorithm local Community detection by
LOcal Structure Expansion (CLOSE) based on our previous work [19]. A system flow
for CLOSE is detailed in Section 3.1. We then discuss implementation of the proposed
scheme for Exploring Local Communities of the T arget Nodes (ELCTN).

3.1 System Architecture

Fig. 1 presents the system flow of CLOSE for network G = (V,E). The seed selec-
tion phase employs a novel connective function, which identifies the source node in the
center of a community and assembles a seed set through the expansion of source nodes.
The implementation of community expansion involves two simultaneous actions: 1) com-
bining neighbors of the temporary community to form neighboring groups and 2) com-
bining the neighboring groups into a temporary community. These actions are repeated
iteratively until the temporary community can no longer be expanded. CLOSE then se-
lects another source node and forms a corresponding community. The overall process is
repeated until all of the communities in the graph are discovered.
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3.2 Seed Selection Phase

Community expansion involves 1) selecting a source node and 2) expanding the
source node to form a seed set.

3.2.1 Select a source node

In this study, we developed a novel connective function referred to as center predic-
tion (CP), which finds a suitable node to form the center of a community. CP is defined
as follows:

CP(v) = ∑
m∈Γ(v),u∈Γ(v),(m,u)∈E

Sim(m,u), (1)

where Γ(v) denotes the neighbors of v and Sim(m,u) represents the expected connection
value between m and u. Sim(m,u) can be defined as Sim(m,u) = ∑w∈Γ(m)∩Γ(u)

1
kw

, where
w is a common neighbor of m and u, and kw is the degree of w. Node v with a high
CP score indicates that the neighbors of node v are tightly connected to one another.
Among all of the neighbors, the node with the highest CP is the node with the highest
connection density. This node (referred to as the local maximum CP) forms the center of
the community.

3.2.2 Expand the source node to a seed set

The seed is defined as a set of nodes located in the vicinity of the selected source
node. The neighbors that are common to node v and source node vs are also recruited into
the seed. Thus, seed expansion from the source node vs can be defined as

Seed(vs) = (Γ(vs)∩Γ(v))∪{vs}∪{v}, (2)

where Γ(vs) is the set containing all of the neighbors of vs. Following seed expansion, the
resulting seed set is denoted as a temporary community (TC).

3.3 Community Expansion Phase

Community expansion is implemented in two simultaneous steps: 1) expanding
neighbors of the temporary community to form neighboring groups and 2) recruiting suit-
able neighboring groups into the temporary community. Each of these steps is detailed in
the following sub-sections.

3.3.1 Expanding neighbors of temporary community to form neighboring groups

Nodes adjacent to the TC are expanded to form neighboring groups. Note that we
do not expand all of the neighbors as this could lead to the aggregation of multiple com-
munities. We first assess each neighboring node n of TC to determine whether they are
suitable for expansion.

In Fig. 2, we consider the following example: Node 5 is a neighbor n of TC. The
neighbors of n can be partitioned into three cases: 1) nodes belonging to TC; 2) nodes
belonging to first-level neighbors of TC; and 3) nodes that are neither in TC nor first-level
neighbors of TC. Nodes q and r belong to Case 1 (neighbors of node 5 and belonging to
TC). Nodes 1, 2, and 7 represent Case 2 (neighbors of node 5 and first-level neighbors of
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TC). Nodes 3 and 4 are Case 3 (neighbors of node 5 but not in TC nor first-level neighbors
of TC).

In most situations, a community is denser near the center and sparser near the fringes.
We define the nodes in Cases 1 and 2 as set s1, and the nodes in Cases 2 and 3 as set s2.
Set s1 represents the group of nodes close to TC. Set s2 represents the group of nodes
with one or two degrees of separation from TC. In cases where the connection density
in s1 is higher than in s2, we recruit the neighbor of TC into the neighboring group.
Otherwise, we leave the node alone. Follow [19], we use the Quasi-Clique Ratio, QCR,
to identify the density extent and propose the 2-level Quasi-Clique Ratio, 2 QCR(n), to
identify the density extent between two different sets of nodes. The formula is defined
as 2 QCR(n) = QC(s1)

QC(s2)
. The node n is a neighbor of TC. If s1 is denser than s2, then

2 QCR(n) is larger than 1. We then expand node n into the neighboring group ngn with
all neighbors except those in TC. The neighboring group expanded by n is denoted as
ngn = {{n}∪{u|u ∈ Γ(n),MAX(|Γ(u)∩Γ(n)|)}∪{Γ(u)∩Γ(n)}} \TC. Otherwise, the
neighboring group of n contains only n. In Fig. 2, QCR(s1) of node 5 is larger than
QCR(s2) of node 5. Thus, node 5 is recruited into neighboring group ng5 with node 1 and
their common neighbors 1,2,3,4 and 7 (see Fig. 3). By contrast, 2 QCR(E) is less than
1; therefore, node E is not recruited with its neighbors into the neighboring group (see
Fig. 3). The results of the expansion of neighboring nodes of this example are presented
in Fig. 3.

3.3.2 Inclusion of suitable neighboring groups within temporary community

In this step, a label propagation algorithm [20] is used to determine whether the
neighboring groups should be merged into the TC. Note that this approach makes it pos-
sible to evaluate all of the neighboring groups simultaneously. Initially, each node carries
the label that denotes the community to which it belongs. In each iteration of label diffu-
sion, all of the nodes pass their labels to their neighbors. After receiving all of the labels
from all of their neighbors, each node changes its own label to the one that it encountered
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Fig. 4. The example of neighborhood cluster.

most frequently. After several iterations, the label carried by a node indicates the commu-
nity to which it belongs. Label propagation is highly efficient in terms of execution time;
however, it does not necessarily produce consistent solutions. We sought to overcome this
by performing label propagation several times and accumulating all of the labels gathered
from each run as the final result. We applied label propagation to the subgraph that con-
tains nodes in the TC and all of the neighboring groups of the TC. Initially, each node
carries the label denoting the neighboring group to which the node belongs.

In our implementation, the nodes in the TC carry the label −1. Following several
iterations, the label that occurs most frequently in each neighboring group is selected to
represent the group. Running the process several times generates several results for each
group. We then identify the label that occurs most frequently in the neighboring groups
to function as its final label. The final label of a neighboring group is −1, if most of the
labels are gathered from the TC. In this situation, the neighboring group is then merged
into the TC.

Following Step 2, community expansion continues until there are no neighboring
groups to be merged into the TC. The local community expanded from the source node is
then output as the solution. If the user wishes to find other local communities, then seed
selection and community expansion are repeated accordingly.
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3.4 Exploring Local Communities associated with Target Nodes

In this section, we examine the scenario in which it is necessary to detect communi-
ties for designated target nodes rather than all of the nodes in the network. We developed
ELCTN algorithm to solve this problem. For given target nodes, it is preferable to iden-
tify the most strongly-related source nodes from which to form the community structure.
We first define a neighborhood cluster structure (i.e., a set of nodes neighboring the target
node). Note that the nodes in a neighborhood cluster should also be closely related to
the target nodes. A strong relationship is identified by a high local modularity [7]. For
example, node 5 in Fig. 4 is not closely related to target node 1, based on the fact that
the out-degree of node 5 (relative to the neighborhood cluster of node 1) is five compared
to an in-degree of two. We developed a function referred to as target center prediction
(TCP) to quantify the probability of a given node becoming the center of the community
containing the target node. TCP employs neighborhood cluster density (NCD) and the
neighborhood cluster similarity relation (NCSR). The NCD value indicates the density of
a given cluster neighboring the target node; it is formulated as follows:

NCD(m) =
2 | {(u,v) | u,v ∈ NC(m),(u,v) ∈ ENC(m)} |

| NC(m) | (| NC(m) | −1)
, (3)

where NC(m) is the neighborhood cluster of node m and ENC(m) indicates the edges in
neighborhood cluster of node m. A higher density indicates that the node in question has
an elevated likelihood of becoming the center of a community. The NCSR value is another
criterion used to establish the similarity of nodes in the neighborhood cluster. A higher
NCSR score indicates that the nodes in the neighborhood cluster are strongly related to
one another. NCSR is formulated as follows:

NCSR(m) = ∑
u,v∈NC(m),(u,v)∈ENC(m)

NS(u,v) (4)

where NC(m) is a neighborhood cluster of node m and ENC(m) refers to edges in node m
of neighborhood cluster NC(m). We can calculate NS(u,v) = ∑c∈N(u)∩N(v)

1
|N(c)| , where

N(c) is the number of nodes neighboring node c. The TCP score is obtained as follows:
TCP(m) = NCD(m)×NCSR(m).

After calculating the TCP for the neighbors of target node, we traverse the neighbors
of the target node. ELCTN selects the source node from which to form a community based
on three conditions. The conditions are as follows: 1) The TCP score of the neighbor must
exceed the TCP score of the original node. 2) The neighborhood cluster must contain the
original node. 3) The overlapping rate between the neighborhood cluster of neighbor and
the neighborhood cluster of original node, their neighborhood cluster overlapping rate
(NCOR) score must satisfy the user defined threshold θ . NCOR is defined as follows,

NCOR(NC(u),NC(v)) =
| NC(u) | ∩ | NC(v) |
| NC(u) | ∪ | NC(v) |

. (5)

The first condition is used to identify a node suitable for a community center. The second
and third condition ensures the resulting community contains the target node. ELCTN
iteratively searches for new source nodes until none of the remaining neighbors can be
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changed. Finally, ELCTN obtains source nodes with a strong relation to the target node
near the center of the community.

4. EXPERIMENTS

In this section, we discuss the experiments conducted to verify the proposed ap-
proaches. A description of the data is presented in Section 4.1. The measurements used
to verify the results are presented in Section 4.2. The results obtained in the current study
are compared with those obtained in previous works in Section 4.3.

4.1 Data Description

The proposed algorithms were evaluated in experiments using synthetic and real-
world networks.

4.1.1 Synthetic networks

We use the Lancichinetti-Fortunato-Radicchi (LFR) benchmark [21] to generate syn-
thetic complex networks. The advantage of LFR is the fact that it accounts for heterogene-
ity in the distributions of node degrees and community sizes.

We generated networks with the number of nodes set at 5,000, 10,000, and 50,000.
Regardless of the number of nodes, LFR was configured to generate three types of graphs:
sparse (S), medium (M) and dense (D).

4.1.2 Real world data

Real-world networks are available from UCI Machine Learning Repository1 and
Stanford large network dataset collection2. Table 1 lists the statistics of five networks:
Karate, Club Football, Polbooks, Amazon, and DBLP.
Karate [22]: refers to a social network formed from the members of a karate club over a
three-year period (1970 – 1972). The edges between pairs of members indicate interac-
tions outside the club.
American college football [23]: refers to a network of American football games played
between Division IA colleges during the fall season in 2000. The vertices in the network
represent teams, and the edges represent regular-season games between two teams.
Polbooks3: refers to a network of books related to United States (US) politics published
around the time of the 2004 presidential election and sold by the online bookseller Ama-
zon.com. Edges between books represent the frequent co-purchasing of books by the
same buyer.
Amazon [24]: refers to products and the co-purchasing relationship between pairs of
products.
DBLP [25]: refers to a co-authorship network in which two authors are deemed to be
connected if they publish at least one paper together.

1https://archive.ics.uci.edu/ml/datasets.php
2http://snap.stanford.edu/data/
3http://www.orgnet.com
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Table 1. Real world dataset, where AD: average degree; CC: clustering coefficient.
Data Sets |V| |E| #Class AD CC

Karate Club 34 78 2 4.588 0.255

FootBall 115 613 11 2.665 0.403

Polbooks 105 441 3 8.400 0.488

Amazon 334863 925872 75149 1.382 0.3967

DBLP 317080 1049866 13477 6.622 0.632

(a) 5,000 nodes. (b) 10,000 nodes. (c) 50,000 nodes.

Fig. 5. Modularity for different algorithms in synthetic networks.

4.2 Measurements

In the experiments, the performance of the CLOSE algorithm was evaluated using
modularity and normalized mutual information (NMI). The quality of communities de-
tected from source nodes selected by ELCTN was evaluated using NMI. We also used
the F-score and cover-rate to evaluate the correctness of detected communities based on
target nodes. Note that the assessment of ELCTN using NMI involved a comparison of
the detected community and a real-world community that included the target node. Cases
where the target node did not appear in the detected community were severely penalized
in terms of NMI score. We believe this is a practical approach to performance verification.

Modularity [26] Modularity is used to measure the accuracy with which a network is
partitioned into communities without the need for ground-truth data Modularity deals only
with connections within a community and connections between communities. Networks
with high modularity present dense connections between the nodes within communities,
but sparse connections between the nodes in different communities. Modularity refers to

(a) 5,000 nodes. (b) 10,000 nodes. (c) 50,000 nodes.

Fig. 6. NMI for different algorithms in synthetic networks.
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(a) Sparse graph. (b) Medium graph. (c) Dense graph.

Fig. 7. Modularity of different densities in synthetic networks.

(a) Sparse graph. (b) Medium graph. (c) Dense graph.

Fig. 8. NMI of different densities in synthetic networks.

the fraction of edges that fall within given groups minus the expected fraction that would
fall within the groups if the edges were randomly distributed. The modularity metric Q
proposed by Newman [26] is defined as Q = 1

2m ∑uv [Auv− kv∗ku
2m ]δ (cu,cv). The value in

the adjacency matrix Auv is 1 if vertices u and v are connected and 0 otherwise; m indicates
the number of links in the graph; kv is the degree of node v; and δ (cu,cv) is 1 if u and v are
in the same community and 0 otherwise. Auv− kv∗ku

2m indicates the difference between the
actual number and the expected number of edges between vertices v and w. The equation
sums over all vertex pairs. Modularity metric Q is used to obtain the average difference
between the actual number and the expected number of edges between two vertices in the
same community. Thus, edge density is proportional to Q.

Normalized Mutual Information (NMI) [27] scores ranged from 0 to 1, where 1 in-
dicates that two sets provide a perfect match. Local community detection algorithms can
create a binary partition of the network to differentiate the detected local community from
the rest of the network. We take the simplified version of NMI. [28]

F-score [29] is a measure of precision and recall, where a higher score is indicative of
superior performance. An F-score of 1 indicates that the detected community is precisely
the same as the real community.

Cover-rate is a score determined by whether the target node of a community belongs
to the final community. In the following, C f is the number of target nodes that belong to
the final community and C is the number of target nodes.
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(a) Modularity. (b) NMI.

Fig. 9. The performance of different algorithms on real-world networks.

4.3 Performance Evaluation

4.3.1 Performance comparisons of CLOSE on synthetic networks

The efficiency of the CLOSE algorithm was compared with that of a local commu-
nity detection algorithm based on local modularity M(s) (denoted as LCD M(s)) [14], and
an algorithm based on local modularity L (denoted as LCD L) [12]. We also conducted
comparisons using methods based on greedy optimization (denoted as Greedy) [30] and
on expanding communities from minimal clusters (denoted as MC) [9], and a heuristic
method (denoted as HLCD) [17]. Each of the algorithms was assessed in terms of accu-
racy (NMI) and modularity using various types of network with various numbers of nodes.
The results of Greedy and HCDL for 50,000 nodes are excluded from the figures due to
the fact that those algorithms are unable to deal with graphs comprising so many nodes.
The HCDL results are strongly affected by the values for α and β . We have considerable
experience with this algorithm [17], and found that α = 0.8 and β = 0.8 generally provide
the best performance.

Fig. 5 compares the methods in terms of modularity in sparse, medium, and dense
cases. Each subfigure in Fig. 5 presents the results obtained using a different number
of nodes. Irrespective of the type of graph, CLOSE outperformed the other methods in
terms of modularity and accuracy. As shown in Fig. 6, CLOSE achieved the highest
accuracy regardless of the numbers of nodes. Greedy also achieved high NMI values;
however, the execution time was several times longer. Figs. 7 and 8 present the variations
in modularity as a function of the number of nodes. It appears that the performance of
CLOSE is unaffected by the number of nodes, regardless of the type of graph.

4.3.2 Performance comparison of CLOSE using real-world data

The Football, Polbooks, and DBLP datasets were selected to test the performance
of the algorithms (see Fig. 9). CLOSE outperformed the other algorithms in terms of
modularity and NMI on all three datasets.

4.4 Performance Comparison of ELCTN

The performance of the ELCTN algorithm was evaluated using four real-world
datasets (Karate Club, Football, Amazon, and DBLP) with four seed selection strategies:
LS [11], COND [16], LMD [15], RTLCD [5].
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Fig. 10. NMI, F-score and Cover-rate of source selection algorithms.

Fig. 10 presents the F-score, NMI, and cover-rate of the seed selection algorithms
when applied to real-world networks using the same community extension methods. As
shown in Fig. 10, ELCTN can have a profound influence on performance when applied
to real-world networks. It appears that failure to consider the relationship between the
target node and seed node increases the probability of a seed node being transferred to
another community. This means that LS, COND, and LMD are ill-suited to this type of
problem in real-world networks. Overall, ELCTN outperformed existing state-of-the-art
algorithms in detecting communities that contain the target node.

5. CONCLUSIONS

This paper presents an algorithm for the detection of communities in complex net-
works based on local expansion. The proposed CLOSE algorithm performs source-node
selection using a novel connective function to identify the node with the largest number
of connections to its neighbors. CLOSE also selects a group of nodes rather than a single
node as the seed for the expansion of a local community. Our use of neighboring groups
helps to identify suitable communities for hub nodes. We developed a label propagation
scheme to estimate the degree of connectivity with neighboring groups and whether they
should be included in the temporary community. We also discuss the scenario in which
we need determine communities for given target nodes, rather than all of the nodes in
the network. The proposed ELCTN algorithm ensures that the selected source nodes are
strongly related to the target node, and that they provide suitable starting points from



512 HAO-SHANG MA, SHIOU-CHI LI, ZHI-JIA JIAN, YOU-HUA KUO, JEN-WEI HUANG

which to form communities. In experiments, CLOSE outperformed state-of-the-art lo-
cal community detection algorithms in nearly every case. ELCTN also proved highly
effective in detecting communities for specific target nodes from selected source nodes.
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